Coefficient estimates for m-fold symmetric bi-subordinate functions

Ebrahim A. Adegani ${ }^{* 1}\left(\mathbb{D}\right.$, Samaneh G. Hamidi ${ }^{2}$ (D) Jay M. Jahangiri ${ }^{3}$ (D) Ahmad Zireh ${ }^{1}$ (1)
${ }^{1}$ Department of Mathematics, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran
${ }^{2}$ Department of Mathematics, Brigham Young University, Provo, Utah 84604, U.S.A.
${ }^{3}$ Department of Mathematical Sciences, Kent State University, Burton, Ohio 44021, U.S.A.

Abstract

A function is said to be bi-univalent in the open unit disk \mathbb{U} if both the function and its inverse map are univalent in \mathbb{U}. By the same token, a function is said to be bisubordinate in \mathbb{U} if both the function and its inverse map are subordinate to a given function in \mathbb{U}. In this paper, we consider the m-fold symmtric transform of such functions and use their Faber polynomial expansions to find upper bounds for their n-th ($n \geq 3$) coefficients subject to a given gap series condition. We also determine bounds for the first two coefficients of such functions with no restrictions imposed.

Mathematics Subject Classification (2010). 30C45, 30C50
Keywords. Faber polynomials, m-fold symmetric, bi-univalent functions

1. Introduction

Let \mathcal{A} be the class of analytic functions in the open unit disk $\mathbb{U}:=\{z \in \mathbb{C}:|z|<1\}$ and let \mathcal{S} be the class of functions f that are analytic and univalent in \mathbb{U} and are of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{1.1}
\end{equation*}
$$

For $f(z)$ and $F(z)$ analytic in \mathbb{U}, we say that $f(z)$ is subordinate to $F(z)$, written $f \prec F$, if there exists a Schwarz function $w(z)$ with $w(0)=0$ and $|w(z)|<1$ in \mathbb{U} such that $f(z)=F(w(z))$. We note that $f(\mathbb{U}) \subset F(\mathbb{U})$ if both f and F are in S. Moreover, for the Schwarz function $w(z)=\sum_{n=1}^{\infty} w_{n} z^{n}$ we have $\left|w_{n}\right| \leq 1$ (e.g. see [3]).

For each function $f \in \mathcal{S}$, the m -fold symmetric function given by

$$
f_{m}(z)=\sqrt[m]{f\left(z^{m}\right)}=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1} \quad(z \in \mathbb{U}, m \in \mathbb{N})
$$

is univalent in the unit disk \mathbb{U} (e.g. see [3]). We denote the class of such functions by \mathcal{S}_{m}. The functions in the class $\mathcal{S}_{1}=\mathcal{S}$ are univalent one-fold symmetric.

[^0]Since the functions in \mathcal{S} are one-to-one, they are invertible and their inverse maps need not be defined on the entire unit disk \mathbb{U}. In fact, the Koebe one-quarter theorem (e.g. see [3]) ensures that every univalent function $f \in \mathcal{S}$ contains a disk of radius $1 / 4$. Thus every function $f \in \mathcal{S}$ has an inverse map f^{-1}, which is defined by $f^{-1}(f(z))=z$ and $f\left(f^{-1}(w)\right)=w$ where $z \in \mathbb{U}$ and $|w|<r_{0}(f) \geq 1 / 4$.

It is easy to verify that for $f \in \mathcal{S}_{1}=\mathcal{S}$ of the form (1.1), the inverse function $g=f^{-1}$ is given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

Similarly, for the m-fold symmetric function $f_{m} \in \mathcal{S}_{m}$, its inverse function $g_{m}=f_{m}^{-1}$ is of the form

$$
\begin{align*}
& g_{m}(w) \tag{1.3}\\
= & w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1}+\cdots
\end{align*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and its inverse map $g=f^{-1}$ are univalent in \mathbb{U}. Similsarly, a function $f_{m} \in \mathcal{A}$ is said to be m -fold symmetric bi-univalent in \mathbb{U} if both f_{m} and its inverse map $g_{m}=f_{m}^{-1}$ are univalent in \mathbb{U}. We let Σ_{m} be the class of all m -fold symmetric bi-univalent functions in \mathbb{U}. Obviously, for $m=1$, the formula (1.3) coincides with the formula (1.2) of the class $\Sigma_{1}=\Sigma$. For a brief history of functions in the class Σ, see the work of Srivastava et al. [9] and the references cited therein. The concept of m-fold symmetric bi-univalent functions has been introduced concurrently by Hamidi and Jahangiri [5] and Srivastava et al. [10]. Not much was known about the bounds of the general coefficients $a_{n}(n \geqq 4)$ of subclasses of bi-univalent functions up until the publication of the article [7] by Jahangiri and Hamidi who used the Faber polynomial series expansions to obtain bounds for the n-th coefficients $a_{n} \quad(n \geqq 3)$ of certain subclasses of the normalized bi-univalent functions subject to a given gap series condition. Here we consider the m-fold symmetric transformation of a subordination version of a class of functions considered in [7] and obtain the upper bounds for the general coefficients $\left|a_{m(n-1)+1}\right|$ of such functions subject to a given gap series condition. We also determine the upper bounds for their first two coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ as well as bounds for their Feket-Szego coefficient body $\left|a_{2 m+1}-\frac{m+1}{2} a_{m+1}^{2}\right|$. In general, our results are new on their own rights and in particular improve a few of the previously known results.

2. Main results

Let the function $\varphi \in \mathcal{A}$ have positive real part in \mathbb{U} so that φ maps the unit disk \mathbb{U} onto a region starlike with respect to 1 , symmetric with respect to the real axis, $\varphi(0)=1$ and $\varphi^{\prime}(0)>0$ (e.g. see [8]). Here we use the m-fold symmetric transformation of the function $\varphi \in \mathcal{A}$, denoted by $\varphi_{m} \in \mathcal{A}$. Obviously, by the properties of m -fold symmetric analytic functions (e.g. see [3]), φ_{m} is an analytic function with positive real part in the unit disk \mathbb{U}, satisfying $\varphi_{m}(0)=1, \varphi_{m}^{(m)}(0)>0$ and symmetric with respect to the real axis having the power series expansion

$$
\varphi_{m}(z)=1+B_{m} z^{m}+B_{2 m} z^{2 m}+B_{3 m} z^{3 m}+\cdots \quad\left(B_{m}>0\right) .
$$

Using the above definition of functions $\varphi_{m} \in \mathcal{A}$ we introduce the following
Definition 2.1. A function $f_{m} \in \Sigma_{m}$ is said to be in the class $\Sigma_{m}\left(\lambda ; \varphi_{m}\right)$ if

$$
(1-\lambda) \frac{f_{m}(z)}{z}+\lambda f_{m}^{\prime}(z) \prec \varphi_{m}(z) \quad(z \in \mathbb{U})
$$

and

$$
(1-\lambda) \frac{g_{m}(w)}{w}+\lambda g_{m}^{\prime}(w) \prec \varphi_{m}(w) \quad(w \in \mathbb{U}),
$$

where $\lambda \geq 0, m \in \mathbb{N}$ and g_{m} is given by (1.3).
In order to prove our theorems in this section, we need to use the Faber polynomial expansions of inverse functions. For the function $f \in \mathcal{S}$ of the form (1.1), the coefficients of its inverse map $g=f^{-1}$ may be expressed (e.g. see [1] and [2]) by

$$
g(w)=f^{-1}(w)=w+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \cdots\right) w^{n},
$$

where

$$
\begin{aligned}
K_{n-1}^{-n}= & \frac{(-n)!}{(-2 n+1)!(n-1)!} a_{2}^{n-1}+\frac{(-n)!}{(2(-n+1))!(n-3)!} a_{2}^{n-3} a_{3} \\
& +\frac{(-n)!}{(-2 n+3)!(n-4)!} a_{2}^{n-4} a_{4}+\frac{(-n)!}{(2(-n+2))!(n-5)!} a_{2}^{n-5} \\
& \times\left[a_{5}+(-n+2) a_{3}^{2}\right]+\frac{(-n)!}{(-2 n+5)!(n-6)!} a_{2}^{n-6}\left[a_{6}+(-2 n+5) a_{3} a_{4}\right] \\
& +\sum_{j \geq 7} a_{2}^{n-j} V_{j},
\end{aligned}
$$

such that V_{j} with $7 \leq j \leq n$ is a homogeneous polynomial in the variables $a_{2}, a_{3}, \cdots, a_{n}$. In particular, the first three terms of K_{n-1}^{-n} are

$$
\frac{1}{2} K_{1}^{-2}=-a_{2}, \quad \frac{1}{3} K_{2}^{-3}=2 a_{2}^{2}-a_{3}, \quad \frac{1}{4} K_{3}^{-4}=-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) .
$$

In general, for $n \geq 1$ and real values of p, an expansion of K_{n-1}^{p} is (see $[1,12]$ or [2, page 349])

$$
K_{n-1}^{p}=p a_{n}+\frac{p(p-1)}{2} D_{n-1}^{2}+\frac{p!}{(p-3)!3!} D_{n-1}^{3}+\cdots+\frac{p!}{(p-n+1)!(n-1)!} D_{n-1}^{n-1}
$$

where $D_{n-1}^{p}=D_{n-1}^{p}\left(a_{2}, a_{3}, \cdots, a_{n}\right)$ are homogeneous polynomials explicated in

$$
D_{n-1}^{p}\left(a_{2}, a_{3}, \cdots, a_{n}\right)=\sum_{n=2}^{\infty} \frac{m!\left(a_{2}\right)^{\mu_{1}} \cdots\left(a_{n}\right)^{\mu_{n-1}}}{\mu_{1}!\cdots \mu_{n-1}!} \quad \text { for } \quad p \leq n-1
$$

and the sum is taken over all nonnegative integers $\mu_{1}, \ldots, \mu_{n-1}$ satisfying

$$
\left\{\begin{array}{l}
\mu_{1}+\mu_{2}+\cdots+\mu_{n-1}=p \\
\mu_{1}+2 \mu_{2}+\cdots+(n-1) \mu_{n-1}=n-1
\end{array}\right.
$$

It is clear that $D_{n-1}^{n-1}\left(a_{2}, a_{3}, \cdots, a_{n}\right)=a_{2}^{n-1}$.
Now we are ready to state and prove our first theorem which provides an upper bound for the general coefficients of functions in $\Sigma_{m}\left(\lambda ; \varphi_{m}\right)$ subject to a given gap series condition.
Theorem 2.2. For $\lambda \geq 0, m \in \mathbb{N}$, let the function $f_{m} \in \Sigma_{m}\left(\lambda ; \varphi_{m}\right)$ be given by (1.3). If $a_{k}=0$ for $m+1 \leq k \leq(n-2) m+1$, then

$$
\left|a_{(n-1) m+1}\right| \leq \frac{B_{m}}{[1+(n-1) m \lambda]} \quad n \geq 3
$$

Proof. By definition, for function $f_{m} \in \Sigma_{m}\left(\lambda ; \varphi_{m}\right)$, we have

$$
\begin{equation*}
(1-\lambda) \frac{f_{m}(z)}{z}+\lambda f_{m}^{\prime}(z)=1+\sum_{n=2}^{\infty}[1+(n-1) m \lambda] a_{(n-1) m+1} z^{(n-1) m} \tag{2.1}
\end{equation*}
$$

and for its inverse map, $g_{m}=f_{m}^{-1}$, we obtain

$$
\begin{align*}
& (1-\lambda) \frac{g_{m}(w)}{w}+\lambda g_{m}^{\prime}(w) \tag{2.2}\\
= & 1+\sum_{n=2}^{\infty}[1+(n-1) m \lambda] b_{(n-1) m+1} w^{(n-1) m} \\
= & 1+\sum_{n=2}^{\infty}[1+(n-1) m \lambda] \frac{1}{n} K_{n-1}^{-n}\left(a_{m+1}, a_{2 m+1}, \cdots, a_{(n-1) m+1}\right) w^{(n-1) m} .
\end{align*}
$$

On the other hand, since $f_{m} \in \Sigma_{m}\left(\lambda ; \varphi_{m}\right)$, by the definition of subordination, there exist two Schwarz functions $P_{m}, Q_{m}: \mathbb{U} \rightarrow \mathbb{U}$ with

$$
\begin{aligned}
& P_{m}(z)=\sum_{n=1}^{\infty} p_{n m} z^{n m}=p_{m} z^{m}+\cdots \quad \text { and } \\
& Q_{m}(w)=\sum_{n=1}^{\infty} q_{n m} w^{n m}=q_{m} w^{m}+\cdots
\end{aligned}
$$

so that

$$
\begin{align*}
& (1-\lambda) \frac{f_{m}(z)}{z}+\lambda f_{m}^{\prime}(z) \tag{2.3}\\
= & \varphi_{m}\left(P_{m}(z)\right)=1+\sum_{n=1}^{\infty} \sum_{k=1}^{n} B_{k m} D_{n}^{k}\left(p_{m}, p_{2 m}, \cdots, p_{n m}\right) z^{n m}
\end{align*}
$$

and

$$
\begin{align*}
& (1-\lambda) \frac{g_{m}(w)}{w}+\lambda g_{m}^{\prime}(w) \tag{2.4}\\
= & \varphi_{m}\left(Q_{m}(w)\right)=1+\sum_{n=1}^{\infty} \sum_{k=1}^{n} B_{k m} D_{n}^{k}\left(q_{m}, q_{2 m}, \cdots, q_{n m}\right) w^{n m}
\end{align*}
$$

Comparing the corresponding coefficients of (2.1) and (2.3), we obtain

$$
\begin{equation*}
[1+(n-1) m \lambda] a_{(n-1) m+1}=\sum_{k=1}^{n-1} B_{k m} D_{n-1}^{k}\left(p_{m}, p_{2 m}, \cdots, p_{(n-1) m}\right) \tag{2.5}
\end{equation*}
$$

Similarly, by comparing the corresponding coefficients of (2.2) and (2.4), we obtain

$$
\begin{align*}
& {[1+(n-1) m \lambda] \frac{1}{n} K_{n-1}^{-n}\left(a_{m+1}, a_{2 m+1}, \cdots, a_{(n-1) m+1}\right) } \\
= & \sum_{k=1}^{n-1} B_{k m} D_{n-1}^{k}\left(q_{m}, q_{2 m}, \cdots, q_{(n-1) m}\right) \tag{2.6}
\end{align*}
$$

Letting $a_{k}=0$ for $m+1 \leq k \leq(n-2) m+1$ yields $b_{(n-1) m+1}=-a_{(n-1) m+1}$ and hence

$$
[1+(n-1) m \lambda] a_{(n-1) m+1}=B_{m} p_{(n-1) m}
$$

and

$$
-[1+(n-1) m \lambda] a_{(n-1) m+1}=B_{m} q_{(n-1) m}
$$

Now taking the absolute values of either of the above two equations and using the facts that $\left|p_{(n-1) m}\right| \leq 1$ and $\left|q_{(n-1) m}\right| \leq 1$, we obtain

$$
\left|a_{(n-1) m+1}\right| \leq \frac{B_{m}\left|p_{(n-1) m}\right|}{[1+(n-1) m \lambda]}=\frac{B_{m}\left|q_{(n-1) m}\right|}{[1+(n-1) m \lambda]} \leq \frac{B_{m}}{[1+(n-1) m \lambda]}
$$

Our next two theorems provide bounds for the first two coefficients of certain subclasses of $\Sigma_{m}\left(\lambda ; \varphi_{m}\right)$ with no gap series restrictions imposed.
Theorem 2.3. For $\lambda \geq 0, m \in \mathbb{N}$ and $0 \leq \beta<1$ let $f_{m} \in \Sigma_{m}\left(\lambda ; \frac{1+(1-2 \beta) z^{m}}{1-z^{m}}\right)$. Then

$$
\begin{aligned}
& \left|a_{m+1}\right| \leq \min \left\{\frac{2(1-\beta)}{1+m \lambda}, \sqrt{\frac{4(1-\beta)}{(1+2 m \lambda)(m+1)}}\right\} \\
& \left|a_{2 m+1}\right| \leq \frac{2(1-\beta)}{1+2 m \lambda}
\end{aligned}
$$

and

$$
\left|a_{2 m+1}-\frac{m+1}{2} a_{m+1}^{2}\right| \leq \frac{2(1-\beta)}{1+2 m \lambda} .
$$

Proof. The equations (2.5) and (2.6) for $n=2$ and $n=3$, respectively, imply

$$
\begin{align*}
& (1+m \lambda) a_{m+1}=2(1-\beta) p_{m} \tag{2.7}\\
& (1+2 m \lambda) a_{2 m+1}=2(1-\beta) p_{2 m}+2(1-\beta) p_{m}^{2} \tag{2.8}\\
& -(1+m \lambda) a_{m+1}=2(1-\beta) q_{m} \tag{2.9}\\
& (1+2 m \lambda)\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right]=2(1-\beta) q_{2 m}+2(1-\beta) q_{m}^{2} \tag{2.10}
\end{align*}
$$

Taking absolute values of (2.7) or (2.9), we get

$$
\left|a_{m+1}\right| \leq \frac{2(1-\beta)}{1+m \lambda} .
$$

Also by adding (2.8) and (2.10), we have

$$
(1+2 m \lambda)(m+1) a_{m+1}^{2}=2(1-\beta)\left[\left(p_{2 m}+p_{m}^{2}\right)+\left(q_{2 m}+q_{m}^{2}\right)\right] .
$$

Taking the absolute values of the above equation yields

$$
(1+2 m \lambda)(m+1)\left|a_{m+1}\right|^{2} \leq 2(1-\beta)\left[\left|p_{2 m}+p_{m}^{2}\right|+\left|q_{2 m}+q_{m}^{2}\right|\right] .
$$

Now by using [6, Corollary 2.3], we have

$$
(1+2 m \lambda)(m+1)\left|a_{m+1}\right|^{2} \leq 2(1-\beta)\left[1+(1-1)\left|p_{m}\right|^{2}+1+(1-1)\left|q_{m}\right|^{2}\right] .
$$

Therefore,

$$
\left|a_{m+1}\right| \leq \sqrt{\frac{4(1-\beta)}{(1+2 m \lambda)(m+1)}}
$$

Next, by solving (2.8) for $a_{2 m+1}$, taking the absolute values and using [6, Corollary 2.3] we get

$$
\left|a_{2 m+1}\right| \leq \frac{2(1-\beta)}{1+2 m \lambda}\left[1+(1-1)\left|p_{m}\right|^{2}\right]=\frac{2(1-\beta)}{1+2 m \lambda} .
$$

Finally, subtracting (2.10) from (2.8) and considering the fact that $p_{m}^{2}=q_{m}^{2}$ we obtain

$$
2(1+2 m \lambda)\left(a_{2 m+1}-\frac{m+1}{2} a_{m+1}^{2}\right)=2(1-\beta)\left(p_{2 m}-q_{2 m}\right) .
$$

Taking the absolute values of both sides and using the fact that $\left|p_{2 m}\right| \leq 1$ and $\left|q_{2 m}\right| \leq 1$ we obtain

$$
\left|a_{2 m+1}-\frac{m+1}{2} a_{m+1}^{2}\right| \leq \frac{2(1-\beta)}{1+2 m \lambda} .
$$

This completes the proof.

Theorem 2.4. For $\lambda \geq 0, m \in \mathbb{N}$ and $0<\alpha \leq 1$ let $f_{m} \in \Sigma_{m}\left(\lambda ;\left(\frac{1+z^{m}}{1-z^{m}}\right)^{\alpha}\right)$. Then

$$
\begin{align*}
& \left|a_{m+1}\right| \leq \min \left\{\frac{2 \alpha}{1+m \lambda}, \frac{2 \alpha}{\sqrt{(1+m \lambda)^{2}+\alpha m\left(1+2 m \lambda-m \lambda^{2}\right)}}\right\} \tag{2.11}\\
& \left|a_{2 m+1}\right| \leq \frac{2 \alpha}{1+2 m \lambda}
\end{align*}
$$

and

$$
\left|a_{2 m+1}-\frac{m+1}{2} a_{m+1}^{2}\right| \leq \frac{2 \alpha}{1+2 m \lambda}
$$

Proof. The equations (2.5) and (2.6) for $n=2$ and $n=3$, respectively, imply

$$
\begin{align*}
& (1+m \lambda) a_{m+1}=2 \alpha p_{m} \tag{2.12}\\
& (1+2 m \lambda) a_{2 m+1}=2 \alpha p_{2 m}+2 \alpha^{2} p_{m}^{2} \tag{2.13}\\
& -(1+m \lambda) a_{m+1}=2 \alpha q_{m} \tag{2.14}\\
& (1+2 m \lambda)\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right]=2 \alpha q_{2 m}+2 \alpha^{2} q_{m}^{2} \tag{2.15}
\end{align*}
$$

Taking the absolute values of (2.12) or (2.14), we get

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{2 \alpha}{1+m \lambda} \tag{2.16}
\end{equation*}
$$

Also by adding (2.13) and (2.15), we have

$$
(1+2 m \lambda)(m+1) a_{m+1}^{2}=2 \alpha\left[\left(p_{2 m}+\alpha p_{m}^{2}\right)+\left(q_{2 m}+\alpha q_{m}^{2}\right)\right]
$$

Taking the absolute values of the above equation yields

$$
(1+2 m \lambda)(m+1)\left|a_{m+1}\right|^{2} \leq 2 \alpha\left[\left|p_{2 m}+\alpha p_{m}^{2}\right|+\left|q_{2 m}+\alpha q_{m}^{2}\right|\right]
$$

Now, for $0<\alpha \leq 1$ we use [6, Corollary 2.3], to obtain

$$
(1+2 m \lambda)(m+1)\left|a_{m+1}\right|^{2} \leq 2 \alpha\left[1+(\alpha-1)\left|p_{m}\right|^{2}+1+(\alpha-1)\left|q_{m}\right|^{2}\right]
$$

Solve the above equation for $\left|a_{m+1}\right|$ and apply the fact that $\left|p_{m}\right|^{2}=\left|q_{m}\right|^{2}=\frac{(1+m \lambda)^{2}\left|a_{m+1}\right|^{2}}{4 \alpha^{2}}$ to obtain

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{2 \alpha}{\sqrt{(1+m \lambda)^{2}+\alpha m\left(1+2 m \lambda-m \lambda^{2}\right)}} \tag{2.17}
\end{equation*}
$$

So, (2.16) in conjunction with (2.17) yield (2.11).
Next, we solve (2.13) for $a_{2 m+1}$, take the absolute values and apply [6, Corollary 2.3] to obtain

$$
\left|a_{2 m+1}\right| \leq \frac{2 \alpha}{1+2 m \lambda}\left[1+(\alpha-1)\left|p_{m}\right|^{2}\right] \leq \frac{2 \alpha}{1+2 m \lambda}
$$

Finally, subtracting (2.15) from (2.13) and considering the fact that $p_{m}^{2}=q_{m}^{2}$ we obtain

$$
2(1+2 m \lambda)\left(a_{2 m+1}-\frac{m+1}{2} a_{m+1}^{2}\right)=2 \alpha\left(p_{2 m}-q_{2 m}\right)
$$

Taking the absolute values of both sides and using the fact that $\left|p_{2 m}\right| \leq 1$ and $\left|q_{2 m}\right| \leq 1$ we obtain

$$
\left|a_{2 m+1}-\frac{m+1}{2} a_{m+1}^{2}\right| \leq \frac{2 \alpha}{1+2 m \lambda}
$$

This completes the proof.
Remark 2.5. Theorem 2.2 for $m=1$ and $\varphi_{1}(z)=\frac{1+(1-2 \beta) z}{1-z}$ yields the estimates obtained by Jahangiri and Hamidi [7, Theorem 1].
Remark 2.6. Theorems 2.3 and 2.4 are improvements of the estimates obtained by Sümer Eker [11, Theorems 2 and 1], respectively.

Remark 2.7. Theorems 2.3 and 2.4 for $m=1$ are improvements of the estimates obtained by Frasin and Aouf [4, Theorems 3.2 and 2.2], respectively.

Remark 2.8. Theorems 2.3 and 2.4 for $\lambda=1$ are improvements of the estimates obtained by Srivastava et al. [10, Theorems 3 and 2], respectively.

Remark 2.9. Letting $\lambda=1$ in Theorem 2.3 yields the following bounds for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ which are improvements of the estimates obtained by Srivastava et al. [9, Theorem 2]

$$
\left|a_{2}\right| \leq \begin{cases}1-\beta & \frac{1}{3} \leq \beta<1 \\ \sqrt{\frac{2(1-\beta)}{3}} & 0 \leq \beta<\frac{1}{3}\end{cases}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\beta)}{3}
$$

Remark 2.10. Letting $\lambda=1$ in Theorem 2.4 we obtain $\left|a_{3}\right| \leq(2 \alpha / 3)$ which is an improvement of the estimate obtained by Srivastava et al. [9, Theorem 1].

References

[1] H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math. 130, 179-222, 2006.
[2] H. Airault and J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math. 126, 343-367, 2002.
[3] P.L. Duren, Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, NY, 1983.
[4] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24, 1569-1573, 2011.
[5] S.G. Hamidi and J.M. Jahangiri Unpredictability of the coefficients of m-fold symmetric bi-starlike functions, Internat. J. Math. 25, 8 pp, 2014.
[6] S.G. Hamidi and J.M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Acad. Sci. Paris. 354, 365-370, 2016.
[7] J.M. Jahangiri and S.G. Hamidi, Coefficient estimates for certain classes of biunivalent functions, Int. J. Math. Math. Sci. Article ID: 190560, 1-4, 2013.
[8] W.C. Ma and D.A. Minda, Unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Int Press, 157169, 1994.
[9] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23, 1188-1192, 2010.
[10] H.M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi. Math. J. 7, 1-10, 2014.
[11] S. Sümer Eker, Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turk. J. Math. 1, 1-6, 2015.
[12] P.G. Todorov, On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl. 162, 268-276, 1991.

[^0]: ${ }^{*}$ Corresponding Author.
 Email addresses: analoey.ebrahim@gmail.com (E.A. Adegani), s.hamidi_61@yahoo.com (S.G. Hamidi), jjahangi@kent.edu (J.M. Jahangiri), azireh@gmail.com (A. Zireh)
 Received: 27.07.2016; Accepted: 14.10.2016

