ON STRONG $N_{\theta}^{\alpha}(A, F)$-CONVERGENCE

HACER ŞENGÜL AND ZELAL ARICA

Abstract

In the papers [T. Bilgin, Studia Univ. Babeş-Bolyai Math. 46(4), (2001), 39-46] and [T. Bilgin, Appl. Math. Comput. 151(3), (2004), 595600], author defined the spaces of strongly $N_{\theta}(A, f)$-convergent with respect to a modulus sequences and strongly $N_{\theta}(A, F)$-convergent with respect to a sequence of modulus functions sequences. In this paper, we introduce strong $N_{\theta}^{\alpha}(A, F)$-convergence with respect to a sequence of modulus functions and give some connections between sets of strongly $N_{\theta}^{\alpha}(A, F)$-convergent with respect to a sequence of modulus functions sequences and $S_{\theta}^{\alpha}(A)$-convergent sequences.

1. Introduction

In 1951, Steinhaus 33] and Fast [17] introduced the concept of statistical convergence and later in 1959, Schoenberg 32 reintroduced independently. Bhardwaj and Dhawan (4), Caserta et al. 5], Connor [6], Çakallı 9], Çınar et al. 10], Çolak [11], Et et al. ([13], [15]), Fridy [19], Işı [24, Salat 31, Di Maio and Kočinac [12], Demirci [7] and many authors investigated some arguments related to this notion.

A modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that
i) $f(x)=0$ if and only if $x=0$,
ii) $f(x+y) \leq f(x)+f(y)$ for $x, y \geq 0$,
iii) f is increasing,
iv) f is continuous from the right at 0 .

It follows that f must be continuous in everywhere on $[0, \infty)$. A modulus may be unbounded or bounded.

By a lacunary sequence we mean an increasing integer sequence $\theta=\left(k_{r}\right)$ of non-negative integers such that $k_{0}=0$ and $h_{r}=\left(k_{r}-k_{r-1}\right) \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ and the ratio $\frac{k_{r}}{k_{r-1}}$ will be abbreviated by q_{r}, and $q_{1}=k_{1}$ for convenience.

Received by the editors: July 31, 2018; Accepted: January 15, 2019.
2010 Mathematics Subject Classification. 40A05, 40C05, 46A45.
Key words and phrases. Modulus function, statistical convergence, lacunary sequence.
Submitted via 2nd International Conference of Mathematical Sciences (ICMS 2018).

In [20], Fridy and Orhan introduced the concept of lacunary statistically convergence in the sense that a sequence $\left(x_{k}\right)$ of real numbers is called lacunary statistically convergent to a real number ℓ, if

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}}\left|\left\{k \in I_{r}:\left|x_{k}-\ell\right| \geq \varepsilon\right\}\right|=0
$$

for every positive real number ε.
Lacunary convergence and lacunary statistical convergence were studied in (1], [8], [16], [18], [20, , 22], [23], 25], [35], [29, , 37], [38]).

The notion of a modulus was given by Nakano [27]. Maddox [26] used a modulus function to construct some sequence spaces. Afterwards different sequence spaces defined by modulus have been studied by Altın and Et [3], Et et al. [14], Işık [24], Gaur and Mursaleen [21, Nuray and Savaş [28, Pehlivan and Fisher 30], Şengül [34] and everybody else.

2. Main Results

In this section, we will give the definition of lacunary strong $N_{\theta}^{\alpha}(A, F)$-convergence where $A=\left(a_{i k}\right)$ is an infinite matrix of complex numbers and $0<\alpha \leq 1$ and give some results related to this concept.
Definition 1. [2] Let $A=\left(a_{i k}\right)$ be an infinite matrix of complex numbers. If $A_{i}(x)=\sum_{k=1}^{\infty} a_{i k} x_{k}$ converges for each i then $A x=\left(A_{i}(x)\right)$ such that

$$
N_{\theta}(A, F)=\left\{x=\left(x_{i}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right)=0 \text { for some } \ell\right\}
$$

where $F=\left(f_{i}\right)$ is a sequence of modulus functions such that $\lim _{u \longrightarrow 0^{+}} \sup _{i} f_{i}(u)=$ 0.

Definition 2. Let $A=\left(a_{i k}\right)$ be an infinite matrix of complex numbers, $F=\left(f_{i}\right)$ be a sequence of modulus functions and $0<\alpha \leq 1$. We say that the sequence $x=\left(x_{k}\right)$ is lacunary strong A-convergent of order α to a number ℓ with respect to a sequence of modulus functions (or $N_{\theta}^{\alpha}(A, F)$-convergent to ℓ) if

$$
N_{\theta}^{\alpha}(A, F)=\left\{x=\left(x_{i}\right): \lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right)=0 \text { for some } \ell\right\}
$$

In this case, we write $x_{i} \rightarrow \ell\left(N_{\theta}^{\alpha}(A, F)\right)$ or $N_{\theta}^{\alpha}(A, F)-\lim x_{i}=\ell$. Note that, if we get $f_{i}=f$, then $N_{\theta}^{\alpha}(A, F)=N_{\theta}^{\alpha}(A, f)$. If $A=I$ unit matrix, we write $N_{\theta}^{\alpha}(F)$ for $N_{\theta}^{\alpha}(A, F)$.
$N_{\theta}^{\alpha}(A, F)$ are linear spaces. Suppose that $x_{i} \rightarrow \ell\left(N_{\theta}^{\alpha}(A, F)\right)$ and $y_{i} \rightarrow \ell^{\prime}\left(N_{\theta}^{\alpha}(A, F)\right)$ to show $i t$. Then there exist integers T_{1} and T_{2} such that $|a| \leq T_{1}$ and $|b| \leq T_{2}$. We have

$$
\frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(a x+b y)-\left(a \ell+b \ell^{\prime}\right)\right|\right)
$$

$$
\begin{aligned}
& =\frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|a\left(A_{i}(x)-\ell\right)+b\left(A_{i}(y)-\ell^{\prime}\right)\right|\right) \\
& \leq \frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}}\left(f_{i}\left(\left|a\left(A_{i}(x)-\ell\right)\right|\right)+f_{i}\left(\left|b\left(A_{i}(y)-\ell^{\prime}\right)\right|\right)\right) \\
& \leq T_{1} \frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right)+T_{2} \frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(y)-\ell^{\prime}\right|\right)
\end{aligned}
$$

This implies that $a x+b y \longrightarrow a \ell+b \ell^{\prime}\left(N_{\theta}^{\alpha}(A, F)\right)$.

Definition 3. Let $A=\left(a_{i k}\right)$ be an infinite matrix of complex numbers, $F=\left(f_{i}\right)$ be a sequence of modulus functions and $0<\alpha \leq 1$. We say that the sequence $x=\left(x_{k}\right)$ is strong A-convergent of order α to a number ℓ with respect to a sequence of modulus functions (or $w^{\alpha}(A, F)$-convergent to ℓ) if

$$
w^{\alpha}(A, F)=\left\{x=\left(x_{i}\right): \lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}} \sum_{i=1}^{n} f_{i}\left(\left|A_{i}(x)-\ell\right|\right)=0 \text { for some } \ell\right\}
$$

In this case, we write $x_{i} \rightarrow \ell\left(w^{\alpha}(A, F)\right)$. Note that, if we get $f_{i}=f$, then $w^{\alpha}(A, F)=w^{\alpha}(A, f)$. If $A=I$ unit matrix, we write $w^{\alpha}(F)$ for $w^{\alpha}(A, F)$.

Definition 4. [36] Let $A=\left(a_{i k}\right)$ be an infinite matrix of complex numbers. Then a sequence $x=\left(x_{k}\right)$ is said to be lacunary A-statistical convergent to a number ℓ (or $S_{\theta}^{\alpha}(A)$-convergent to ℓ) if for every $\varepsilon>0$,

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\alpha}}\left|\left\{i \in I_{r}:\left|A_{i}(x)-\ell\right| \geq \varepsilon\right\}\right|=0
$$

The set of all lacunary A-statistical convergence sequences of order α will be denoted by $S_{\theta}^{\alpha}(A)$. If $\theta=2^{r}$, we write $S^{\alpha}(A)$ instead of $S_{\theta}^{\alpha}(A)$.

Theorem 5. If $N_{\theta}^{\alpha}(A, F)-\lim x_{i}=\ell_{1}$ and $N_{\theta}^{\alpha}(A, F)-\lim x_{i}=\ell_{2}$, then $\ell_{1}=\ell_{2}$.
Proof. Since $N_{\theta}^{\alpha}(A, F)-\lim x_{i}=\ell_{1}$ and $N_{\theta}^{\alpha}(A, F)-\lim x_{i}=\ell_{2}$, we can write

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell_{1}\right|\right)=0
$$

and

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell_{2}\right|\right)=0
$$

We have

$$
\begin{aligned}
\left|\ell_{1}-\ell_{2}\right| & =\left|\ell_{1}-\ell_{2}+A_{i}(x)-A_{i}(x)\right| \\
& \leq\left|A_{i}(x)-\ell_{1}\right|+\left|A_{i}(x)-\ell_{2}\right|
\end{aligned}
$$

We get

$$
\begin{aligned}
\frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|\ell_{1}-\ell_{2}\right|\right) & =\frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|\ell_{1}-\ell_{2}+A_{i}(x)-A_{i}(x)\right|\right) \\
& \leq \frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell_{1}\right|\right)+\frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell_{2}\right|\right)
\end{aligned}
$$

This is possible with $\ell_{1}=\ell_{2}$.
Theorem 6. Let $0<\alpha \leq 1$. If $\lim _{u \rightarrow \infty} \inf _{i} \frac{f_{i}(u)}{u}>0$, then $N_{\theta}^{\alpha}(A, F) \subseteq N_{\theta}^{\alpha}(A)$.
Proof. If $\lim _{u \rightarrow \infty} \inf _{i} \frac{f_{i}(u)}{u}>0$, then there exist a number $\beta>0$ such that $f_{i}(u) \geq \beta u$ for all $u>0$ and $i \in \mathbb{N}$. Let $x \in N_{\theta}^{\alpha}(A, F)$. It is clear that

$$
\frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right) \geq \frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} \beta\left|A_{i}(x)-\ell\right|=\beta \frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}}\left|A_{i}(x)-\ell\right| .
$$

Therefore $x_{i} \rightarrow \ell\left(N_{\theta}^{\alpha}(A)\right)$.
If $\beta=0$, then $N_{\theta}^{\alpha}(A, F) \subseteq N_{\theta}^{\alpha}(A)$ may not be provided. Consider $A=I$ and $f_{i}(x)=x^{\frac{2}{i}}(i \geq 1, x>0)$. Define $x=\left(x_{i}\right)$ by for $r=1,2,3, \ldots$

$$
x_{i}=\left\{\begin{array}{lc}
\sqrt{h_{r}}, & \text { if } \quad i=k_{r} \\
0, & \text { otherwise }
\end{array}\right.
$$

We can write

$$
\frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(x)\right|\right)=\frac{1}{h_{r}^{\alpha}} f_{k_{r}}\left(\sqrt{h_{r}}\right)=\frac{1}{h_{r}^{\alpha}} h_{r}^{\frac{1}{k_{r}}} \rightarrow 0, \quad(\text { as } r \rightarrow \infty)
$$

for $\alpha>\frac{1}{k_{r}}$ and so $x \in N_{\theta}^{0, \alpha}(A, F) \subseteq N_{\theta}^{\alpha}(A, F)$. But

$$
\frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}}\left|A_{i}(x)\right|=\frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}}\left|x_{i}\right|=\frac{1}{h_{r}^{\alpha}} \sqrt{h_{r}} \rightarrow 1, \quad(\text { as } r \rightarrow \infty)
$$

for $\alpha=\frac{1}{2}$ and

$$
\frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}}\left|A_{i}(x)\right|=\frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}}\left|x_{i}\right|=\frac{1}{h_{r}^{\alpha}} \sqrt{h_{r}} \rightarrow \infty,(\text { as } r \rightarrow \infty)
$$

for $\alpha<\frac{1}{2}$. $x \notin N_{\theta}^{0, \alpha}(A) \subseteq N_{\theta}^{\alpha}(A)$ is obtained. As a result $\beta>0$ must be.
Theorem 7. Let $\left(f_{i}\right)$ be pointwise convergent. If $\lim _{i} f_{i}(u)>0$ for $u>0$, then $N_{\theta}^{\alpha}(A, F) \subseteq S_{\theta}^{\alpha}(A)$ for $0<\alpha \leq 1$.

Proof. Let $\varepsilon>0$ and $x_{i} \rightarrow \ell\left(N_{\theta}^{\alpha}(A, F)\right)$. If $\lim _{i} f_{i}(u)>0$, then there exist a number $\rho>0$ such that $f_{i}(\varepsilon)>\rho$ for $u>\varepsilon$ and $i \in \stackrel{i}{\mathbb{N}}$. We have

$$
\begin{aligned}
\frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right) & \geq \frac{1}{h_{r}^{\alpha}} \sum_{\substack{i \in I_{r} \\
\left|A_{i}(x)-\ell\right| \geq \varepsilon}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right) \\
& \geq \frac{1}{h_{r}^{\alpha}}\left|\left\{i \in I_{r}:\left|A_{i}(x)-\ell\right| \geq \varepsilon\right\}\right| f_{i}(\varepsilon) \\
& \geq \rho \frac{1}{h_{r}^{\alpha}}\left|\left\{i \in I_{r}:\left|A_{i}(x)-\ell\right| \geq \varepsilon\right\}\right|
\end{aligned}
$$

for $0<\alpha \leq 1$. It follows that $x_{i} \rightarrow \ell\left(S_{\theta}^{\alpha}(A)\right)$.
Theorem 8. Let $0<\alpha \leq 1$. If $\lim f_{i}(u)>0$ for $u>0$, then $w^{\alpha}(A, F) \subseteq S^{\alpha}(A)$.
Proof. Let $x_{i} \rightarrow \ell\left(w^{\alpha}(A, F)\right)$ be. From Theorem 7, we can write

$$
\begin{aligned}
\frac{1}{n^{\alpha}} \sum_{i=1}^{n} f_{i}\left(\left|A_{i}(x)-\ell\right|\right) & \geq \frac{1}{n^{\alpha}} \sum_{\substack{i=1 \\
\left|A_{i}(x)-\ell\right| \geq \varepsilon}}^{n} f_{i}\left(\left|A_{i}(x)-\ell\right|\right) \\
& \geq \frac{1}{n^{\alpha}}\left|\left\{i \leq n:\left|A_{i}(x)-\ell\right| \geq \varepsilon\right\}\right| f_{i}(\varepsilon) \\
& \geq \rho \frac{1}{n^{\alpha}}\left|\left\{i \leq n:\left|A_{i}(x)-\ell\right| \geq \varepsilon\right\}\right|
\end{aligned}
$$

and so $x_{i} \rightarrow \ell\left(S^{\alpha}(A)\right)$.
Theorem 9. i) If $\liminf q_{r}>1$, then $w^{\alpha}(A, F) \subseteq N_{\theta}^{\alpha}(A, F)$, for $0<\alpha \leq 1$.
ii) If $\lim \sup \frac{k_{r}}{k_{r-1}}<\infty$, then $N_{\theta}(A, F) \subseteq w^{\alpha}(A, F)$, for $0<\alpha \leq 1$.

Proof. i) Let $x_{i} \rightarrow \ell\left(w^{\alpha}(A, F)\right)$ and $\liminf q_{r}>1$. There exist a $\delta>0$ such that $q_{r}=\frac{k_{r}}{k_{r-1}} \geq 1+\delta$. We have

$$
\left(\frac{h_{r}}{k_{r}}\right) \geq \frac{\delta}{\delta+1} \Rightarrow\left(\frac{h_{r}}{k_{r}}\right)^{\alpha} \geq\left(\frac{\delta}{\delta+1}\right)^{\alpha}
$$

for $0<\alpha \leq 1$. We can write

$$
\begin{aligned}
\frac{1}{k_{r}^{\alpha}} \sum_{i=1}^{k_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right) & \geq \frac{1}{k_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right) \\
& =\left(\frac{h_{r}^{\alpha}}{k_{r}^{\alpha}}\right) \frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right) \\
& \geq\left(\frac{\delta}{\delta+1}\right)^{\alpha} \frac{1}{h_{r}^{\alpha}} \sum_{i \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right) .
\end{aligned}
$$

$x_{i} \rightarrow \ell\left(N_{\theta}^{\alpha}(A, F)\right)$ is obtained.
ii) If $\lim \sup \frac{k_{r}}{k_{r-1}^{\alpha}}<\infty$, then there is $M>0$ such that $\frac{k_{r}}{k_{r-1}^{\alpha}}<M$ for $r \geq 1$. Now suppose that $x \in N_{\theta}^{0}(A, F)$ and $\varepsilon>0$. We can find $R>0$ and $K>0$ numbers such that $\sup _{i>R} \tau_{i}<\varepsilon$ and $\tau_{i}<K$ for every $i=1,2,3, \ldots$. Let t be any integer with $k_{r-1}<t \leq k_{r}$. For $r>R$ and $0<\alpha \leq 1$

$$
\begin{aligned}
& \frac{1}{t^{\alpha}} \sum_{i=1}^{t} f_{i}\left(\left|A_{i}(x)\right|\right) \leq \frac{1}{k_{r-1}^{\alpha}} \sum_{i=1}^{k_{r}} f_{i}\left(\left|A_{i}(x)\right|\right) \\
& \quad=\frac{1}{k_{r-1}^{\alpha}}\left(\sum_{I_{1}} f_{i}\left(\left|A_{i}(x)\right|\right)+\sum_{I_{2}} f_{i}\left(\left|A_{i}(x)\right|\right)+\ldots+\sum_{I_{r}} f_{i}\left(\left|A_{i}(x)\right|\right)\right) \\
& =\frac{k_{1}}{k_{r-1}^{\alpha}} \tau_{1}+\frac{k_{2}-k_{1}}{k_{r-1}^{\alpha}} \tau_{2}+\ldots+\frac{k_{R}-k_{R-1}}{k_{r-1}^{\alpha}} \tau_{R}+\frac{k_{R+1}-k_{R}}{k_{r-1}^{\alpha}} \tau_{R+1}+\ldots+\frac{k_{r}-k_{r-1}}{k_{r-1}^{\alpha}} \tau_{r} \\
& \quad \leq\left(\sup _{i \geq 1} \tau_{i}\right) \frac{k_{R}}{k_{r-1}^{\alpha}}+\left(\sup _{i \geq R} \tau_{i}\right) \frac{k_{r}-k_{R}}{k_{r-1}^{\alpha}}<K \frac{k_{R}}{k_{r-1}^{\alpha}}+\varepsilon M .
\end{aligned}
$$

We deduce $x \in w^{0, \alpha}(A, F)$.
Theorem 10. Let $\theta=\left(k_{r}\right)$ and $\theta^{\prime}=\left(s_{r}\right)$ be two lacunary sequences such that $I_{r} \subset$ J_{r} for all $r \in \mathbb{N}$ and let $\alpha_{1}, \alpha_{2}, \beta_{1}$ and β_{2} be such that $0<\alpha_{1} \leq \alpha_{2} \leq \beta_{1} \leq \beta_{2} \leq 1$,
(i) If

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \inf \frac{h_{r}^{\alpha_{1}}}{\ell_{r}^{\alpha_{2}}}>0 \tag{1}
\end{equation*}
$$

then $N_{\theta^{\prime}, \alpha_{2}}^{\beta_{2}}(A, F) \subset N_{\theta, \alpha_{1}}^{\beta_{1}}(A, F)$,
(ii) If the modulus $F=\left(f_{i}\right)$ is bounded and

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\ell_{r}}{h_{r}^{\alpha_{2}}}=1 \tag{2}
\end{equation*}
$$

then $N_{\theta, \alpha_{1}}^{\beta_{2}}(A, F) \subset N_{\theta^{\prime}, \alpha_{2}}^{\beta_{1}}(A, F)$.
Proof. (i) Let $x \in N_{\theta^{\prime}, \alpha_{2}}^{\beta_{2}}(A, F)$. We can write

$$
\begin{aligned}
\frac{1}{\ell_{r}^{\alpha_{2}}}\left(\sum_{k \in J_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right)\right)^{\beta_{2}} & \geq \frac{1}{\ell_{r}^{\alpha_{2}}}\left(\sum_{k \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right)\right)^{\beta_{2}} \\
& \geq \frac{h_{r}^{\alpha_{1}}}{\ell_{r}^{\alpha_{2}}} \frac{1}{h_{r}^{\alpha_{1}}}\left(\sum_{k \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right)\right)^{\beta_{1}}
\end{aligned}
$$

Thus if $x \in N_{\theta^{\prime}, \alpha_{2}}^{\beta_{2}}(A, F)$, then $x \in N_{\theta, \alpha_{1}}^{\beta_{1}}(A, F)$.
(ii) Let $x=\left(x_{k}\right) \in N_{\theta, \alpha_{1}}^{\beta_{2}}(A, F)$ and (2) holds. Assume that $F=\left(f_{i}\right)$ is bounded. Therefore $f_{i}(x) \leq K$, for a positive integer K and all $x \geq 0$. Now, since $I_{r} \subseteq J_{r}$
and $h_{r} \leq \ell_{r}$ for all $r \in N$, we can write

$$
\begin{aligned}
\frac{1}{\ell_{r}^{\alpha_{2}}}\left(\sum_{k \in J_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right)\right)^{\beta_{1}}= & \frac{1}{\ell_{r}^{\alpha_{2}}}\left(\sum_{k \in J_{r}-I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right)\right)^{\beta_{1}} \\
& +\frac{1}{\ell_{r}^{\alpha_{2}}}\left(\sum_{k \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right)\right)^{\beta_{1}} \\
\leq & \left(\frac{\ell_{r}-h_{r}}{\ell_{r}^{\alpha_{2}}}\right)^{\beta_{1}} K^{\beta_{1}}+\frac{1}{\ell_{r}^{\alpha_{2}}}\left(\sum_{k \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right)\right)^{\beta_{1}} \\
\leq & \left(\frac{\ell_{r}-h_{r}^{\alpha_{2}}}{h_{r}^{\alpha_{2}}}\right) K^{\beta_{1}}+\frac{1}{h_{r}^{\alpha_{2}}}\left(\sum_{k \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right)\right)^{\beta_{2}} \\
\leq & \left(\frac{\ell_{r}}{h_{r}^{\alpha_{2}}}-1\right) K^{\beta_{1}}+\frac{1}{h_{r}^{\alpha_{1}}}\left(\sum_{k \in I_{r}} f_{i}\left(\left|A_{i}(x)-\ell\right|\right)\right)^{\beta_{2}}
\end{aligned}
$$

for every $r \in \mathbb{N}$. Therefore $N_{\theta, \alpha_{1}}^{\beta_{2}}(A, F) \subset N_{\theta^{\prime}, \alpha_{2}}^{\beta_{1}}(A, F)$.
Now as a result of Theorem 10 we have the following Corollary 11.
Corollary 11. Let $\theta=\left(k_{r}\right)$ and $\theta^{\prime}=\left(s_{r}\right)$ be two lacunary sequences such that $I_{r} \subset J_{r}$ for all $r \in \mathbb{N}$.
(i) If (1) holds then, $N_{\theta^{\prime}}(A, F) \subset N_{\theta}(A, F)$ for $\alpha_{1}=\alpha_{2}=1$ and $\beta_{1}=\beta_{2}=1$.
(ii) If (2) holds then, $N_{\theta}(A, F) \subset N_{\theta^{\prime}}(A, F)$ for $\alpha_{1}=\alpha_{2}=1$ and $\beta_{1}=\beta_{2}=1$.

References

[1] Bilgin, T., Lacunary strong A-convergence with respect to a modulus, Studia Univ. BabeşBolyai Math., 46(4) (2001) 39-46.
[2] Bilgin, T., Lacunary strong A-convergence with respect to a sequence of modulus functions, Appl. Math. Comput., 151(3) (2004) 595-600.
[3] Altin, Y. and Et, M., Generalized difference sequence spaces defined by a modulus function in a locally convex space, Soochow J. Math., 31(2) (2005) 233-243.
[4] Bhardwaj, V. K. and Dhawan, S., Density by moduli and lacunary statistical convergence, Abstr. Appl. Anal., 2016 (2016), Art. ID 9365037, 11 pp.
[5] Caserta, A., Di Maio, G. and Kočinac, L. D. R., Statistical convergence in function spaces, Abstr. Appl. Anal., 2011 (2011), Art. ID 420419, 11 pp.
[6] Connor, J. S., The statistical and strong p-Cesaro convergence of sequences, Analysis, 8 (1988) 47-63.
[7] Demirci, K., Strong A-summability and A-statistical convergence, Indian J. Pure Appl. Math., 27(6) (1996) 589-593.
[8] Cakalli, H., Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math., 26(2) (1995) 113-119.
[9] Cakalli, H., A study on statistical convergence, Funct. Anal. Approx. Comput., 1(2) (2009) 19-24.
[10] Cinar, M., Karakas, M. and Et, M., On pointwise and uniform statistical convergence of order α for sequences of functions, Fixed Point Theory And Applications, 2013(33) (2013) 11 pp.
[11] Colak, R., Statistical convergence of order α, Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, 2010 (2010) 121-129.
[12] Di Maio, G. and Kočinac, L. D. R., Statistical convergence in topology, Topology Appl., 156 (2008) 28-45.
[13] Et, M., Cinar, M. and Karakas, M., On λ-statistical convergence of order α of sequences of functions, J. Inequal. Appl., 2013(204) (2013) 8 pp.
[14] Et, M., Altin, Y. and Altinok, H., On some generalized difference sequence spaces defined by a modulus function, Filomat, 17 (2003) 23-33.
[15] Et, M., Alotaibi, A. and Mohiuddine, S. A., On $\left(\Delta^{m}, I\right)$ statistical convergence of order α, Scientific World Journal, 2014 (2014) Article Number: 535419.
[16] Et, M. and Sengul, H., Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α, Filomat, 28(8) (2014) 1593-1602.
[17] Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951) 241-244.
[18] Freedman, A. R., Sember, J. J. and Raphael, M., Some Cesàro-type summability spaces, Proc. London Math. Soc., $37(3)$ (1978) 508-520.
[19] Fridy, J., On statistical convergence, Analysis, 5 (1985) 301-313.
[20] Fridy, J. and Orhan, C., Lacunary statistical convergence, Pacific J. Math., 160 (1993) 43-51.
[21] Gaur, A. K. and Mursaleen, M., Difference sequence spaces defined by a sequence of moduli, Demonstratio Math., 31(2) (1998) 275-278.
[22] Isik, M. and Et, K. E., On lacunary statistical convergence of order α in probability, AIP Conference Proceedings, 1676, 020045 (2015); doi: http://dx.doi.org/10.1063/1.4930471.
[23] Isik, M. and Akbas, K. E., On λ-statistical convergence of order α in probability, J. Inequal. Spec. Funct., 8(4) (2017) 57-64.
[24] Isik, M., Generalized vector-valued sequence spaces defined by modulus functions, J. Inequal. Appl., 2010 (2010) Art. ID 457892, 7 pp.
[25] Kaplan, H. and Cakalli, H., Variations on strong lacunary quasi-Cauchy sequences, J. Nonlinear Sci. Appl., 9(6) (2016) 4371-4380.
[26] Maddox, I. J., Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc., 100 (1986) 161-166.
[27] Nakano, H., Modulared sequence spaces, Proc. Japan Acad., 27 (1951) 508-512.
[28] Nuray, F. and Savas, E., Some new sequence spaces defined by a modulus function, Indian J. Pure Appl. Math., 24(11) (1993) 657-663.
[29] Pehlivan, S. and Fisher, B., Lacunary strong convergence with respect to a sequence of modulus functions, Comment. Math. Univ. Carolin., 36(1) (1995) 69-76.
[30] Pehlivan, S. and Fisher, B., Some sequence spaces defined by a modulus, Math. Slovaca. 45(3) (1995) 275-280.
[31] Salat, T., On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980) 139-150.
[32] Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959) 361-375.
[33] Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951) 73-74.
[34] Sengul, H., Some Cesàro-type summability spaces defined by a modulus function of order (α, β), Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 66(2) (2017) 80-90.
[35] Sengul, H. and Et, M., On lacunary statistical convergence of order α, Acta Math. Sci. Ser. B Engl. Ed. 34(2) (2014) 473-482.
[36] Sengul, H. and Arica, Z., Lacunary A-statistical convergence and lacunary strong A-convergence of order α with respect to a modulus, Conference Proceedings of ICMS-18, (2018), Maltepe/ Istanbul.
[37] Altinok, H. and Yagdiran, D., Lacunary statistical convergence defined by an Orlicz function in sequences of fuzzy numbers, Journal of Intelligent \& Fuzzy Systems, 32(3) (2017) 27252731.
[38] Altinok, H. and Yagdiran, D., Lacunary statistical convergence of order β in difference sequences of fuzzy numbers, Journal of Intelligent \& Fuzzy Systems, 31(1) (2016) 227-235.

Current address: Hacer Şengül: Faculty of Education, Harran University, Osmanbey Campus 63190, Şanlıurfa, Turkey.

E-mail address: hacer.sengul@hotmail.com
ORCID Address: http://orcid.org/0000-0003-4453-0786
Current address: Zelal Arıca: Ministry of Education, Yahya Kemal Beyatlı Anatolian Religious High School 21070, Diyarbakır, Turkey.

E-mail address: zelallarica@gmail.com

