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Improved exponential type estimators of finite
population mean under complete and partial

auxiliary information

Abdul Haq∗ and Javid Shabbir†

Abstract
This paper proposes some improved exponential type estimators of fi-
nite population mean under simple random sampling and double sam-
pling. Expressions for biases and mean squared errors of the proposed
estimators are derived up to the first order of approximation. The-
oretical and numerical comparisons are made to investigate the per-
formances of the estimators. The proposed estimators always perform
better than the difference estimator of the population mean. They also
perform better than the estimators suggested by Gupta and Shabbir
[3] and Grover and Kaur [2].
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1. Introduction
The auxiliary information is frequently used to increase precision of the population

estimates by taking advantage of the correlation between the study variable and the aux-
iliary variable. Several authors including Kadilar and Cingi [4], Kadilar and Cingi [5],
Kadilar and Cingi [6], Kadilar and Cingi [7] and Gupta and Shabbir [3] have proposed
different estimators by utilizing information on the auxiliary variable for estimation of
the population mean.

In this paper, we propose some improved exponential type estimators for estimating
finite population mean using complete and partial auxiliary information. Explicit expres-
sions for biases and mean squared errors (MSEs) of the proposed estimators are derived
up to the first order of approximation. An empirical study is conducted to assess the
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performance of the proposed estimators. It is observed that the proposed estimators are
more precise than the existing estimators of the finite population mean.

Consider a finite population comprises of N units. We draw a sample of size n from
this population by using simple random sampling without replacement (SRSWOR). Let
y and x be the study and the auxiliary variables of the characteristics yi and xi, re-

spectively, for the ith unit. Let ȳ = 1
n

n∑
i=1

yi and x̄ = 1
n

n∑
i=1

xi be the sample means

corresponding to the population means Ȳ = 1
N

N∑
i=1

yi and X̄ = 1
N

N∑
i=1

xi, respectively. Let

s2
y = 1

n−1

n∑
i=1

(yi − ȳ)2 and s2
x = 1

n−1

n∑
i=1

(xi − x̄)2 be the sample variances correspond-

ing to the population variances S2
y = 1

N−1

N∑
i=1

(
yi − Ȳ

)2 and S2
x = 1

N−1

N∑
i=1

(
xi − X̄

)2,
respectively. Let ρ be the correlation coefficient between y and x. Let Cy =

Sy

Ȳ
and

Cx = Sx
X̄

be the coefficients of variation of y and x, respectively.

The rest of the paper is organized as follows: Section 2 includes the estimators adopted
by several authors when using complete auxiliary information. In Section 3, the proposed
estimators based on complete information are discussed in detail. Theoretical compar-
isons of the proposed estimators with the existing estimators are given in Section 4.
Section 5 contains some suggested estimators when partial auxiliary information is avail-
able. The work on the proposed estimators is extended to two-phase sampling in Section
6. Section 7 contains theoretical comparisons of the suggested estimators and existing
estimators. For numerical comparisons of estimators, we consider three real data sets in
Section 8, and concluding remarks are given in Section 9.

2. Estimators based on complete auxiliary information
In the following subsequent sections, we discuss the properties of the difference,

difference-ratio-type and exponential-type estimators of finite population mean suggested
by several authors.

2.1. Usual difference estimator of population mean. The unbiased difference es-
timator of population mean is

(2.1) ˆ̄YD = ȳ + k
(
X̄ − x̄

)
,

where k is an unknown constant.
The minimum variance of ˆ̄YD, at optimum value of k, i.e., k(opt) =

Ȳ ρCy

X̄Cx
, is given by

(2.2) V armin

(
ˆ̄YD
)
∼= Ȳ 2λ

(
1− ρ2)C2

y ,

where λ = 1−f
n

and f = n
N
.

2.2. Gupta and Shabbir [3] family of estimators. Gupta and Shabbir [3] introduced
the following family of estimators for estimating finite population mean:

(2.3) ˆ̄YGS =
{
s1ȳ + s2

(
X̄ − x̄

)}(aX̄ + b

ax̄+ b

)
,

where s1 and s2 are two unknown constants. Here a and b are the known population
parameters which may be coefficient of skewness (β1x), coefficient of kurtosis (β2x), co-
efficient of variation (CV ) and correlation coefficient (ρ).



Expressions for Bias and MSE of ˆ̄YGS , to first order of approximation, are given by

(2.4) Bias
(

ˆ̄YGS
)
∼= −Ȳ + Ȳ {1 + λτCx (τCx − ρCy)} s1 + X̄λτC2

xs2

and

MSE
(

ˆ̄YGS
)
∼= Ȳ 2 + Ȳ 2 {1 + λ

(
3τ2C2

x − 4ρτCxCy + C2
y

)}
s2

1 + X̄λC2
xs2

(
−2Ȳ τ + X̄s2

)
−2Ȳ s1

[
Ȳ + λCx

{
τCx

(
Ȳ τ − 2X̄s2

)
+ ρCy

(
−Ȳ τ + X̄s2

)}]
,(2.5)

where τ = aX̄
aX̄+b

.

The optimum values of s1 and s2, obtained by minimizing the MSE of ˆ̄YGS , are given by

s1(opt) =
−1+λτ2C2

x

−1+λτ2C2
x+λ(−1+ρ2)C2

y

and s2(opt) =
Ȳ [−ρCy+τCx{1−λτ2C2

x+λρτCxCy+λ(−1+ρ2)C2
y}]

X̄Cx{−1+λτ2C2
x+λ(−1+ρ2)C2

y}
.

The minimum MSE of ˆ̄YGS , at optimum values of s1 and s2, is given by

(2.6) MSEmin

(
ˆ̄YGS

)
∼=
Ȳ 2λ

(
1− ρ2

) (
−1 + λτ2C2

x

)
C2
y

−1 + λτ2C2
x + λ (−1 + ρ2)C2

y

.

Gupta and Shabbir [3] estimator ˆ̄YGS will perform better than the difference estimator
ˆ̄YD, if

Ȳ 2λ2
(
−1 + ρ2

)2
C4
y

1− λτ2C2
x + λ (1− ρ2)C2

y

> 0.

2.3. Grover and Kaur [2] estimator. Grover and Kaur [2] proposed the following
estimator of finite population mean:

(2.7) ˆ̄YGK =
{
t1ȳ + t2

(
X̄ − x̄

)}
exp

(
X̄ − x̄
X̄ + x̄

)
,

where t1 and t2 are two unknown constants, whose values are to be determined later on.
Expressions for Bias and MSE of ˆ̄YGK , to first order of approximation, are given by

(2.8) Bias
(

ˆ̄YGK
)
∼=

1

8

[
−8Ȳ + Ȳ {8 + λCx (3Cx − 4ρCy)} t1 + 4X̄λC2

xt2
]

and

MSE
(

ˆ̄YGK
)
∼= Ȳ 2 + Ȳ 2 {1 + λ

(
C2
x − 2ρCxCy + C2

y

)}
t21 + X̄λC2

xt2
(
−Ȳ + X̄t2

)
+

1

4
Ȳ t1

[
−8Ȳ + λCx

{
4ρCy

(
Ȳ − 2X̄t2

)
+ Cx

(
−3Ȳ + 8X̄t2

)}]
.(2.9)

The optimum values of t1 and t2, obtained by minimizing the MSE of ˆ̄YGK , are given by

t1(opt) =
−8+λC2

x

−8+8λ(−1+ρ2)C2
y

and t2(opt) =
Ȳ [−8ρCy+Cx{4−λC2

x+λρCxCy+4λ(−1+ρ2)C2
y}]

8X̄Cx{−1+λ(−1+ρ2)C2
y}

.

The minimum MSE of ˆ̄YGK , at optimum values of t1 and t2, is given by

(2.10) MSEmin

(
ˆ̄YGK

)
∼=
Ȳ 2λ

{
λC4

x − 16
(
−1 + ρ2

) (
−4 + λC2

x

)
C2
y

}
64
{
−1 + λ (−1 + ρ2)C2

y

} .

Grover and Kaur [2] estimator ˆ̄YGK will perform better than the difference estimator ˆ̄YD,
if

Ȳ 2λ2
{
C2
x − 8

(
−1 + ρ2

)
C2
y

}2

64
{

1 + λ (1− ρ2)C2
y

} > 0.



Gupta and Shabbir [3] estimator ˆ̄YGS will perform better than the Grover and Kaur [2]
estimator ˆ̄YGK , if

Ȳ 2λ

( (
−1 + ρ2

) (
−1 + λτ2C2

x

)
C2
y

−1 + λτ2C2
x + λ (−1 + ρ2)C2

y

+
λC4

x − 16
(
−1 + ρ2

) (
−4 + λC2

x

)
C2
y

64
{
−1 + λ (−1 + ρ2)C2

y

} )
> 0.

3. Proposed estimators
In this section, we propose some improved exponential type estimators for estimating

finite population mean when complete auxiliary information is available.

3.1. First proposed estimator. On the lines of Singh and Espejo [8], the average
ratio-product estimator is given by

(3.1) ˆ̄YSE =
1

2
ȳ

(
X̄

x̄
+
x̄

X̄

)
.

By replacing ˆ̄YSE in place of ȳ in (2.7), the proposed estimator becomes

(3.2) ˆ̄YP1 =
{
u1

ˆ̄YSE + u2

(
X̄ − x̄

)}
exp

(
X̄ − x̄
X̄ + x̄

)
,

where u1 and u2 are two unknown constants, whose values are determined for optimality.
Expressions for Bias and MSE of ˆ̄YP1, to first order of approximation, are given by

(3.3) Bias
(

ˆ̄YP1

)
∼=

1

8

[
−8Ȳ + Ȳ {8 + λCx (7Cx − 4ρCy)}u1 + 4X̄λC2

xu2

]
and

MSE
(

ˆ̄YP1

)
∼= Ȳ 2+Ȳ 2 {1 + λ

(
2C2

x − 2ρCxCy + C2
y

)}
u2

1+X̄λC2
xu2

(
−Ȳ + X̄u2

)
(3.4) +

1

4
Ȳ u1

[
−8Ȳ + λCx

{
4ρCy

(
Ȳ − 2X̄u2

)
+ Cx

(
−7Ȳ + 8X̄u2

)}]
.

The optimum values of u1 and u2, obtained by minimizing the MSE of ˆ̄YP1, are given by

u1(opt) =
8+3λC2

x

8{1+λC2
x+λ(1−ρ2)C2

y}
and u2(opt) =

Ȳ [8ρCy+Cx{−4+λ(C2
x+3ρCxCy−4(−1+ρ2)C2

y)}]
8X̄Cx{1+λC2

x+λ(1−ρ2)C2
y}

.

The minimum MSE of ˆ̄YP1, at optimum values of u1 and u2, is given by

(3.5) MSEmin

(
ˆ̄YP1

)
∼=
Ȳ 2λ

{
−25λC4

x + 16
(
−1 + ρ2

) (
−4 + λC2

x

)
C2
y

}
64
{

1 + λC2
x + λ (1− ρ2)C2

y

} .

3.2. Second proposed estimator. On the line of Bahl and Tuteja [1], we can define
the average exponential ratio-product type estimator, given by

(3.6) ˆ̄YBTW =
1

2
ȳ

{
exp

(
X̄ − x̄
X̄ + x̄

)
+ exp

(
x̄− X̄
X̄ + x̄

)}
,

By replacing ˆ̄YBTW in place of ȳ in (2.7), the proposed estimator becomes

(3.7) ˆ̄YP2 =
{
v1

ˆ̄YBTW + v2

(
X̄ − x̄

)}
exp

(
X̄ − x̄
X̄ + x̄

)
,

where v1 and v2 are two unknown constants.
Expressions for Bias and MSE of ˆ̄YP2, to first order of approximation, are given by

(3.8) Bias
(

ˆ̄YP2

)
∼=

1

2

[
−2Ȳ + Ȳ {2 + λCx (Cx − ρCy)} v1 + X̄λC2

xv2

]



and

MSE
(

ˆ̄YP2

)
∼= Ȳ 2 +

1

4
Ȳ 2 (4 + 5λC2

x − 8λρCxCy + 4λC2
y

)
v2

1 + X̄λC2
xv2

(
−Ȳ + X̄v2

)
+Ȳ v1

{
−2Ȳ − λCx (Cx − ρCy)

(
Ȳ − 2X̄v2

)}
.(3.9)

The optimum values of v1 and v2, obtained by minimizing the MSE of ˆ̄YP2, are given by

v1(opt) = 4

4+λC2
x−4λ(−1+ρ2)C2

y

and v2(opt) = Ȳ
2X̄

(
1 +

−8Cx+8ρCy

Cx{4+λC2
x−4λ(−1+ρ2)C2

y}

)
.

The minimum MSE of ˆ̄YP2, at optimum values of v1 and v2, is given by

(3.10) MSEmin

(
ˆ̄YP2

)
∼=
Ȳ 2λ

{
−λC4

x + 4
(
−1 + ρ2

) (
−4 + λC2

x

)
C2
y

}
4
{

4 + λC2
x − 4λ (−1 + ρ2)C2

y

} .

3.3. Third proposed estimator. Replacing ˆ̄YSE from (3.1) in place of ȳ given in (3.6),
the estimator becomes

(3.11) ˆ̄YBTSEW = ȳ
1

4

(
X̄

x̄
+
x̄

X̄

){
exp

(
X̄ − x̄
X̄ + x̄

)
+ exp

(
x̄− X̄
X̄ + x̄

)}
.

Also replacing ˆ̄YBTSEW in place of ȳ in (2.7), the proposed estimator turns out to be

(3.12) ˆ̄YP3 =
[
w1

ˆ̄YBTSEW + w2

(
X̄ − x̄

)]
exp

(
X̄ − x̄
X̄ + x̄

)
,

where w1 and w2 are two unknown constants.
Expressions for Bias and MSE of ˆ̄YP3, to first order of approximation, are given by

(3.13) Bias
(

ˆ̄YP3

)
∼=

1

2

[
−2Ȳ + Ȳ {2 + λCx (2Cx − ρCy)}w1 + X̄λC2

xw2

]
and

MSE
(

ˆ̄YP3

)
∼= Ȳ 2 +

1

4
Ȳ 2 (4 + 9λC2

x − 8λρCxCy + 4λC2
y

)
w2

1 + X̄λC2
xw2

(
−Ȳ + X̄w2

)
+Ȳ w1

[
−2Ȳ + λCx

{
ρCy

(
Ȳ − 2X̄w2

)
− 2Cx

(
Ȳ − X̄w2

)}]
.(3.14)

The optimum values of w1 and w2, obtained by minimizing the MSE of ˆ̄YP3, are given by

w1(opt) =
4+2λC2

x

4+5λC2
x−4λ(−1+ρ2)C2

y

and w2(opt) =
Ȳ [8ρCy+Cx{−4+λ(C2

x+4ρCxCy−4(−1+ρ2)C2
y)}]

2X̄Cx{4+5λC2
x−4λ(−1+ρ2)C2

y}
.

The minimum MSE of ˆ̄YP3, at optimum values of w1 and w2, is given by

(3.15) MSEmin

(
ˆ̄YP3

)
∼=
Ȳ 2λ

{
−9λC4

x + 4
(
−1 + ρ2

) (
−4 + λC2

x

)
C2
y

}
4
{

4 + 5λC2
x − 4λ (−1 + ρ2)C2

y

} .

Remarks: Expressions given in (3.5), (3.10) and (3.15) contain unknown population
parameters, which can be estimated either from the sample values or through repeated
survey or by experience gathered in due course of time.

4. Efficiency comparisons under simple random sampling
In this section, we compare the proposed estimators with the existing estimators.
(a) Comparison with difference type estimator

(i) From (2.2) and (3.5), MSEmin

(
ˆ̄YP1

)
< V armin

(
ˆ̄YD
)
, if

Ȳ 2λ2
{

5C2
x − 8

(
−1 + ρ2

)
C2
y

}2

64
{

1 + λC2
x + λ (1− ρ2)C2

y

} > 0.



(ii) From (2.2) and (3.10), MSEmin

(
ˆ̄YP2

)
< V armin

(
ˆ̄YD
)
, if

Ȳ 2λ2
{
C2
x − 4

(
−1 + ρ2

)
C2
y

}2

4
{

4 + λC2
x + 4λ (1− ρ2)C2

y

} > 0.

(iii) From (2.2) and (3.15), MSEmin

(
ˆ̄YP3

)
< V armin

(
ˆ̄YD
)
, if

Ȳ 2λ2
{

3C2
x − 4

(
−1 + ρ2

)
C2
y

}2

4
{

4 + 5λC2
x + 4λ (1− ρ2)C2

y

} > 0.

Note: Conditions (i)-(iii) are always true.
(b) Comparison with Gupta and Shabbir [3] estimator

(iv) From (2.6) and (3.5), MSEmin

(
ˆ̄YP1

)
< MSEmin

(
ˆ̄YGS

)
, if

Ȳ 2λ2C2
x

[
25C2

x(−1+λτ2C2
x)−5(−1+ρ2){−16+λ(−5+16τ2)C2

x}C2
y+16λ(−1+ρ2)2(−1+4τ2)C4

y

]
64{−1+λτ2C2

x+λ(−1+ρ2)C2
y}{1+λC2

x+λ(1−ρ2)C2
y}

>

0.

(v) From (2.6) and (3.10), MSEmin

(
ˆ̄YP2

)
< MSEmin

(
ˆ̄YGS

)
, if

1

4
Ȳ 2

{
λ
(
1− 4τ2)C2

x +
16

4 + λC2
x − 4λ (−1 + ρ2)C2

y

+
4
(
−1 + λτ2C2

x

)2
−1 + λτ2C2

x + λ (−1 + ρ2)C2
y

}
> 0.

(vi) From (2.6) and (3.15), MSEmin

(
ˆ̄YP3

)
< MSEmin

(
ˆ̄YGS

)
, if

Ȳ 2λ2C2
x

[
9C2

x(−1+λτ2C2
x)−3(−1+ρ2){−8+λ(−3+8τ2)C2

x}C2
y+4λ(−1+ρ2)2(−1+4τ2)C4

y

]
4{4+5λC2

x−4λ(−1+ρ2)C2
y}{−1+λτ2C2

x+λ(−1+ρ2)C2
y}

>

0.
Note: The proposed estimators ˆ̄YPi(i = 1, 2, 3) perform better than the Gupta
and Shabbir [3] if conditions (iv)-(vi) are satisfied.

(c) Comparison with Grover and Kaur [2] estimator
(vii) From (2.10) and (3.5), MSEmin

(
ˆ̄YP1

)
< MSEmin

(
ˆ̄YGK

)
, if

Ȳ 2λ2C2
x

{
C2
x

(
−24 + λC2

x

)
+ 8

(
−1 + ρ2

) (
8 + λC2

x

)
C2
y

}
64
{
−1 + λ (−1 + ρ2)C2

y

}{
1 + λC2

x + λ (1− ρ2)C2
y

} > 0.

(viii) From (2.10) and (3.10), MSEmin

(
ˆ̄YP2

)
< MSEmin

(
ˆ̄YGK

)
, if

Ȳ 2

(
4

4 + λC2
x − 4λ (−1 + ρ2)C2

y

+

(
−8 + λC2

x

)2
−64 + 64λ (−1 + ρ2)C2

y

)
> 0.

(ix) From (2.10) and (3.15), MSEmin

(
ˆ̄YP3

)
< MSEmin

(
ˆ̄YGK

)
, if

5Ȳ 2λ2C2
x

{
C2
x

(
−28 + λC2

x

)
+ 4

(
−1 + ρ2

) (
16 + 3λC2

x

)
C2
y

}
64
{

4 + 5λC2
x − 4λ (−1 + ρ2)C2

y

}{
−1 + λ (−1 + ρ2)C2

y

} > 0.

Note: The proposed estimators ˆ̄YPi(i = 1, 2, 3) perform better than the
Grover and Kaur (2011) if conditions (vii)-(ix) are satisfied.

(d) Comparisons among proposed estimators
(x) From (3.5) and (3.10), MSEmin

(
ˆ̄YP2

)
< MSEmin

(
ˆ̄Yp1
)
, if

Ȳ 2

(
4

4 + λC2
x + 4λ (1− ρ2)C2

y

−
(
8 + 3λC2

x

)2
64
{

1 + λC2
x + λ (1− ρ2)C2

y

}) > 0.



(xi) From (3.5) and (3.15), MSEmin

(
ˆ̄YP3

)
< MSEmin

(
ˆ̄Yp1
)
, if

Ȳ 2λ2C2
x

{
C2
x

(
44 + 19λC2

x

)
+ 4

(
1− ρ2

) (
16 + 7λC2

x

)
C2
y

}
64
{

4 + 5λC2
x + 4λ (1− ρ2)C2

y

}{
1 + λC2

x + λ (1− ρ2)C2
y

} > 0.

(xii) From (3.10) and (3.15), MSEmin

(
ˆ̄YP3

)
< MSEmin

(
ˆ̄Yp2
)
, if

Ȳ 2λ2C2
x

{
C2
x

(
8 + λC2

x

)
+ 4

(
1− ρ2

) (
4 + λC2

x

)
C2
y

}{
4 + λC2

x + 4λ (1− ρ2)C2
y

}{
4 + 5λC2

x + 4λ (1− ρ2)C2
y

} > 0.

Note: Conditions (xi) and (xii) are always true.

5. Estimators under two-phase sampling (partial information)
When the population mean of the auxiliary variable, x, is unknown, it is customary to

apply the two-phase sampling procedure. The two-phase sampling scheme is explained
as follows

(i) In first-phase, a sample of size (n1 < N) is selected from the population using
SRSWOR to estimate X̄.

(ii) In second-phase, a sample of size (n < n1) is selected to observe both y and x.
Let x̄1 be the sample mean based on first-phase sample of size n1, and let ȳ and x̄ be
the sample means based on second-phase sample of size n. Let (x̄1, x̄) and ȳ are the
unbiased estimators of X̄ and Ȳ , respectively. Now we discuss different estimators of
finite population mean based on two-phase sampling.

5.1. Unbiased difference estimator. The unbiased difference estimator of population
mean under two-phase sampling is

(5.1) ˆ̄Y ∗D = ȳ + k∗ (x̄1 − x̄) ,

where k∗ is an unknown constant.
The expression for variance of ˆ̄Y ∗D, at optimum value of k∗, i.e., k∗(opt) =

Ȳ ρCy

X̄Cx
is given

by

(5.2) V armin

(
ˆ̄Y ∗D

)
∼= Ȳ 2 (λ− λρ2 + λ1ρ

2)C2
y ,

where λ1 = 1
n
− 1

n1
.

5.2. Gupta and Shabbir [3] family of estimators. Under two-phase sampling,
Gupta and Shabbir [3] family of estimators for estimating finite population mean, is
given by

(5.3) ˆ̄Y ∗GS = {s∗1ȳ + s∗2 (x̄1 − x̄)}
(
ax̄1 + b

ax̄+ b

)
,

where s∗1 and s∗2 are two unknown constants.
The expressions for Bias and MSE of ˆ̄Y ∗GS , to first order of approximation, are given by

(5.4) Bias
(

ˆ̄Y ∗GS

)
∼= −Ȳ + Ȳ {1 + (λ− λ1) τCx (τCx − ρCy)} s∗1 + X̄λτC2

xs
∗
2

and

MSE
(

ˆ̄Y ∗GS

)
∼= Ȳ 2 + Ȳ 2 {1 + 3 (λ− λ1) τ2C2

x + 4 (−λ+ λ1) ρτCxCy + λC2
y

}
s∗21

+X̄ (λ− λ1)C2
xs
∗
2

(
−2Ȳ τ + X̄s∗2

)
− 2Ȳ s∗1

[
Ȳ + (λ− λ1)Cx

{
τCx

(
Ȳ τ − 2X̄s∗2

)
+ ρCy

(
−Ȳ τ + X̄s∗2

)}]
,(5.5)

where τ is defined earlier.
The optimum values of s∗1 and s∗2, obtained by minimizing the MSE of ˆ̄Y ∗GS , are given by



s∗1(opt) =
−1+(λ−λ1)τ2C2

x
−1+(λ−λ1)τ2C2

x+{−λ+(λ−λ1)}C2
y
and

s∗2(opt) =
Ȳ [−ρCy+τCx{1+(−λ+λ1)τ2C2

x+(λ−λ1)ρτCxCy+{−λ+(λ−λ1)ρ2}C2
y}]

X̄Cx{−1+(λ−λ1)τ2C2
x+{−λ+(λ−λ1)ρ2}C2

y}
.

The minimum MSE of ˆ̄Y ∗GS , at optimum values of s∗1 and s∗2, is given by

(5.6) MSEmin

(
ˆ̄Y ∗GS

)
∼=
Ȳ 2
{
−λ+ (λ− λ1) ρ2

}{
1− (λ− λ1) τ2C2

x

}
C2
y

−1 + (λ− λ1) τ2C2
x + {−λ+ (λ− λ1) ρ2}C2

y

.

Gupta and Shabbir [3] estimator ˆ̄Y ∗GS will perform better than the difference estimator
ˆ̄Y ∗D, if

Ȳ 2
(
λ− λρ2 + λ1ρ

2
)2
C4
y

1− (λ− λ1) τ2C2
x − {−λ+ (λ− λ1) ρ2}C2

y

> 0.

5.3. Grover and Kaur [2] estimator. Grover and Kaur [2] estimator under double
sampling for estimation of the population mean is given by

(5.7) ˆ̄Y ∗GK = {t∗1ȳ + t∗2 (x̄1 − x̄)} exp

(
x̄1 − x̄
x̄1 + x̄

)
,

where t∗1 and t∗2 are two unknown constants.
The expressions for Bias and MSE of ˆ̄Y ∗GK , to first order of approximation, are given by

(5.8)

Bias
(

ˆ̄Y ∗GK

)
∼=

1

8

[
−8Ȳ + Ȳ {8 + (λ− λ1)Cx (3Cx − 4ρCy)} t∗1 + 4X̄ (λ− λ1)C2

xt
∗
2

]
and

MSE
(

ˆ̄Y ∗GK

)
∼= Ȳ 2 + Ȳ 2 {1 + (λ− λ1)C2

x + 2 (−λ+ λ1) ρCxCy + λC2
y

}
t∗21

+X̄ (λ− λ1)C2
xt
∗
2

(
−Ȳ + X̄t∗2

)
+

1

4
Ȳ t∗1

[
−8Ȳ + (λ− λ1)Cx

{
4ρCy

(
Ȳ − 2X̄t∗2

)
+ Cx

(
−3Ȳ + 8X̄t∗2

)}]
.(5.9)

The optimum values of t∗1 and t∗2, obtained by minimizing the MSE of ˆ̄Y ∗GK , are given by

t∗1(opt) =
−8+(λ−λ1)C2

x

−8+8{−λ+(λ−λ1)ρ2}C2
y

and t∗2(opt) =
Ȳ [8ρCy+Cx{−4+(λ−λ1)C2

x+(−λ+λ1)ρCxCy+4(λ−λρ2+λ1ρ
2)C2

y}]
8X̄Cx{1+(λ−λρ2+λ1ρ2)C2

y}
.

The minimum MSE of ˆ̄Y ∗GK , at optimum values of t∗1 and t∗2, is given by

(5.10)

MSEmin

(
ˆ̄Y ∗GK

)
∼=
Ȳ 2
{

(λ− λ1)2 C4
x − 16

{
−λ+ (λ− λ1) ρ2

} (
−4 + (λ− λ1)C2

x

)
C2
y

}
−64 + 64 {−λ+ (λ− λ1) ρ2}C2

y

.

Grover and Kaur [2] estimator ˆ̄Y ∗GK will perform better than the difference estimator ˆ̄Y ∗D,
if

Ȳ 2
{

(λ− λ1)C2
x + 8

(
λ− λρ2 + λ1ρ

2
)
C2
y

}2

64
{

1 + (λ− λρ2 + λ1ρ2)C2
y

} > 0.

Gupta and Shabbir [3] estimator ˆ̄Y ∗GS will perform better than the Grover and Kaur [2]
estimator ˆ̄Y ∗GK , if

Ȳ 2

[{
−λ+ (λ− λ1) ρ2

} (
−1 + (λ− λ1) τ2C2

x

)
C2
y

−1 + (λ− λ1) τ2C2
x + {−λ+ (λ− λ1) ρ2}C2

y

+
(λ− λ1)2 C4

x − 16
{
−λ+ (λ− λ1) ρ2

}{
−4 + (λ− λ1)C2

x

}
C2
y

64
{
−1 + {−λ+ (λ− λ1) ρ2}C2

y

} ]
> 0.



6. Proposed estimators under two-phase sampling
In this section, we derive the mathematical expressions of the biases and MSEs of

the proposed estimators of finite population mean when partial auxiliary information is
available.

6.1. First proposed estimator. Similar to (3.2), the proposed estimator under double
sampling is given by

(6.1) ˆ̄Y ∗P1 =

{
u∗1

1

2
ȳ

(
x̄1

x̄
+

x̄

x̄1

)
+ u∗2 (x̄1 − x̄)

}
exp

(
x̄1 − x̄
x̄1 + x̄

)
,

where u∗1 and u∗2 are two unknown constants.
The expressions for Bias and MSE of ˆ̄Y ∗P1, to first order of approximation, are given by

(6.2)

Bias
(

ˆ̄Y ∗P1

)
∼=

1

8

[
−8Ȳ + Ȳ {8 + (λ− λ1)Cx (7Cx − 4ρCy)}u∗1 + 4X̄ (λ− λ1)C2

xu
∗
2

]
and

MSE
(

ˆ̄Y ∗P1

)
∼= Ȳ 2 + Ȳ 2 {1 + 2 (λ− λ1)C2

x + 2 (−λ+ λ1) ρCxCy + λC2
y

}
u∗21 + X̄ (λ− λ1)C2

xu
∗
2

(
−Ȳ + X̄u∗2

)
+

1

4
Ȳ u∗1

[
−8Ȳ + (λ− λ1)Cx

{
4ρCy

(
Ȳ − 2X̄u∗2

)
+ Cx

(
−7Ȳ + 8X̄u∗2

)}]
.(6.3)

The optimum values of u∗1 and u∗2, obtained by minimizing the MSE of ˆ̄Y ∗P1, are given by
u∗1(opt) =

8+3(λ−λ1)C2
x

8{1+(λ−λ1)C2
x+(λ−λρ2+λ1ρ2)C2

y}
and

u∗2(opt) =
Ȳ [8ρCy+Cx{−4+(λ−λ1)C2

x+3(λ−λ1)ρCxCy+4(λ−λρ2+λ1ρ
2)C2

y}]
8X̄Cx{1+(λ−λ1)C2

x+(λ−λρ2+λ1ρ2)C2
y}

.

The minimum MSE of ˆ̄Y ∗P1, at optimum values of u∗1 and u∗2, is given by

(6.4)

MSEmin

(
ˆ̄Y ∗P1

)
∼=
Ȳ 2
{
−25 (λ− λ1)2 C4

x + 16
{
−λ+ (λ− λ1) ρ2

}{
−4 + (λ− λ1)C2

x

}
C2
y

}
64
{

1 + (λ− λ1)C2
x + (λ− λρ2 + λ1ρ2)C2

y

} .

6.2. Second proposed estimator. On the line of (3.7), the second proposed estimator
under double sampling is given by

(6.5) ˆ̄Y ∗P2 =

[
v∗1

1

2
ȳ

{
exp

(
x̄1 − x̄
x̄1 + x̄

)
+ exp

(
x̄− x̄1

x̄1 + x̄

)}
+ v∗2 (x̄1 − x̄)

]
exp

(
x̄1 − x̄
x̄1 + x̄

)
,

where v∗1 and v∗2 are two unknown constants.
The expressions for Bias and MSE of ˆ̄Y ∗P2, to first order of approximation, are given by

(6.6) Bias
(

ˆ̄Y ∗P2

)
∼=

1

2

[
−2Ȳ + Ȳ {2 + (λ− λ1)Cx (Cx − ρCy)} v∗1 + X̄ (λ− λ1)C2

xv
∗
2

]
and

MSE
(

ˆ̄Y ∗P2

)
∼= Ȳ 2 +

1

4
Ȳ 2 {4 + 5 (λ− λ1)C2

x + 8 (−λ+ λ1) ρCxCy + 4λC2
y

}
v∗21

+X̄ (λ− λ1)C2
xv
∗
2

(
−Ȳ + X̄v∗2

)
+ Ȳ v∗1

{
−2Ȳ − (λ− λ1)Cx (Cx − ρCy)

(
Ȳ − 2X̄v∗2

)}
.(6.7)

The optimum values of v∗1 and v∗2 , obtained by minimizing the MSE of ˆ̄Y ∗P2, are given by

v∗1(opt) = 4

4+(λ−λ1)C2
x+4(λ−λρ2+λ1ρ2)C2

y

and v∗2(opt) = Ȳ
2X̄

(
1 +

−8Cx+8ρCy

Cx{4+(λ−λ1)C2
x+4(λ−λρ2+λ1ρ2)C2

y}

)
.

The minimum MSE of ˆ̄Y ∗P2, at optimum values of v∗1 and v∗2 , is given by

(6.8)



MSEmin

(
ˆ̄Y ∗P2

)
∼=

1

4
Ȳ 2

{
4 + (−λ+ λ1)C2

x −
16

4 + (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

}
.

6.3. Third proposed estimator. On the line of (3.12), the third proposed estimator
of the population mean under double sampling is given by

(6.9)

ˆ̄Y ∗P3 =

[
w∗1

1

4
ȳ

(
x̄1

x̄
+

x̄

x̄1

){
exp

(
x̄1 − x̄
x̄1 + x̄

)
+ exp

(
x̄− x̄1

x̄1 + x̄

)}
+ w∗2 (x̄1 − x̄)

]
exp

(
x̄1 − x̄
x̄1 + x̄

)
,

where w∗1 and w∗2 are two unknown constants.
The expressions for Bias and MSE of ˆ̄Y ∗P3, to first order of approximation, are given by

(6.10)

Bias
(

ˆ̄Y ∗P3

)
∼=

1

2

[
−2Ȳ + Ȳ {2 + (λ− λ1)Cx (2Cx − ρCy)}w∗1 + X̄ (λ− λ1)C2

xw
∗
2

]
and

MSE
(

ˆ̄Y ∗P3

)
∼= Ȳ 2 +

1

4
Ȳ 2 (4 + 9 (λ− λ1)C2

x + 8 (−λ+ λ1) ρCxCy + 4λC2
y

)
w∗21

+X̄ (λ− λ1)C2
xw
∗
2

(
−Ȳ + X̄w∗2

)
+ Ȳ w∗1

[
−2Ȳ + (λ− λ1)Cx

{
ρCy

(
Ȳ − 2X̄w∗2

)
− 2Cx

(
Ȳ − X̄w∗2

)}]
.(6.11)

The optimum values of w∗1 and w∗2 , obtained by minimizing the MSE of ˆ̄Y ∗P3, are given by

w∗1(opt) =
4+2(λ−λ1)C2

x

4+5(λ−λ1)C2
x+4(λ−λρ2+λ1ρ2)C2

y

and w∗2(opt) =
Ȳ [8ρCy+Cx{−4+(λ−λ1)C2

x+4(λ−λ1)ρCxCy+4(λ−λρ2+λ1ρ
2)C2

y}]
2X̄Cx{4+5(λ−λ1)C2

x+4(λ−λρ2+λ1ρ2)C2
y}

.

The minimum MSE of ˆ̄Y ∗P3, at optimum values of w∗1 and w∗2 , is given by

(6.12)

MSEmin

(
ˆ̄Y ∗P3

)
∼=
Ȳ 2
{
−9 (λ− λ1)2 C4

x + 4
{
−λ+ (λ− λ1) ρ2

} (
−4 + (λ− λ1)C2

x

)
C2
y

}
4
{

4 + 5 (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

} .

Remarks: Expressions given in (6.4), (6.8) and (6.12) contain the unknown population
parameters, which can be estimated either from the sample values or through repeated
survey or by experience gathered in due course of time.

7. Efficiency comparisons under two-phase sampling
In this section, we compare the proposed estimators with the existing estimators of

population mean based on double sampling scheme.
(a) Comparison with difference type estimator

(i) From (5.2) and (6.4), MSEmin

(
ˆ̄Y ∗P1

)
< V armin

(
ˆ̄Y ∗D

)
, if{

5Ȳ (λ− λ1)C2
x + 8Ȳ

(
λ− λρ2 + λ1ρ

2
)
C2
y

}2

64
{

1 + (λ− λ1)C2
x + (λ− λρ2 + λ1ρ2)C2

y

} > 0.

(ii) From (5.2) and (6.8), MSEmin

(
ˆ̄Y ∗P2

)
< V armin

(
ˆ̄Y ∗D

)
, if

Ȳ 2

4

[
−4 + (λ− λ1)C2

x + 4
(
λ− λρ2 + λ1ρ

2)C2
y +

16

4 + (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

]
> 0.

(iii) From (5.2) and (6.12), MSEmin

(
ˆ̄Y ∗P3

)
< V armin

(
ˆ̄Y ∗D

)
, if{

3Ȳ (λ− λ1)C2
x + 4Ȳ

(
λ− λρ2 + λ1ρ

2
)
C2
y

}2

4
{

4 + 5 (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

} > 0.



Note: When conditions (i)-(iii) are satisfied, the proposed estimators
ˆ̄Y ∗Pi(i = 1, 2, 3) perform better than difference type estimator ˆ̄Y ∗D.

(b) Comparison with Gupta and Shabbir [3] estimator
(iv) From (5.6) and (6.4), MSEmin

(
ˆ̄Y ∗P1

)
< MSEmin

(
ˆ̄Y ∗GS

)
, if

Ȳ 2
{
−λ+ (λ− λ1) ρ2

}{
−1 + (λ− λ1) τ2C2

x

}
C2
y

1− (λ− λ1) τ2C2
x + {λ− (λ− λ1) ρ2}C2

y

−
Ȳ 2
[
−25 (λ− λ1)2 C4

x + 16
{
−λ+ (λ− λ1) ρ2

}{
−4 + (λ− λ1)C2

x

}
C2
y

]
64
{

1 + (λ− λ1)C2
x + (λ− λρ2 + λ1ρ2)C2

y

} > 0.

(v) From (5.6) and (6.8), MSEmin

(
ˆ̄Y ∗P2

)
< MSEmin

(
ˆ̄Y ∗GS

)
, if

1

4
Ȳ 2

(
−4 + (λ− λ1)C2

x −
4
{
−λ+ (λ− λ1) ρ2

}{
−1 + (λ− λ1) τ2C2

x

}
C2
y

−1 + (λ− λ) τ2C2
x + {−λ+ (λ− λ1) ρ2}C2

y

+
16

4 + (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

)
> 0.

(vi) From (5.6) and (6.12), MSEmin

(
ˆ̄Y ∗P3

)
< MSEmin

(
ˆ̄Y ∗GS

)
, if

Ȳ 2

4

(
4
{
λ− (λ− λ1) ρ2

}{
−1 + (λ− λ1) τ2C2

x

}
C2
y

−1 + (λ− λ1) τ2C2
x + {−λ+ (λ− λ1) ρ2}C2

y

−
−9 (λ− λ1)2 C4

x + 4
{
−λ+ (λ− λ1) ρ2

}{
−4 + (λ− λ1)C2

x

}
C2
y

4 + 5 (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

)
> 0,

Note: When conditions (iv)-(vi) are satisfied, the proposed estimators
ˆ̄Y ∗Pi(i = 1, 2, 3) perform better than the Gupta and Shabbir [3] estimator
ˆ̄Y ∗GS .

(c) Comparison with Grover and Kaur [2] estimator
(vii) From (5.10) and (6.4), MSEmin

(
ˆ̄Y ∗P1

)
< MSEmin

(
ˆ̄Y ∗GK

)
, if

Ȳ 2 (λ− λ1)2 C2
x

[
(λ− λ1)C2

x

{
24 + (−λ+ λ1)C2

x

}
− 8

{
−λ+ (λ− λ1) ρ2

}{
8 + (λ− λ1)C2

x

}
C2
y

]
64
[
−1 + {−λ+ (λ− λ1) ρ2}C2

y

] [
−1 + (−λ+ λ1)C2

x + {−λ+ (λ− λ1) ρ2}C2
y

] > 0,

when above condition is satisfied, the estimator ˆ̄Y ∗P1 is more efficient than
ˆ̄Y ∗GK .

(viii) From (5.10) and (6.8), MSEmin

(
ˆ̄Y ∗P2

)
< MSEmin

(
ˆ̄Y ∗GK

)
, if

Ȳ 2

4

(
−4 +

16 (−λ+ λ1)C2
x + (λ− λ1)2 C4

x + 64
{
−λ+ (λ− λ1) ρ2

}
C2
y

−16 + 16 {−λ+ (λ− λ1) ρ2}C2
y

+
16

4 + (λ− λ1)C2
x + 4 {λ− λρ2 + λ1ρ2}C2

y

)
> 0,

when above condition is satisfied, the estimator ˆ̄Y ∗P2 is more efficient than
ˆ̄Y ∗GK .

(ix) From (5.10) and (6.12), MSEmin

(
ˆ̄Y ∗P3

)
< MSEmin

(
ˆ̄Y ∗GK

)
, if

5Ȳ 2 (λ− λ1)C2
x

[
(λ− λ1)C2

x

{
28 + (−λ+ λ1)C2

x

}
− 4

{
−λ+ (λ− λ1) ρ2

}{
16 + 3 (λ− λ1)C2

x

}
C2
y

]
64
[
1− {−λ+ (λ− λ1) ρ2}C2

y

] [
4 + 5 (λ− λ1)C2

x + 4 (λ− λρ2 + λ1ρ2)C2
y

] > 0,



Note: When conditions (vii)-(ix) are satisfied, the proposed estimators
ˆ̄Y ∗Pi(i = 1, 2, 3) perform better than the Grover and Kaur [2] estimator
ˆ̄Y ∗GK .

(d) Comparisons among proposed estimators
(x) From (6.4) and (6.8), MSEmin

(
ˆ̄Y ∗P2

)
< MSEmin

(
ˆ̄Y ∗p1

)
, if

Ȳ 2

64

(
−64 +

256

4 + (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

+
(λ− λ1)C2

x

{
16 + 9 (−λ+ λ1)C2

x

}
+ 64

(
λ− λρ2 + λ1ρ

2
)
C2
y

1 + (λ− λ1)C2
x + (λ− λρ2 + λ1ρ2)C2

y

)
> 0,

when above condition is satisfied, the estimator ˆ̄Y ∗P2 is more efficient than
ˆ̄Y ∗P1.

(xi) From (6.4) and (6.12), MSEmin

(
ˆ̄Y ∗P3

)
< MSEmin

(
ˆ̄Y ∗P1

)
, if

Ȳ 2 (λ− λ1)C2
x

[
(λ− λ1)C2

x

{
44 + 19 (λ− λ1)C2

x

}
− 4

{
−λ+ (λ− λ1) ρ2

}{
16 + 7 (λ− λ1)C2

x

}
C2
y

]
64
[
1 + (λ− λ1)C2

x + {λ− λρ2 + λ1ρ2}C2
y

] [
4 + 5 (λ− λ1)C2

x + 4 {λ− λρ2 + λ1ρ2}C2
y

] > 0,

when above condition is satisfied, the estimator ˆ̄Y ∗P3 is more efficient than
ˆ̄Y ∗P1.

(xii) From (6.8) and (6.12), MSEmin

(
ˆ̄Y ∗p3

)
< MSEmin

(
ˆ̄Y ∗p2

)
, if

Ȳ 2

4

(
4− 16

4 + (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

+
4
[
(−λ+ λ1)C2

x + (λ− λ1)2 C4
x + 4

{
−λ+ (λ− λ1) ρ2

}
C2
y

]
4 + 5 (λ− λ1)C2

x + 4 (λ− λρ2 + λ1ρ2)C2
y

)
> 0,

when above condition is satisfied, the estimator ˆ̄Y ∗P3 is more efficient than
ˆ̄Y ∗P2.

8. Empirical Study
The empirical study is based on three populations under: (i) complete information

case and (ii) incomplete information case.

8.1. Complete auxiliary information. In this section, we compare the estimators
numerically by using different real life data sets. The values of minimum MSEs of the
estimators are given in Tables 1-3 based on the Populations I-III, respectively.

Population 1: [source: Kadilar and Cingi [5]].
The summary statistics are: N = 200, n = 50, Ȳ = 500, X̄ = 25, Cy = 15, Cx = 2,
ρ = 0.90, β2x = 50, λ = 0.015.

Population 2: [source: Kadilar and Cingi [6]].
Let y =level of apple production (1 unit = 100 tones) and x =number of trees (1 unit
= 100 trees). The data statistics are: N = 106, n = 20, Ȳ = 2212.59, X̄ = 27421.70,
Cy = 5.22, Cx = 2.10, ρ = 0.86, β2x = 34.57, λ = 0.040566.

Population 3: [source: Kadilar and Cingi [7]].
Let y =level of apple production (1 unit = 100 tones) and x = number of trees. The data
statistics are: N = 104, n = 20, Ȳ = 6.254, X̄ = 13931.683, Cy = 1.866, Cx = 1.653,



ρ = 0.865, β2x = 17.516, λ = 0.040385.

Under complete information case, the minimum MSE values of the proposed and ex-
isting estimators are given in Table 1.
For ˆ̄YGS(1) with (a = 1, b = ρ), ˆ̄YGS(2) with (a = 1, b = Cx), ˆ̄YGS(3) with (a = 1, β2x),

Table 1. Minimum MSE values of different estimators (complete in-
formation).

Estimator Population-I Population-II Population-III
ˆ̄YD 160313.00 1409112.00 1.38
ˆ̄YGS(1) 95468.40 1043370.00 1.33
ˆ̄YGS(2) 95650.43 1043380.00 1.33
ˆ̄YGS(3) 97421.62 1043510.00 1.33
ˆ̄YGS(4) 95308.27 1043370.00 1.33
ˆ̄YGS(5) 97099.35 1043440.00 1.33
ˆ̄YGK 96203.40 1043340.00 1.29
ˆ̄YP1 92612.00 876024.00 1.01
ˆ̄YP2 95306.60 1002810.00 1.24
ˆ̄YP3 91712.50 832286.00 0.92

ˆ̄YGS(4) with (a = β2x, b = Cx), and ˆ̄YGS(5) with (a = Cx, b = β2x).

8.2. Summary statistics under two-phase sampling (partial information). Pop-
ulation 1: [source: Kadilar and Cingi [5]].
The summary statistics are: N = 200, n1 = 90, n = 50, Ȳ = 500, X̄ = 25, Cy = 15,
Cx = 2, ρ = 0.90, β2x = 50, λ = 0.015.

Population 2: [source: Kadilar and Cingi [6]].
Let y =level of apple production (1 unit = 100 tones) and x =number of trees (1 unit
= 100 trees). The summary statistics are: N = 106, n1 = 40, n = 20, Ȳ = 2212.59,
X̄ = 27421.70, Cy = 5.22, Cx = 2.10, ρ = 0.86, β2x = 34.57, λ = 0.040566.

Population 3: [source: Kadilar and Cingi [7]].
Let y =level of apple production (1 unit = 100 tones) and x = number of trees. The sum-
mary statistics are: N = 104, n1 = 40, n = 20, Ȳ = 6.254, X̄ = 13931.683, Cy = 1.866,
Cx = 1.653, ρ = 0.865, β2x = 17.516, λ = 0.040385.

The values of minimum MSEs of the proposed and existing estimators constructed
under two-phase sampling for all populations are given in Table 2. For ˆ̄Y ∗GS(1) with

(a = 1, b = ρ), ˆ̄Y ∗GS(2) with (a = 1, b = Cx), ˆ̄Y ∗GS(3) with (a = 1, β2x), ˆ̄Y ∗GS(4) with (a = β2x, b = Cx),

and ˆ̄Y ∗GS(5) with (a = Cx, b = β2x).
It is worth mentioning here that for each of the three populations, the proposed estimators
ˆ̄YPi and ˆ̄Y ∗Pi (i = 1, 2, 3) perform better than the existing estimators. It is observed that
the proposed estimator ˆ̄YP3 and ˆ̄Y ∗P3 are more efficient than their counterparts considered
here.



Table 2. Minimum MSE values of different estimators in double sam-
pling (partial information)

Estimator Population-I Population-II Population-III
ˆ̄Y ∗D 438750.00 2944860.00 2.95
ˆ̄Y ∗GS(1) 155854.00 1757000.00 2.73
ˆ̄Y ∗GS(2) 156129.00 1757010.00 2.73
ˆ̄Y ∗GS(3) 158855.00 1757220.00 2.73
ˆ̄Y ∗GS(4) 155613.00 1757000.00 2.73
ˆ̄Y ∗GS(5) 158351.00 1757100.00 2.73
ˆ̄Y ∗GK 157838.00 1787510.00 2.67
ˆ̄Y ∗P1 155785.00 1659340.00 2.47
ˆ̄Y ∗P2 157326.00 1755550.00 2.65
ˆ̄Y ∗P3 155271.00 1627170.00 2.41

9. Conclusion
In this paper, we proposed some improved exponential type estimators of finite popu-

lation mean when complete and partial auxiliary information is available. The proposed
estimators perform better than all other competitor estimators considered here. It is to
be noted the suggested estimators although biased but are always better than the unbi-
ased difference type estimator of the finite population mean. Based on both theoretical
and numerical comparisons, the proposed estimators are more precise than their coun-
terparts. The work can easily be extended to improve the estimation of finite population
mean using information on auxiliary attributes, stratified random sampling and other
sampling designs. Finally, we recommend the use of ˆ̄YP3 and ˆ̄Y ∗P3 for efficient estimation
of the population mean under simple and two-phase sampling schemes, respectively.
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