

RESEARCH ARTICLE

Coefficient estimates for *m*-fold symmetric bi-subordinate functions

Ebrahim A. Adegani^{*1}^(D), Samaneh G. Hamidi²^(D), Jay M. Jahangiri³^(D), Ahmad Zireh¹

¹Department of Mathematics, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran ²Department of Mathematics, Brigham Young University, Provo, Utah 84604, U.S.A. ³Department of Mathematical Sciences, Kent State University, Burton, Ohio 44021, U.S.A.

Abstract

A function is said to be bi-univalent in the open unit disk $\mathbb U$ if both the function and its inverse map are univalent in \mathbb{U} . By the same token, a function is said to be bisubordinate in \mathbb{U} if both the function and its inverse map are subordinate to a given function in U. In this paper, we consider the m-fold symmetric transform of such functions and use their Faber polynomial expansions to find upper bounds for their n-th (n > 3)coefficients subject to a given gap series condition. We also determine bounds for the first two coefficients of such functions with no restrictions imposed.

Mathematics Subject Classification (2010). 30C45, 30C50

Keywords. Faber polynomials, *m*-fold symmetric, bi-univalent functions

1. Introduction

Let \mathcal{A} be the class of analytic functions in the open unit disk $\mathbb{U} := \{z \in \mathbb{C} : |z| < 1\}$ and let S be the class of functions f that are analytic and univalent in \mathbb{U} and are of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
 (1.1)

For f(z) and F(z) analytic in U, we say that f(z) is subordinate to F(z), written $f \prec F$, if there exists a Schwarz function w(z) with w(0) = 0 and |w(z)| < 1 in U such that f(z) = F(w(z)). We note that $f(\mathbb{U}) \subset F(\mathbb{U})$ if both f and F are in S. Moreover, for the Schwarz function $w(z) = \sum_{n=1}^{\infty} w_n z^n$ we have $|w_n| \leq 1$ (e.g. see [3]). For each function $f \in S$, the m-fold symmetric function given by

$$f_m(z) = \sqrt[m]{f(z^m)} = z + \sum_{k=1}^{\infty} a_{mk+1} z^{mk+1} \quad (z \in \mathbb{U}, m \in \mathbb{N}),$$

is univalent in the unit disk \mathbb{U} (e.g. see [3]). We denote the class of such functions by \mathcal{S}_m . The functions in the class $S_1 = S$ are univalent one-fold symmetric.

^{*}Corresponding Author.

Email addresses: analoey.ebrahim@gmail.com (E.A. Adegani), s.hamidi_61@yahoo.com (S.G. Hamidi), jjahangi@kent.edu (J.M. Jahangiri), azireh@gmail.com (A. Zireh)

Received: 27.07.2016; Accepted: 14.10.2016

Since the functions in S are one-to-one, they are invertible and their inverse maps need not be defined on the entire unit disk U. In fact, the Koebe one-quarter theorem (e.g. see [3]) ensures that every univalent function $f \in S$ contains a disk of radius 1/4. Thus every function $f \in S$ has an inverse map f^{-1} , which is defined by $f^{-1}(f(z)) = z$ and $f(f^{-1}(w)) = w$ where $z \in U$ and $|w| < r_0(f) \ge 1/4$.

It is easy to verify that for $f \in S_1 = S$ of the form (1.1), the inverse function $g = f^{-1}$ is given by

$$g(w) = w - a_2 w^2 + \left(2a_2^2 - a_3\right) w^3 - \left(5a_2^3 - 5a_2a_3 + a_4\right) w^4 + \cdots$$
 (1.2)

Similarly, for the m-fold symmetric function $f_m \in S_m$, its inverse function $g_m = f_m^{-1}$ is of the form

$$g_m(w)$$
(1.3)
= $w - a_{m+1}w^{m+1} + [(m+1)a_{m+1}^2 - a_{2m+1}]w^{2m+1} - \left[\frac{1}{2}(m+1)(3m+2)a_{m+1}^3 - (3m+2)a_{m+1}a_{2m+1} + a_{3m+1}\right]w^{3m+1} + \cdots$

A function $f \in \mathcal{A}$ is said to be *bi-univalent* in \mathbb{U} if both f and its inverse map $g = f^{-1}$ are univalent in U. Similarly, a function $f_m \in \mathcal{A}$ is said to be m-fold symmetric bi-univalent in U if both f_m and its inverse map $g_m = f_m^{-1}$ are univalent in U. We let Σ_m be the class of all m-fold symmetric bi-univalent functions in U. Obviously, for m = 1, the formula (1.3) coincides with the formula (1.2) of the class $\Sigma_1 = \Sigma$. For a brief history of functions in the class Σ , see the work of Srivastava et al. [9] and the references cited therein. The concept of *m*-fold symmetric bi-univalent functions has been introduced concurrently by Hamidi and Jahangiri $\begin{bmatrix} 5 \end{bmatrix}$ and Srivastava et al. $\begin{bmatrix} 10 \end{bmatrix}$. Not much was known about the bounds of the general coefficients a_n $(n \ge 4)$ of subclasses of bi-univalent functions up until the publication of the article [7] by Jahangiri and Hamidi who used the Faber polynomial series expansions to obtain bounds for the *n*-th coefficients a_n $(n \ge 3)$ of certain subclasses of the normalized bi-univalent functions subject to a given gap series condition. Here we consider the m-fold symmetric transformation of a subordination version of a class of functions considered in [7] and obtain the upper bounds for the general coefficients $|a_{m(n-1)+1}|$ of such functions subject to a given gap series condition. We also determine the upper bounds for their first two coefficients $|a_{m+1}|$ and $|a_{2m+1}|$ as well as bounds for their Feket-Szego coefficient body $\left|a_{2m+1} - \frac{m+1}{2}a_{m+1}^2\right|$. In general, our results are new on their own rights and in particular improve a few of the previously known results.

2. Main results

Let the function $\varphi \in \mathcal{A}$ have positive real part in \mathbb{U} so that φ maps the unit disk \mathbb{U} onto a region starlike with respect to 1, symmetric with respect to the real axis, $\varphi(0) = 1$ and $\varphi'(0) > 0$ (e.g. see [8]). Here we use the m-fold symmetric transformation of the function $\varphi \in \mathcal{A}$, denoted by $\varphi_m \in \mathcal{A}$. Obviously, by the properties of m-fold symmetric analytic functions (e.g. see [3]), φ_m is an analytic function with positive real part in the unit disk \mathbb{U} , satisfying $\varphi_m(0) = 1$, $\varphi_m^{(m)}(0) > 0$ and symmetric with respect to the real axis having the power series expansion

$$\varphi_m(z) = 1 + B_m z^m + B_{2m} z^{2m} + B_{3m} z^{3m} + \cdots \qquad (B_m > 0).$$

Using the above definition of functions $\varphi_m \in \mathcal{A}$ we introduce the following

Definition 2.1. A function $f_m \in \Sigma_m$ is said to be in the class $\Sigma_m(\lambda; \varphi_m)$ if

$$(1-\lambda)\frac{f_m(z)}{z} + \lambda f'_m(z) \prec \varphi_m(z) \qquad (z \in \mathbb{U}),$$

and

$$(1-\lambda)\frac{g_m(w)}{w} + \lambda g'_m(w) \prec \varphi_m(w) \qquad (w \in \mathbb{U}),$$

where $\lambda \geq 0$, $m \in \mathbb{N}$ and g_m is given by (1.3).

In order to prove our theorems in this section, we need to use the Faber polynomial expansions of inverse functions. For the function $f \in S$ of the form (1.1), the coefficients of its inverse map $g = f^{-1}$ may be expressed (e.g. see [1] and [2]) by

$$g(w) = f^{-1}(w) = w + \sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}(a_2, a_3, \cdots) w^n,$$

where

$$\begin{split} K_{n-1}^{-n} &= \frac{(-n)!}{(-2n+1)!(n-1)!} a_2^{n-1} + \frac{(-n)!}{(2(-n+1))!(n-3)!} a_2^{n-3} a_3 \\ &+ \frac{(-n)!}{(-2n+3)!(n-4)!} a_2^{n-4} a_4 + \frac{(-n)!}{(2(-n+2))!(n-5)!} a_2^{n-5} \\ &\times [a_5 + (-n+2)a_3^2] + \frac{(-n)!}{(-2n+5)!(n-6)!} a_2^{n-6} [a_6 + (-2n+5)a_3a_4] \\ &+ \sum_{j \ge 7} a_2^{n-j} V_j, \end{split}$$

such that V_j with $7 \le j \le n$ is a homogeneous polynomial in the variables a_2, a_3, \dots, a_n . In particular, the first three terms of K_{n-1}^{-n} are

$$\frac{1}{2}K_1^{-2} = -a_2, \quad \frac{1}{3}K_2^{-3} = 2a_2^2 - a_3, \quad \frac{1}{4}K_3^{-4} = -(5a_2^3 - 5a_2a_3 + a_4)$$

In general, for $n \ge 1$ and real values of p, an expansion of K_{n-1}^p is (see [1, 12] or [2, page 349])

$$K_{n-1}^{p} = pa_{n} + \frac{p(p-1)}{2}D_{n-1}^{2} + \frac{p!}{(p-3)!3!}D_{n-1}^{3} + \dots + \frac{p!}{(p-n+1)!(n-1)!}D_{n-1}^{n-1},$$

where $D_{n-1}^p = D_{n-1}^p(a_2, a_3, \cdots, a_n)$ are homogeneous polynomials explicated in

$$D_{n-1}^{p}(a_{2}, a_{3}, \cdots, a_{n}) = \sum_{n=2}^{\infty} \frac{m!(a_{2})^{\mu_{1}} \cdots (a_{n})^{\mu_{n-1}}}{\mu_{1}! \cdots \mu_{n-1}!} \quad for \quad p \le n-1,$$

and the sum is taken over all nonnegative integers $\mu_1, ..., \mu_{n-1}$ satisfying

$$\begin{cases} \mu_1 + \mu_2 + \dots + \mu_{n-1} = p, \\ \mu_1 + 2\mu_2 + \dots + (n-1)\mu_{n-1} = n-1. \end{cases}$$

It is clear that $D_{n-1}^{n-1}(a_2, a_3, \cdots, a_n) = a_2^{n-1}$.

Now we are ready to state and prove our first theorem which provides an upper bound for the general coefficients of functions in $\Sigma_m(\lambda; \varphi_m)$ subject to a given gap series condition.

Theorem 2.2. For $\lambda \ge 0$, $m \in \mathbb{N}$, let the function $f_m \in \Sigma_m(\lambda; \varphi_m)$ be given by (1.3). If $a_k = 0$ for $m + 1 \le k \le (n - 2)m + 1$, then

$$|a_{(n-1)m+1}| \le \frac{B_m}{[1+(n-1)m\lambda]} \qquad n \ge 3.$$

Proof. By definition, for function $f_m \in \Sigma_m(\lambda; \varphi_m)$, we have

$$(1-\lambda)\frac{f_m(z)}{z} + \lambda f'_m(z) = 1 + \sum_{n=2}^{\infty} [1 + (n-1)m\lambda]a_{(n-1)m+1}z^{(n-1)m}, \qquad (2.1)$$

and for its inverse map, $g_m = f_m^{-1}$, we obtain

$$(1-\lambda)\frac{g_m(w)}{w} + \lambda g'_m(w)$$

$$= 1 + \sum_{n=2}^{\infty} [1 + (n-1)m\lambda] b_{(n-1)m+1} w^{(n-1)m}$$

$$= 1 + \sum_{n=2}^{\infty} [1 + (n-1)m\lambda] \frac{1}{n} K_{n-1}^{-n} (a_{m+1}, a_{2m+1}, \cdots, a_{(n-1)m+1}) w^{(n-1)m}.$$
(2.2)

On the other hand, since $f_m \in \Sigma_m(\lambda; \varphi_m)$, by the definition of subordination, there exist two Schwarz functions $P_m, Q_m : \mathbb{U} \to \mathbb{U}$ with

$$P_m(z) = \sum_{n=1}^{\infty} p_{nm} z^{nm} = p_m z^m + \cdots \qquad and$$
$$Q_m(w) = \sum_{n=1}^{\infty} q_{nm} w^{nm} = q_m w^m + \cdots,$$

so that

$$(1-\lambda)\frac{f_m(z)}{z} + \lambda f'_m(z)$$

$$= \varphi_m(P_m(z)) = 1 + \sum_{n=1}^{\infty} \sum_{k=1}^n B_{km} D_n^k(p_m, p_{2m}, \cdots, p_{nm}) z^{nm},$$
(2.3)

and

$$(1-\lambda)\frac{g_m(w)}{w} + \lambda g'_m(w)$$
(2.4)
= $\varphi_m(Q_m(w)) = 1 + \sum_{n=1}^{\infty} \sum_{k=1}^n B_{km} D_n^k(q_m, q_{2m}, \cdots, q_{nm}) w^{nm}.$

Comparing the corresponding coefficients of (2.1) and (2.3), we obtain

$$[1 + (n-1)m\lambda]a_{(n-1)m+1} = \sum_{k=1}^{n-1} B_{km} D_{n-1}^k (p_m, p_{2m}, \cdots, p_{(n-1)m}).$$
(2.5)

Similarly, by comparing the corresponding coefficients of (2.2) and (2.4), we obtain

$$[1 + (n-1)m\lambda] \frac{1}{n} K_{n-1}^{-n}(a_{m+1}, a_{2m+1}, \cdots, a_{(n-1)m+1})$$

=
$$\sum_{k=1}^{n-1} B_{km} D_{n-1}^{k}(q_m, q_{2m}, \cdots, q_{(n-1)m}).$$
 (2.6)

Letting $a_k = 0$ for $m + 1 \le k \le (n - 2)m + 1$ yields $b_{(n-1)m+1} = -a_{(n-1)m+1}$ and hence

$$[1 + (n-1)m\lambda]a_{(n-1)m+1} = B_m p_{(n-1)m},$$

and

$$-[1 + (n-1)m\lambda]a_{(n-1)m+1} = B_m q_{(n-1)m}.$$

Now taking the absolute values of either of the above two equations and using the facts that $|p_{(n-1)m}| \leq 1$ and $|q_{(n-1)m}| \leq 1$, we obtain

$$|a_{(n-1)m+1}| \le \frac{B_m |p_{(n-1)m}|}{[1+(n-1)m\lambda]} = \frac{B_m |q_{(n-1)m}|}{[1+(n-1)m\lambda]} \le \frac{B_m}{[1+(n-1)m\lambda]}.$$

368

Our next two theorems provide bounds for the first two coefficients of certain subclasses of $\Sigma_m(\lambda; \varphi_m)$ with no gap series restrictions imposed.

Theorem 2.3. For
$$\lambda \ge 0$$
, $m \in \mathbb{N}$ and $0 \le \beta < 1$ let $f_m \in \Sigma_m\left(\lambda; \frac{1+(1-2\beta)z^m}{1-z^m}\right)$. Then
 $|a_{m+1}| \le \min\left\{\frac{2(1-\beta)}{1+m\lambda}, \sqrt{\frac{4(1-\beta)}{(1+2m\lambda)(m+1)}}\right\}$ $|a_{2m+1}| \le \frac{2(1-\beta)}{1+2m\lambda},$

and

$$\left|a_{2m+1} - \frac{m+1}{2}a_{m+1}^2\right| \le \frac{2(1-\beta)}{1+2m\lambda}.$$

Proof. The equations (2.5) and (2.6) for n = 2 and n = 3, respectively, imply

$$(1+m\lambda)a_{m+1} = 2(1-\beta)p_m,$$
 (2.7)

$$(1+2m\lambda)a_{2m+1} = 2(1-\beta)p_{2m} + 2(1-\beta)p_m^2, \qquad (2.8)$$

$$-(1+m\lambda)a_{m+1} = 2(1-\beta)q_m,$$
(2.9)

$$(1+2m\lambda)[(m+1)a_{m+1}^2 - a_{2m+1}] = 2(1-\beta)q_{2m} + 2(1-\beta)q_m^2.$$
(2.10)

Taking absolute values of (2.7) or (2.9), we get

$$|a_{m+1}| \le \frac{2(1-\beta)}{1+m\lambda}.$$

Also by adding (2.8) and (2.10), we have

$$(1+2m\lambda)(m+1)a_{m+1}^2 = 2(1-\beta)\left[(p_{2m}+p_m^2) + (q_{2m}+q_m^2)\right].$$

Taking the absolute values of the above equation yields

$$(1+2m\lambda)(m+1)|a_{m+1}|^2 \le 2(1-\beta)\left[|p_{2m}+p_m^2|+|q_{2m}+q_m^2|\right].$$

Now by using [6, Corollary 2.3], we have

$$(1+2m\lambda)(m+1)|a_{m+1}|^2 \le 2(1-\beta) \left[1+(1-1)|p_m|^2+1+(1-1)|q_m|^2\right].$$

Therefore,

$$|a_{m+1}| \le \sqrt{\frac{4(1-\beta)}{(1+2m\lambda)(m+1)}}.$$

Next, by solving (2.8) for a_{2m+1} , taking the absolute values and using [6, Corollary 2.3] we get

$$|a_{2m+1}| \le \frac{2(1-\beta)}{1+2m\lambda} \left[1 + (1-1)|p_m|^2 \right] = \frac{2(1-\beta)}{1+2m\lambda}$$

Finally, subtracting (2.10) from (2.8) and considering the fact that $p_m^2 = q_m^2$ we obtain

$$2(1+2m\lambda)\left(a_{2m+1}-\frac{m+1}{2}a_{m+1}^2\right)=2(1-\beta)\left(p_{2m}-q_{2m}\right).$$

Taking the absolute values of both sides and using the fact that $|p_{2m}| \leq 1$ and $|q_{2m}| \leq 1$ we obtain

$$\left|a_{2m+1} - \frac{m+1}{2}a_{m+1}^2\right| \le \frac{2(1-\beta)}{1+2m\lambda}.$$

This completes the proof.

Theorem 2.4. For $\lambda \ge 0$, $m \in \mathbb{N}$ and $0 < \alpha \le 1$ let $f_m \in \Sigma_m\left(\lambda; \left(\frac{1+z^m}{1-z^m}\right)^{\alpha}\right)$. Then

$$|a_{m+1}| \le \min\left\{\frac{2\alpha}{1+m\lambda}, \frac{2\alpha}{\sqrt{(1+m\lambda)^2 + \alpha m(1+2m\lambda-m\lambda^2)}}\right\}$$
(2.11)
$$|a_{2m+1}| \le \frac{2\alpha}{1+2m\lambda},$$

and

$$\left|a_{2m+1} - \frac{m+1}{2}a_{m+1}^2\right| \le \frac{2\alpha}{1+2m\lambda}$$

Proof. The equations (2.5) and (2.6) for n = 2 and n = 3, respectively, imply

$$(1+m\lambda)a_{m+1} = 2\alpha p_m,\tag{2.12}$$

$$(1+2m\lambda)a_{2m+1} = 2\alpha p_{2m} + 2\alpha^2 p_m^2, \tag{2.13}$$

$$-(1+m\lambda)a_{m+1} = 2\alpha q_m, \qquad (2.14)$$

$$(1+2m\lambda)[(m+1)a_{m+1}^2 - a_{2m+1}] = 2\alpha q_{2m} + 2\alpha^2 q_m^2.$$
(2.15)

Taking the absolute values of (2.12) or (2.14), we get

$$|a_{m+1}| \le \frac{2\alpha}{1+m\lambda}.\tag{2.16}$$

Also by adding (2.13) and (2.15), we have

$$(1+2m\lambda)(m+1)a_{m+1}^2 = 2\alpha \left[(p_{2m} + \alpha p_m^2) + (q_{2m} + \alpha q_m^2) \right].$$

Taking the absolute values of the above equation yields

$$(1+2m\lambda)(m+1)|a_{m+1}|^2 \le 2\alpha \left[|p_{2m} + \alpha p_m^2| + |q_{2m} + \alpha q_m^2| \right].$$

Now, for $0 < \alpha \leq 1$ we use [6, Corollary 2.3], to obtain

$$(1+2m\lambda)(m+1)|a_{m+1}|^2 \le 2\alpha \left[1+(\alpha-1)|p_m|^2+1+(\alpha-1)|q_m|^2\right].$$

Solve the above equation for $|a_{m+1}|$ and apply the fact that $|p_m|^2 = |q_m|^2 = \frac{(1+m\lambda)^2|a_{m+1}|^2}{4\alpha^2}$ to obtain

$$|a_{m+1}| \le \frac{2\alpha}{\sqrt{(1+m\lambda)^2 + \alpha m(1+2m\lambda - m\lambda^2)}}.$$
(2.17)

So, (2.16) in conjunction with (2.17) yield (2.11).

Next, we solve (2.13) for a_{2m+1} , take the absolute values and apply [6, Corollary 2.3] to obtain

$$|a_{2m+1}| \le \frac{2\alpha}{1+2m\lambda} \left[1 + (\alpha - 1)|p_m|^2 \right] \le \frac{2\alpha}{1+2m\lambda}$$

Finally, subtracting (2.15) from (2.13) and considering the fact that $p_m^2 = q_m^2$ we obtain

$$2(1+2m\lambda)\left(a_{2m+1}-\frac{m+1}{2}a_{m+1}^2\right) = 2\alpha\left(p_{2m}-q_{2m}\right).$$

Taking the absolute values of both sides and using the fact that $|p_{2m}| \leq 1$ and $|q_{2m}| \leq 1$ we obtain

$$\left|a_{2m+1} - \frac{m+1}{2}a_{m+1}^2\right| \le \frac{2\alpha}{1+2m\lambda}.$$

This completes the proof.

Remark 2.5. Theorem 2.2 for m = 1 and $\varphi_1(z) = \frac{1+(1-2\beta)z}{1-z}$ yields the estimates obtained by Jahangiri and Hamidi [7, Theorem 1].

Remark 2.6. Theorems 2.3 and 2.4 are improvements of the estimates obtained by Sümer Eker [11, Theorems 2 and 1], respectively.

370

Remark 2.7. Theorems 2.3 and 2.4 for m = 1 are improvements of the estimates obtained by Frasin and Aouf [4, Theorems 3.2 and 2.2], respectively.

Remark 2.8. Theorems 2.3 and 2.4 for $\lambda = 1$ are improvements of the estimates obtained by Srivastava et al. [10, Theorems 3 and 2], respectively.

Remark 2.9. Letting $\lambda = 1$ in Theorem 2.3 yields the following bounds for $|a_2|$ and $|a_3|$ which are improvements of the estimates obtained by Srivastava et al. [9, Theorem 2]

$$|a_2| \le \begin{cases} 1 - \beta & \frac{1}{3} \le \beta < 1, \\ \sqrt{\frac{2(1 - \beta)}{3}} & 0 \le \beta < \frac{1}{3}. \end{cases}$$
$$|a_3| \le \frac{2(1 - \beta)}{3}.$$

and

$$|a_3| \le \frac{2(1-\beta)}{3}.$$

Remark 2.10. Letting $\lambda = 1$ in Theorem 2.4 we obtain $|a_3| \leq (2\alpha/3)$ which is an improvement of the estimate obtained by Srivastava et al. [9, Theorem 1].

References

- [1] H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math. 130, 179–222, 2006.
- [2] H. Airault and J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126, 343–367, 2002.
- [3] P.L. Duren, Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, NY, 1983.
- [4] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24, 1569–1573, 2011.
- [5] S.G. Hamidi and J.M. Jahangiri Unpredictability of the coefficients of m-fold symmetric bi-starlike functions, Internat. J. Math. 25, 8 pp, 2014.
- [6] S.G. Hamidi and J.M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Acad. Sci. Paris. **354**, 365–370, 2016.
- [7] J.M. Jahangiri and S.G. Hamidi, Coefficient estimates for certain classes of biunivalent functions, Int. J. Math. Math. Sci. Article ID: 190560, 1–4, 2013.
- [8] W.C. Ma and D.A. Minda, Unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Int Press, 157– 169, 1994.
- [9] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23, 1188–1192, 2010.
- [10] H.M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi. Math. J. 7, 1–10, 2014.
- [11] S. Sümer Eker, Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turk. J. Math. 1, 1–6, 2015.
- [12] P.G. Todorov, On the Faber polynomials of the univalent functions of class Σ , J. Math. Anal. Appl. 162, 268–276, 1991.