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Abstract
A function is said to be bi-univalent in the open unit disk U if both the function and
its inverse map are univalent in U. By the same token, a function is said to be bi-
subordinate in U if both the function and its inverse map are subordinate to a given
function in U. In this paper, we consider the m-fold symmtric transform of such functions
and use their Faber polynomial expansions to find upper bounds for their n-th (n ≥ 3)
coefficients subject to a given gap series condition. We also determine bounds for the first
two coefficients of such functions with no restrictions imposed.
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1. Introduction
Let A be the class of analytic functions in the open unit disk U := {z ∈ C : |z| < 1}

and let S be the class of functions f that are analytic and univalent in U and are of the
form

f(z) = z +
∞∑

n=2
anzn. (1.1)

For f(z) and F (z) analytic in U, we say that f(z) is subordinate to F (z), written
f ≺ F , if there exists a Schwarz function w(z) with w(0) = 0 and |w(z)| < 1 in U such
that f(z) = F (w(z)). We note that f(U) ⊂ F (U) if both f and F are in S. Moreover, for
the Schwarz function w(z) =

∑∞
n=1 wnzn we have |wn| ≤ 1 (e.g. see [3]).

For each function f ∈ S, the m-fold symmetric function given by

fm(z) = m

√
f(zm) = z +

∞∑
k=1

amk+1zmk+1 (z ∈ U, m ∈ N),

is univalent in the unit disk U (e.g. see [3]). We denote the class of such functions by Sm.
The functions in the class S1 = S are univalent one-fold symmetric.
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Since the functions in S are one-to-one, they are invertible and their inverse maps need
not be defined on the entire unit disk U. In fact, the Koebe one-quarter theorem (e.g.
see [3]) ensures that every univalent function f ∈ S contains a disk of radius 1/4. Thus
every function f ∈ S has an inverse map f−1, which is defined by f−1 (f (z)) = z and
f

(
f−1 (w)

)
= w where z ∈ U and |w| < r0 (f) ≥ 1/4.

It is easy to verify that for f ∈ S1 = S of the form (1.1), the inverse function g = f−1

is given by

g(w) = w − a2w2 +
(
2a2

2 − a3
)

w3 −
(
5a3

2 − 5a2a3 + a4
)

w4 + · · · . (1.2)

Similarly, for the m-fold symmetric function fm ∈ Sm, its inverse function gm = f−1
m is

of the form

gm(w) (1.3)
= w − am+1wm+1 + [(m + 1)a2

m+1 − a2m+1]w2m+1

−
[1

2
(m + 1)(3m + 2)a3

m+1 − (3m + 2)am+1a2m+1 + a3m+1

]
w3m+1 + · · · .

A function f ∈ A is said to be bi-univalent in U if both f and its inverse map g = f−1 are
univalent in U. Similsarly, a function fm ∈ A is said to be m-fold symmetric bi-univalent
in U if both fm and its inverse map gm = f−1

m are univalent in U. We let Σm be the class of
all m-fold symmetric bi-univalent functions in U. Obviously, for m = 1, the formula (1.3)
coincides with the formula (1.2) of the class Σ1 = Σ . For a brief history of functions in the
class Σ, see the work of Srivastava et al. [9] and the references cited therein. The concept
of m-fold symmetric bi-univalent functions has been introduced concurrently by Hamidi
and Jahangiri [5] and Srivastava et al. [10]. Not much was known about the bounds
of the general coefficients an (n = 4) of subclasses of bi-univalent functions up until the
publication of the article [7] by Jahangiri and Hamidi who used the Faber polynomial series
expansions to obtain bounds for the n−th coefficients an (n = 3) of certain subclasses
of the normalized bi-univalent functions subject to a given gap series condition. Here
we consider the m-fold symmetric transformation of a subordination version of a class
of functions considered in [7] and obtain the upper bounds for the general coefficients
|am(n−1)+1| of such functions subject to a given gap series condition. We also determine
the upper bounds for their first two coefficients |am+1| and |a2m+1| as well as bounds for
their Feket-Szego coefficient body

∣∣∣a2m+1 − m+1
2 a2

m+1

∣∣∣. In general, our results are new on
their own rights and in particular improve a few of the previously known results.

2. Main results
Let the function φ ∈ A have positive real part in U so that φ maps the unit disk U

onto a region starlike with respect to 1, symmetric with respect to the real axis, φ(0) = 1
and φ′(0) > 0 (e.g. see [8]). Here we use the m-fold symmetric transformation of the
function φ ∈ A, denoted by φm ∈ A. Obviously, by the properties of m-fold symmetric
analytic functions (e.g. see [3]), φm is an analytic function with positive real part in the
unit disk U, satisfying φm(0) = 1, φ

(m)
m (0) > 0 and symmetric with respect to the real

axis having the power series expansion

φm(z) = 1 + Bmzm + B2mz2m + B3mz3m + · · · (Bm > 0).

Using the above definition of functions φm ∈ A we introduce the following

Definition 2.1. A function fm ∈ Σm is said to be in the class Σm (λ; φm) if

(1 − λ)fm(z)
z

+ λf ′
m(z) ≺ φm(z) (z ∈ U),
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and
(1 − λ)gm(w)

w
+ λg′

m(w) ≺ φm(w) (w ∈ U),

where λ ≥ 0, m ∈ N and gm is given by (1.3).

In order to prove our theorems in this section, we need to use the Faber polynomial
expansions of inverse functions. For the function f ∈ S of the form (1.1), the coefficients
of its inverse map g = f−1 may be expressed (e.g. see [1] and [2]) by

g(w) = f−1(w) = w +
∞∑

n=2

1
n

K−n
n−1(a2, a3, · · · )wn,

where

K−n
n−1 = (−n)!

(−2n + 1)!(n − 1)!
an−1

2 + (−n)!
(2(−n + 1))!(n − 3)!

an−3
2 a3

+ (−n)!
(−2n + 3)!(n − 4)!

an−4
2 a4 + (−n)!

(2(−n + 2))!(n − 5)!
an−5

2

×[a5 + (−n + 2)a2
3] + (−n)!

(−2n + 5)!(n − 6)!
an−6

2 [a6 + (−2n + 5)a3a4]

+
∑
j≥7

an−j
2 Vj ,

such that Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables a2, a3, · · · , an.
In particular, the first three terms of K−n

n−1 are
1
2

K−2
1 = −a2,

1
3

K−3
2 = 2a2

2 − a3,
1
4

K−4
3 = −(5a3

2 − 5a2a3 + a4).

In general, for n ≥ 1 and real values of p, an expansion of Kp
n−1 is (see [1, 12] or [2, page

349])

Kp
n−1 = pan + p(p − 1)

2
D2

n−1 + p!
(p − 3)!3!

D3
n−1 + · · · + p!

(p − n + 1)!(n − 1)!
Dn−1

n−1,

where Dp
n−1 = Dp

n−1(a2, a3, · · · , an) are homogeneous polynomials explicated in

Dp
n−1(a2, a3, · · · , an) =

∞∑
n=2

m!(a2)µ1 · · · (an)µn−1

µ1! · · · µn−1!
for p ≤ n − 1,

and the sum is taken over all nonnegative integers µ1, ..., µn−1 satisfying{
µ1 + µ2 + · · · + µn−1 = p,
µ1 + 2µ2 + · · · + (n − 1)µn−1 = n − 1.

It is clear that Dn−1
n−1(a2, a3, · · · , an) = an−1

2 .
Now we are ready to state and prove our first theorem which provides an upper bound for

the general coefficients of functions in Σm (λ; φm) subject to a given gap series condition.

Theorem 2.2. For λ ≥ 0, m ∈ N, let the function fm ∈ Σm (λ; φm) be given by (1.3). If
ak = 0 for m + 1 ≤ k ≤ (n − 2)m + 1, then

|a(n−1)m+1| ≤ Bm

[1 + (n − 1)mλ]
n ≥ 3.

Proof. By definition, for function fm ∈ Σm(λ; φm), we have

(1 − λ)fm(z)
z

+ λf ′
m(z) = 1 +

∞∑
n=2

[1 + (n − 1)mλ]a(n−1)m+1z(n−1)m, (2.1)
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and for its inverse map, gm = f−1
m , we obtain

(1 − λ)gm(w)
w

+ λg′
m(w) (2.2)

= 1 +
∞∑

n=2
[1 + (n − 1)mλ]b(n−1)m+1w(n−1)m

= 1 +
∞∑

n=2
[1 + (n − 1)mλ] 1

n
K−n

n−1(am+1, a2m+1, · · · , a(n−1)m+1)w(n−1)m.

On the other hand, since fm ∈ Σm(λ; φm), by the definition of subordination, there
exist two Schwarz functions Pm, Qm : U → U with

Pm(z) =
∞∑

n=1
pnmznm = pmzm + · · · and

Qm(w) =
∞∑

n=1
qnmwnm = qmwm + · · · ,

so that

(1 − λ)fm(z)
z

+ λf ′
m(z) (2.3)

= φm(Pm(z)) = 1 +
∞∑

n=1

n∑
k=1

BkmDk
n(pm, p2m, · · · , pnm)znm,

and

(1 − λ)gm(w)
w

+ λg′
m(w) (2.4)

= φm(Qm(w)) = 1 +
∞∑

n=1

n∑
k=1

BkmDk
n(qm, q2m, · · · , qnm)wnm.

Comparing the corresponding coefficients of (2.1) and (2.3), we obtain

[1 + (n − 1)mλ]a(n−1)m+1 =
n−1∑
k=1

BkmDk
n−1(pm, p2m, · · · , p(n−1)m). (2.5)

Similarly, by comparing the corresponding coefficients of (2.2) and (2.4), we obtain

[1 + (n − 1)mλ] 1
n

K−n
n−1(am+1, a2m+1, · · · , a(n−1)m+1)

=
n−1∑
k=1

BkmDk
n−1(qm, q2m, · · · , q(n−1)m). (2.6)

Letting ak = 0 for m + 1 ≤ k ≤ (n − 2)m + 1 yields b(n−1)m+1 = −a(n−1)m+1 and hence

[1 + (n − 1)mλ]a(n−1)m+1 = Bmp(n−1)m,

and

−[1 + (n − 1)mλ]a(n−1)m+1 = Bmq(n−1)m.

Now taking the absolute values of either of the above two equations and using the facts
that |p(n−1)m| ≤ 1 and |q(n−1)m| ≤ 1, we obtain

|a(n−1)m+1| ≤
Bm|p(n−1)m|

[1 + (n − 1)mλ]
=

Bm|q(n−1)m|
[1 + (n − 1)mλ]

≤ Bm

[1 + (n − 1)mλ]
.

�
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Our next two theorems provide bounds for the first two coefficients of certain subclasses
of Σm(λ; φm) with no gap series restrictions imposed.

Theorem 2.3. For λ ≥ 0, m ∈ N and 0 ≤ β < 1 let fm ∈ Σm

(
λ; 1+(1−2β)zm

1−zm

)
. Then

|am+1| ≤ min
{

2(1 − β)
1 + mλ

,

√
4(1 − β)

(1 + 2mλ)(m + 1)

}

|a2m+1| ≤ 2(1 − β)
1 + 2mλ

,

and ∣∣∣∣a2m+1 − m + 1
2

a2
m+1

∣∣∣∣ ≤ 2(1 − β)
1 + 2mλ

.

Proof. The equations (2.5) and (2.6) for n = 2 and n = 3, respectively, imply

(1 + mλ)am+1 = 2(1 − β)pm, (2.7)
(1 + 2mλ)a2m+1 = 2(1 − β)p2m + 2(1 − β)p2

m, (2.8)
−(1 + mλ)am+1 = 2(1 − β)qm, (2.9)
(1 + 2mλ)[(m + 1)a2

m+1 − a2m+1] = 2(1 − β)q2m + 2(1 − β)q2
m. (2.10)

Taking absolute values of (2.7) or (2.9), we get

|am+1| ≤ 2(1 − β)
1 + mλ

.

Also by adding (2.8) and (2.10), we have

(1 + 2mλ)(m + 1)a2
m+1 = 2(1 − β)

[
(p2m + p2

m) + (q2m + q2
m)

]
.

Taking the absolute values of the above equation yields

(1 + 2mλ)(m + 1)|am+1|2 ≤ 2(1 − β)
[
|p2m + p2

m| + |q2m + q2
m|

]
.

Now by using [6, Corollary 2.3], we have

(1 + 2mλ)(m + 1)|am+1|2 ≤ 2(1 − β)
[
1 + (1 − 1)|pm|2 + 1 + (1 − 1)|qm|2

]
.

Therefore,

|am+1| ≤
√

4(1 − β)
(1 + 2mλ)(m + 1)

.

Next, by solving (2.8) for a2m+1, taking the absolute values and using [6, Corollary 2.3]
we get

|a2m+1| ≤ 2(1 − β)
1 + 2mλ

[
1 + (1 − 1)|pm|2

]
= 2(1 − β)

1 + 2mλ
.

Finally, subtracting (2.10) from (2.8) and considering the fact that p2
m = q2

m we obtain

2(1 + 2mλ)
(

a2m+1 − m + 1
2

a2
m+1

)
= 2(1 − β) (p2m − q2m) .

Taking the absolute values of both sides and using the fact that |p2m| ≤ 1 and |q2m| ≤ 1
we obtain ∣∣∣∣a2m+1 − m + 1

2
a2

m+1

∣∣∣∣ ≤ 2(1 − β)
1 + 2mλ

.

This completes the proof. �
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Theorem 2.4. For λ ≥ 0, m ∈ N and 0 < α ≤ 1 let fm ∈ Σm

(
λ;

(
1+zm

1−zm

)α)
. Then

|am+1| ≤ min
{

2α

1 + mλ
,

2α√
(1 + mλ)2 + αm(1 + 2mλ − mλ2)

}
(2.11)

|a2m+1| ≤ 2α

1 + 2mλ
,

and ∣∣∣∣a2m+1 − m + 1
2

a2
m+1

∣∣∣∣ ≤ 2α

1 + 2mλ
.

Proof. The equations (2.5) and (2.6) for n = 2 and n = 3, respectively, imply
(1 + mλ)am+1 = 2αpm, (2.12)
(1 + 2mλ)a2m+1 = 2αp2m + 2α2p2

m, (2.13)
−(1 + mλ)am+1 = 2αqm, (2.14)
(1 + 2mλ)[(m + 1)a2

m+1 − a2m+1] = 2αq2m + 2α2q2
m. (2.15)

Taking the absolute values of (2.12) or (2.14), we get

|am+1| ≤ 2α

1 + mλ
. (2.16)

Also by adding (2.13) and (2.15), we have

(1 + 2mλ)(m + 1)a2
m+1 = 2α

[
(p2m + αp2

m) + (q2m + αq2
m)

]
.

Taking the absolute values of the above equation yields

(1 + 2mλ)(m + 1)|am+1|2 ≤ 2α
[
|p2m + αp2

m| + |q2m + αq2
m|

]
.

Now, for 0 < α ≤ 1 we use [6, Corollary 2.3], to obtain

(1 + 2mλ)(m + 1)|am+1|2 ≤ 2α
[
1 + (α − 1)|pm|2 + 1 + (α − 1)|qm|2

]
.

Solve the above equation for |am+1| and apply the fact that |pm|2 = |qm|2 = (1+mλ)2|am+1|2
4α2

to obtain

|am+1| ≤ 2α√
(1 + mλ)2 + αm(1 + 2mλ − mλ2)

. (2.17)

So, (2.16) in conjunction with (2.17) yield (2.11).
Next, we solve (2.13) for a2m+1, take the absolute values and apply [6, Corollary 2.3]

to obtain

|a2m+1| ≤ 2α

1 + 2mλ

[
1 + (α − 1)|pm|2

]
≤ 2α

1 + 2mλ
.

Finally, subtracting (2.15) from (2.13) and considering the fact that p2
m = q2

m we obtain

2(1 + 2mλ)
(

a2m+1 − m + 1
2

a2
m+1

)
= 2α (p2m − q2m) .

Taking the absolute values of both sides and using the fact that |p2m| ≤ 1 and |q2m| ≤ 1
we obtain ∣∣∣∣a2m+1 − m + 1

2
a2

m+1

∣∣∣∣ ≤ 2α

1 + 2mλ
.

This completes the proof. �

Remark 2.5. Theorem 2.2 for m = 1 and φ1(z) = 1+(1−2β)z
1−z yields the estimates obtained

by Jahangiri and Hamidi [7, Theorem 1].

Remark 2.6. Theorems 2.3 and 2.4 are improvements of the estimates obtained by Sümer
Eker [11, Theorems 2 and 1], respectively.
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Remark 2.7. Theorems 2.3 and 2.4 for m = 1 are improvements of the estimates obtained
by Frasin and Aouf [4, Theorems 3.2 and 2.2], respectively.

Remark 2.8. Theorems 2.3 and 2.4 for λ = 1 are improvements of the estimates obtained
by Srivastava et al. [10, Theorems 3 and 2], respectively.

Remark 2.9. Letting λ = 1 in Theorem 2.3 yields the following bounds for |a2| and |a3|
which are improvements of the estimates obtained by Srivastava et al. [9, Theorem 2]

|a2| ≤


1 − β

1
3

≤ β < 1,√
2(1 − β)

3
0 ≤ β <

1
3

.

and
|a3| ≤ 2(1 − β)

3
.

Remark 2.10. Letting λ = 1 in Theorem 2.4 we obtain |a3| ≤ (2α/3) which is an
improvement of the estimate obtained by Srivastava et al. [9, Theorem 1].
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