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Abstract
This investigation deals with the study of unsteady flow of incompressible Oldroyd-B fluid
between two rotating circular cylinders, both cylinders are rotating around their common
axis (r = 0). The governing differential equations are formulated with appropriate bound-
ary conditions and then solved by means of Laplace and Hankel transforms to obtain
velocity and shear stress for unsteady flow of Oldroyd-B fluid between two infinite concen-
tric rotating circular cylinders. The obtained solutions can easily be reduced to equivalent
solutions for Maxwell and classical Newtonian fluids. Finally, the influence of different
physical parameters on the fluid velocity and shear stress is graphically underlined and
discussed.
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1. Introduction
Over the years, non-Newtonian fluids have been considered due to their practical im-

portance and huge-unfold applications in various branches of engineering, science and
technology: particularly in drilling operations, material processing, oil exploitation, poly-
mer chemical industries, and bioengineering. A number of industrially important fluids
including exotic lubricants, extrusions of polymers, food stuffs, drilling mud, slurry type
fuels, suspension and colloidal mixtures display non-Newtonian characteristics. In lit-
erature, for non-Newtonian fluids, a wide range of models are offered to explore their
behaviors and properties [1, 2, 23, 25], because a particular model cannot define all the
multifaceted properties of non-Newtonian fluids. Amongst these, Oldroyd-B fluid model
is an important non-Newtonian viscoelastic model, which has attained much attention of
the researchers [4,5,12,16,19,24] because of its wide spread industrial applications. With
the recent advances of complex and viscoelastic materials; applications of Oldroyd-B fluid
have increased. Both theoretically and practically, the flow analysis of such fluids is very
vital. Hayat et al. presented a detailed analysis of some simple flows of Oldroyd-B fluid
[7]. Fetecau and Fetecau investigated the flow characteristics of Oldroyd-B fluids that flow
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unsteadily in a rectangular channel [3]. Tanveer et al. discussed magneto-hydrodynamic
flow of generalized Oldroyd-B fluid over an infinite oscillating plate with slip condition
using Fox H-function [22].

Motion of the fluid under translating or rotating cylinders is of great importance to
both practical and theoretical fields. The study of viscoelastic fluid flows in the region of
rotating circular cylinders is of vital significance as this types of fluid flows have many uses
in several industries, like food and petroleum industries, chemical engineering, medicines,
and bioengineering. Moreover, such flows have wide coverage on the development of energy
generation and in astrophysical and geophysical fluid dynamics. The academic workers
and engineers are very much interested in the geometry of such types of flows [6,17]. The
literature about motion under translating or rotating cylinders for non-Newtonian fluids
is not so well organized, but some interesting studies of such types of fluid flows are given
by Jamil et al. [8, 9], Kamran et al. [10, 11], and Mahmood et al. [14, 15].

The motivation of this study is to examine the flow of Oldroyd-B fluid between two
coaxially rotating cylinders. At time t = 0 , the fluid is at rest. Due to rotational
shear stress which is time-dependent, the inner cylinder starts rotation about its own axis
and the outer cylinder is rotating around its axis at time t = 0+ through the angular
velocity R2 ω t. The flow of Oldroyd-B fluid is then generated by the rotation of two
cylinders which at time t = 0+ begin to rotate around their common axis. Closed form
solutions for velocity and shear stress for the flow of Oldroyd-B fluid between two rotating
cylinders are derived under series form in terms of generalized G functions with the help
of Laplace and Hankel transforms. These solutions, which are new in the literature, give
the complete pattern of flow field and have widespread applications in many industrial
fields. Moreover, the derived expressions for velocity and shear stress are in the most
simplified form, and the point worth mentioning is that these expressions are free from
convolution product and integral of the product of generalized G function. Furthermore,
the effects of various physical parameters on velocity field and shear stress are examined
and illustrated graphically.

2. Basic equations
We write down the basic equations governing the motion of an incompressible non-

Newtonian fluid. These are the equation of continuity
div u = 0 , (2.1)

and the linear momentum equation (in absence of body forces)

div T = ρ
d u
d t

, (2.2)

where u is the velocity field, T is the Cauchy stress tensor, ρ is the constant density,
and d/dt = ∂t + u · ∇ is the material time derivative .

The constitutive equations of an incompressible Oldroyd-B fluid are given by
T = −p I + S ; (λ1 ∂t + 1) S = µ (λ 2 ∂t + 1) A , (2.3)

where − p I is the spherical stress due to the constraint of incompressibility, S is the extra
stress tensor, µ is the dynamic viscosity, λ1 is the relaxation time, λ 2 is the retardation
time, and A is the first Rivlin-Ericksen tensor defined as [20]

A = L + L⊤
,

where L is the velocity gradient and the superscript ⊤ denotes the transpose operator .
For the problem under consideration, let us take velocity field and extra-stress of the

following form [4,21]
u = u ( r , t ) = q ( r , t ) eθ ; S = S ( r , t ) , (2.4)
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where eθ is the transverse unit vector of cylindrical coordinates. Moreover, initial condi-
tions, when the fluid is at rest, are

u ( r , 0 ) = 0 ; S ( r , 0 ) = 0 . (2.5)

The governing equations related to such type of flow of Oldroyd-B fluid in the absence
of pressure gradient in axial direction are given by [4, 19]

(
λ1 ∂t + 1

)
∂t q (r , t) = ν

(
λ 2 ∂t + 1

) [
∂2

r + 1
r

∂r − 1
r2

]
q (r , t) ; (2.6)

(
λ1 ∂t + 1

)
σ(r , t) = µ

(
λ 2 ∂t + 1

) [
∂r − 1

r

]
q (r , t) , (2.7)

where ν represents the kinematic viscosity and σ (r , t) = Srθ (r , t) is the shear stress
which is different from zero.

3. Formulation and solutions of the problem
We consider an annular region between two straight infinite circular cylinders of radii

R1 and R2(> R1), filled with incompressible Oldroyd-B fluid under the assumption to
be at rest initially, as shown in Fig.1. At time t = 0+, both cylinders begin to rotate
about their common axis. The inner cylinder starts rotation because a shear stress given
in equation (3.1) is applied on its boundary [11], and the outer cylinder is rotating around
its axis through the angular velocity R2 ω t.

σ
(
R1, t

)
= g λ−1

1

[
R1
r

]2
M1, −1

(
− λ−1

1 , t
)

, (3.1)

where g is a constant, and M represents the generalized functions defined by [13]

Mx, y(b , t) = £−1
{

sy

s x − b

}
=

∞∑
j=0

(b)j
t

(j+1) x−y−1

Γ[(j + 1) x − y]
; (3.2)

Re (x − y) > 0 ; Re (s) > 0 ;
∣∣∣ b

s x

∣∣∣ < 1 ,

where Γ(•) is the Gamma function.

Figure 1. Geometry of the problem

Owing to the shear, the fluid between two rotating cylinders gradually starts moving
and its velocity in cylindrical coordinates (r, θ, z) is given in equation (2.4)1 .
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Based on the above suppositions, the governing equations of incompressible Oldroyd-B
fluid, corresponding to this motion are given by equations (2.6), (2.7). The corresponding
initial and boundary conditions are

q (r , 0) = ∂t q (r , 0) = 0 ; σ(r , 0) = 0 ; r ∈ [R1 , R2] , (3.3)

and (
λ1 ∂t + 1

)
σ (r , t)

∣∣∣
r = R1

= µ
(
λ 2 ∂t + 1

)[
∂r − 1

r

]
q (r , t)

∣∣∣
r = R1

= g ;

(3.4)

q (r , t)
∣∣∣
r = R2

= R2 ω t ; t > 0 ,

where ω represents the angular acceleration of outer cylinder.

3.1. Velocity field
Application of Laplace transform to equation (2.6), taking into account the initial and

boundary conditions given in equations (3.3), (3.4) gives

q (r , s)
[

(λ 2 s + 1)
{

∂2
r + 1

r
∂r − 1

r2

}
− s (λ1 s + 1)

ν

]
= 0 , (3.5)

where q (r , s) = £{q(r , t)} , £ denotes the Laplace transform operator, and[
∂r − 1

r

]
q (r , s)

∣∣∣
r = R1

= g

µ s (λ2 s + 1)
; q (r , s)

∣∣∣
r = R2

= R2 ω

s2 , (3.6)

where s is the transform parameter .
Let us denote finite Hankel transform of the function q (r , s) by [18,23]

H{q (r , s)} = q
H

(r , s) =
∫ R2

R1
r B1(r bn) q (r , s) dr ; n = 1, 2, 3, ... , (3.7)

where
B1(r bn) = J1(r bn) Y1(R2bn) − J1(R2bn) Y1(r bn) , (3.8)

where Jk(•) and Yk(•) are Bessel functions of order k of the first and second kind
respectively, and bn are the positive roots of B1(r bn) = 0 .

Applying Hankel transform to equation (3.5), taking into account the conditions given
in equation (3.6) and using the following relation∫ R2

R1
r B1(r bn)

{
∂2

r + 1
r

∂r − 1
r2

}
q (r , s) dr = − b

2
n q

H
(r , s) (3.9)

+ 2 g

π µ bns (λ 2 s + 1)
+ bnR

2
2 ω

s2 B2(R2bn) ,

where
B2 (R2bn) = J2(R2bn) Y2(R1bn) − J2(R1bn) Y2(R2bn) ,

we have

q
H

(r , s) = 2 g

π µ b3
n

[
1
s

− λ 2 ν b
2
n + λ1 s + 1

s
(
λ 2 ν b2

n + λ1 s + 1
)

+ ν b2
n

]
+ R

2
2 ω B2(R2 bn)

bn
(3.10)

×
[

1
s

{1
s

− 1
ν b2

n

}
− 1

s (λ 2 ν b2
n + λ1 s + 1) + ν b2

n

{
λ1 − λ 2 ν b

2
n + λ1 s + 1
ν b2

n

}]
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Now applying inverse Hankel transform formula of q
H

(r , s) defined as [18,23]

q (r, s) = π2

2

∞∑
n=1

b
2
nJ

2
1 (R2bn) B1(r bn)

J
2
1 (R1bn) − J

2
1 (R2bn)

q
H

(r , s) , (3.11)

to equation (3.10), and using the following relation [11]

∫ R2

R1

(
r2 − R2)

B1(r bn) dr = 4
π b3

n

[
R2
R1

]2
, (3.12)

we arrive at

q (r , s) = g

2 µ s

[
R1
R2

]2{
r2 − R

2
2

r

}
− π g

µ

∞∑
n=1

J
2
1 (R2 bn) B1(r bn)

bn
[
J

2
1 (R1 bn) − J

2
1 (R2 bn)

] (3.13)

× (λ 2 ν b
2
n + λ1 s + 1)

s (λ 2 ν b2
n + λ1 s + 1) + ν b2

n

+ π2

2

∞∑
n=1

J
2
1 (R2 bn) B1(r bn)

J
2
1 (R1 bn) − J

2
1 (R2 bn)

R
2
2 ω B2 (R2 bn)

×
[

1
s

{
bn

s
− 1

ν bn

}
− 1

s (λ 2 ν b2
n + λ1 s + 1) + ν b2

n

{
λ1 bn + λ 2 ν b

2
n + λ1 s + 1
ν bn

}]

Using the following relation

λ1

s (λ 2 ν b2
n + λ1s + 1) + ν b2

n

=
∞∑

h=0

h∑
l=0

h ! λl
2

l ! (h − l) !
s(l−h−1)[

s + 1
λ1

]h+1

[−ν b
2
n

λ1

]h

(3.14)

in equation (3.13), we get

q(r , s) = g

2 µ s

[
R1
R2

]2{
r2 − R

2
2

r

}
− π g

µ λ1

∞∑
n=1

J
2
1 (R2 bn)B1(r bn)

bn
[
J

2
1 (R1 bn) − J

2
1 (R2 bn)

]
×

∞∑
h=0

h∑
l=0

h ! λl
2

l ! (h − l) !
s(l−h−1) (

λ 2 ν b
2
n + λ1 s + 1

)[
s + 1

λ1

]h+1

[−ν b
2
n

λ1

]h

(3.15)

+ π2 R
2
2 ω

2

∞∑
n=1

J
2
1 (R2 bn) B1(r bn) B2 (R2 bn)

J
2
1 (R1 bn) − J

2
1 (R2 bn)

[
1
s

{
bn

s
− 1

ν bn

}

+
∞∑

h=0

h∑
l=0

h ! λl
2

l ! (h − l) !
s(l−h−1) {

(λ 2 − λ1) ν b
2
n + λ1 s + 1

}
λ1ν bn

[
s + 1

λ1

]h+1

[−ν b
2
n

λ1

]h
]

In order to avoid exhausting and lengthy computations of residues and contour integrals,
the discrete inverse Laplace transform is utilized in equation (3.15), taking into account
the following relation [13]

Gx, y, z (b , t) = £−1
{

sy

(sx − b)z

}
=

∞∑
j=0

(b)j Γ(j + z) t
(j+z) x−y−1

Γ(z) Γ(j + 1) Γ[(j + z) x − y]
; (3.16)

Re (xz − y) > 0 ;
∣∣∣ b

sx

∣∣∣ < 1 ,
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to get the velocity field as

q (r , t) = g

2 µ

[
R1
R2

]2{
r2 − R

2
2

r

}
− π g

µ λ1

∞∑
n=1

J
2
1 (R2 bn) B1(r bn)

bn

[
J

2
1 (R1 bn) − J

2
1 (R2 bn)

] (3.17)

×
∞∑

h=0

h∑
l=0

h ! λl
2

l ! (h − l) !

[−ν b
2
n

λ1

]h
[
λ1 G1, l−h, h+1 (−λ−1

1 , t) +
{
1 + λ 2 ν b

2
n

}
× G1, l−h−1, h+1 (−λ−1

1 , t)
]

+ π2R
2
2 ω

2

∞∑
n=1

J
2
1 (R2 bn) B1(r bn) B2 (R2 bn)

J
2
1 (R1 bn) − J

2
1 (R2 bn)

×
[
bnt − 1

ν bn
+ 1

λ1

∞∑
h=0

h∑
l=0

h ! λl
2

l ! (h − l) !

[−νb
2
n

λ1

]h
{

λ1
νbn

G1, l−h, h+1(−λ−1
1 , t)

+
[ 1
ν bn

+ (λ 2 − λ1) bn

]
G1, l−h−1, h+1 (−λ−1

1 , t)
}]

3.2. Shear stress
By implementing Laplace transform to equation (2.7), we get

(λ1 s + 1) σ(r , s) = µ (λ 2 s + 1)
[
∂r − 1

r

]
q (r , s) (3.18)

For finding shear stress σ(r , t), we write equation (3.10) in the following form

q
H

(r , s) = 1
(λ 2 s + 1)

[
2 g

π µ b3
n

{1
s

− λ1 s + 1
s (λ 2 ν b2

n + λ1 s + 1) + ν b2
n

}
(3.19)

+ R
2
2 ω B2(R2 bn)

bns

{1
s

− λ 2 ν b
2
n (λ 2 + 1) − λ1 s − 1

s (λ 2 ν b2
n + λ1 s + 1) + ν b2

n

}]

Application of inverse Hankel transform to equation (3.19) and utilizing relation (3.12),
we have

q (r , s) = g

µ
(
λ 2s + 1

)[
R

2
1

2 s R
2
2

{
r2 − R

2
2

r

}
− π

∞∑
n=1

J
2
1 (R2 bn) B1(r bn)

bn[J2
1 (R1 bn) − J

2
1 (R2 bn)]

× λ1s + 1
s (λ 2ν b2

n + λ1s + 1) + ν b2
n

]
+ R

2
2 ω π2

2

∞∑
n=1

bnJ
2
1 (R2 bn) B1(r bn) B2(R2 bn)
J

2
1 (R1 bn) − J

2
1 (R2 bn)

×
[

1
s (λ 2s + 1)

{1
s

+ λ 2ν b
2
n(λ 2 + 1) − λ1s − 1

s (λ 2ν b2
n + λ1s + 1) + ν b2

n

}]
, (3.20)

where [
∂r − 1

r

]
q (r , s) = g

µ (λ 2s + 1)

[
R2

1
s r2 + π

∞∑
n=1

J
2
1 (R2 bn)B̃1(r bn)

J
2
1 (R1 bn) − J

2
1 (R2 bn)

× λ1s + 1
s (λ 2ν b2

n + λ1s + 1) + ν b2
n

]
− R

2
2 ω π2

2

∞∑
n=1

b
2
nJ

2
1 (R2 bn)B̃1(r bn)B2(R2 bn)
J

2
1 (R1 bn) − J

2
1 (R2 bn)

×
[

1
s (λ 2s + 1)

{1
s

+ λ 2ν b
2
n(λ 2 + 1) − λ1s − 1

s (λ 2ν b2
n + λ1s + 1) + ν b2

n

}]
(3.21)
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Substituting equation (3.21) into equation (3.18), yields

σ(r , s) = g

s (λ1s + 1)

[
R1
r

]2
+ πg

∞∑
n=1

J
2
1 (R2 bn)B̃1(r bn)

J
2
1 (R1 bn) − J

2
1 (R2 bn)

(3.22)

× 1
s (λ 2ν b2

n + λ1s + 1) + ν b2
n

− µR
2
2 ω π2

2

∞∑
n=1

b
2
nJ

2
1 (R2 bn)B̃1(r bn)B2(R2 bn)
J

2
1 (R1 bn) − J

2
1 (R2 bn)

×
[

1
s (λ1s + 1)

{1
s

+ λ 2ν b
2
n(λ 2 + 1) − λ1s − 1

s (λ 2ν b2
n + λ1s + 1) + ν b2

n

}]

Utilizing equation (3.14) into equation (3.22), we have

σ(r , s) = g

s (λ1s + 1)

[
R1
r

]2
+ πg

λ1

∞∑
n=1

J
2
1 (R2 bn)B̃1(r bn)

J
2
1 (R1 bn) − J

2
1 (R2 bn)

(3.23)

×
∞∑

h=0

h∑
l=0

h ! λl
2

l ! (h − l) !
s(l−h−1)[

s + 1
λ1

]h+1

[−ν b
2
n

λ1

]h

− µR
2
2 ω π2

2

×
∞∑

n=1

b
2
nJ

2
1 (R2 bn)B̃1(r bn)B2(R2 bn)
J

2
1 (R1 bn) − J

2
1 (R2 bn)

[
1

s (λ1s + 1)

{
1
s

+ 1
λ1

×
∞∑

h=0

h∑
l=0

h ! λl
2

l ! (h − l) !
s(l−h−1){λ 2νb

2
n(λ 2 + 1) − λ1s − 1

}[
s + 1

λ1

]h+1

[−ν b
2
n

λ1

]h
}]

By taking inverse Laplace transform and utilizing equations (3.2), (3.16), the shear
stress can be acquired as

σ(r , t) = g

λ1

[
R1
r

]2
M1, −1(−λ−1

1 , t) + πg

λ1

∞∑
n=1

J
2
1 (R2 bn)B̃1(r bn)

J
2
1 (R1 bn) − J

2
1 (R2 bn)

×
∞∑

h=0

h∑
l=0

h ! λl
2

l ! (h − l) !

[−ν b
2
n

λ1

]h

G1, l−h−1, h+1(−λ−1
1 , t) − µ R

2
2 ω π2

2 λ1
(3.24)

×
∞∑

n=1

b
2
nJ

2
1 (R2 bn)B̃1(r bn)B2(R2 bn)
J

2
1 (R1 bn) − J

2
1 (R2 bn)

[
M1, −2(−λ−1

1 , t) + 1
λ1

×
∞∑

h=0

h∑
l=0

h ! λl
2

l ! (h − l) !

[−ν b
2
n

λ1

]h{(
λ 2νb

2
n − 1

)
G1, l−h−2, h+2(−λ−1

1 , t)

+
(
λ

2
2νb

2
n − λ1

)
G1, l−h−1, h+2(−λ−1

1 , t)
}]

Now taking into account the following results

1
λ1

M1, −1(−λ−1
1 , t) = 1 − e−t/λ1 ; 1

λ1
M1, −2(−λ−1

1 , t) = t + λ1 + λ1e−t/λ1 ,
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equation (3.24) yields

σ(r , t) = g

[
R1
r

]2{
1 − e−t/λ1

}
+ πg

λ1

∞∑
n=1

J
2
1 (R2 bn)B̃1(r bn)

J
2
1 (R1 bn) − J

2
1 (R2 bn)

(3.25)

×
∞∑

h=0

h∑
l=0

h ! λl
2

l ! (h − l) !

[−ν b
2
n

λ1

]h

G1, l−h−1, h+1(−λ−1
1 , t) − µR

2
2 ωπ2

2

×
∞∑

n=1

b
2
nJ

2
1 (R2 bn)B̃1(r bn)B2(R2 bn)
J

2
1 (R1 bn) − J

2
1 (R2 bn)

[
t + λ1 + λ1e−t/λ1 + 1

λ
2
1

×
∞∑

h=0

h∑
l=0

h ! λl
2

l ! (h − l) !

[−ν b
2
n

λ1

]h{(
λ 2νb

2
n − 1

)
G1, l−h−2, h+2(−λ−1

1 , t)

+
(
λ

2
2νb

2
n − λ1

)
G1, l−h−1, h+2(−λ−1

1 , t)
}]

4. Limiting cases
Solutions for Maxwell and classical Newtonian fluids, executing the same flow, can be

obtained as limiting cases of our general solutions.

4.1. Maxwell fluid
By setting λ 2 → 0 in equations (3.17) and (3.25), the expressions for velocity and shear

stress associated to Maxwell fluid can be recovered.

4.2. Classical Newtonian fluid
By taking λ 1 , λ 2 → 0 in equations (3.17) and (3.25), the velocity field and related

shear stress for classical Newtonian fluid can be obtained.

5. Graphical representation and discussion
In this section, we illustrate the obtained results graphically and discuss the effects of

various substantial parameters on velocity field and shear stress.

Figure 2. Effect of kinematic viscosity on velocity.
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Figures 2 and 3 demonstrate the changes in velocity and shear stress related to kinematic
viscosity ν . From these figures, it can be observed that the larger value of ν decrease
both velocity and shear stress (in absolute value).

Figure 3. Effect of kinematic viscosity on shear stress.

Figure 4. Effect of relaxation parameter on velocity.

Figures 4 and 5 elaborate the effects of relaxation parameter λ 1 on velocity and shear
stress. It can be seen that with the increase of λ 1, the velocity increases while shear
stress (in absolute value) varies inversely with this parameter.
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Figure 5. Effect of relaxation parameter on shear stress.

Figure 6. Effect of retardation parameter on velocity.

Figures 6 and 7 depict variations in velocity and shear stress due to retardation param-
eter λ 2 . From here, it can be clearly observed that the larger value of λ 2 increase both
velocity and shear stress (in absolute value).

6. Conclusions
The present study is focused on the derivation of velocity and shear stress for unsteady

flow of incompressible Oldroyd-B fluid between two infinite concentric rotating circular
cylinders. The motion of the fluid is produced by two cylinders which at time t = 0+ begin
to rotate around their common axis. Series solutions of governing differential equations
have been derived by using Laplace and Hankel transforms which is most effective method
for the proposed problem. For λ 2 → 0 or λ 1 → 0 and λ 2 → 0 , similar solutions for
Maxwell fluids, respectively, classical Newtonian fluids can be recovered as limiting cases
of our general results. Moreover, the acquired results are sketched graphically, and the
effects of pertinent parameters on velocity and shear stress are discussed thoroughly.
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Figure 7. Effect of retardation parameter on shear stress.

The obtained results have many engineering applications, e.g., lubrication oil between
two rotating cylinders/shafts which appears in many engineering designs especially in
Mechanical Machinery. The derived results categorically indicate the following findings:

• The fluid velocity decreases as we increase the value of kinematic viscosity ν ,
while velocity of fluid increases with increasing values of both relaxation λ 1 and
retardation λ 2 parameters.

• The shear stress (in absolute value) decreases with increasing values of kinematic
viscosity ν and relaxation parameter λ 1, while the influence of retardation param-
eter λ 2 on shear stress is contrary to that of ν and λ 1.
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