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Abstract 
 
In the present paper, we consider two new coding algorithms by means of right 
circulant matrices with elements generalized Fibonacci and Lucas polynomials. To that 
end, we study basic properties of right circulant matrices using generalized Fibonacci 
polynomials  , ,p q nF x , generalized Lucas polynomials  , ,p q nL x  and geometric 

sequences. 
 
Keywords: Coding/decoding method, right circulant matrix, generalized Fibonacci 
polynomials, generalized Lucas polynomials. 
 
 

Genelleştirilmi ş Fibonacci ve Lucas polinomlarıyla birlikte sağ 
devirsel matrisler ve kodlama teorisi 

 
 
Özet 
 
Bu çalışmada elemanları genelleştirilmi ş Fibonacci ve Lucas polinomları olan devirsel 
matrisler kullanılarak iki yeni kodlama algoritması vereceğiz. Bu amaçla, 
genelleşirilmi ş Fibonacci polinomları  , ,p q nF x , genelleştirilmi ş Lucas polimomları 

 , ,p q nL x  ve geometrik diziler kullanılarak sağ devirsel matrislerin bazı temel 

özelliklerini çalışacağız. 
 
Anahtar Kelimeler: Kodlama/kod çözme metodu, genelleştirilmi ş Fibonacci 
polinomları, genelleştirilmi ş Lucas polinomları, sağ devirsel matris. 
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1 Introduction 
 
There are many studies including Fibonacci, Fibonacci quaternion, Lucas, Pell, Pell  
(p,i)-numbers and their applications such as coding theory in the literature [1-7]. Here 
we consider two classes of right circulant matrices whose entries are generalized 
Fibonacci and Lucas polynomials to obtain new coding/decoding algorithms. 
 
Let , > 0n g  be integers. From [8], we know that a g-circulant matrix with order n  is a 
square matrix is of the form:  
 

1 2

1 2

2 1 2 2 2,

1 2

= ,

n

n g n g n g

n g n g n gg n

g g g

b b b

b b b

b b bB

b b b

    

    

 

        

�

�

� � � �

�

 

 
where each subscript is thought to be reduced modulo n . The first row of ,g nB  is 

1 2( , ,..., )nb b b  and its ( 1)j  th row is gained by giving its j th row a right circulant shift 

by g  positions. 
 
It is clear that =1g  or = 1g n  give the standart right circulant matrix, or easily, 
circulant matrix. Then a right circulant matrix can be given by   

 

 
1 2

1 1
1 2

2 3 1

, ,..., = .

n

n n
n

b b b

b b b
RCirc b b b

b b b



      

�

�

� � � �

�

 

 
A geometric sequence is known to be a sequence =1{ }k ka   such that each term is given by 

a multiple of the previous one. 
 
In [8], it was given a  g-circulant, right circulant and left circulant matrices whose 
entries are  h x -Fibonacci polynomials and presented the determinants of these 

matrices. In [9], it was introduced the right circulant matrices with ratio of the elements 
of Fibonacci and a geometric sequence and given eigenvalues, determinants, Euclidean 
norms and inverses of these matrices. 
 
In [10], it has been dealt with circulant matrices with the Jacobsthal and Jacobsthal-
Lucas numbers, studied the invertibility of these circulant matrices and presented the 
determinant and the inverse matrix. Similarly, in [11], it has been studied inverses and 
determinants of the circulant matrices related to Fibonacci and Lucas numbers. 
Furthermore, there are many applications of circulant matrices in the literature. For 
example, these matrices has been studied related to models and several differential 
equations such as fractional order models for nonlocal epidemics, differential delay 
equations (for more details one can see [12-16] and the references therein). 
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Recently, ( )h x -Fibonacci polynomials are given by ,0( ) = 0,hF x  ,1( ) = 1hF x  and 

, 1 , , 1( ) = ( ) ( ) ( )h n h n h nF x h x F x F x   for 1n , and then it was given some properties of 

them in [17]. 
 
Let ( )p x  and ( )q x  be polynomials with real coefficients,    0, 0p x q x   and 

   2 4 > 0.p x q x  In [18], it was defined generalized Fibonacci polynomials , , ( )p q nF x  

by 
 

, , 1 , , , , 1( ) = ( ) ( ) ( ) ( ), 1p q n p q n p q nF x p x F x q x F x n                                                              (1) 

 
with the initial values , ,0 , ,1( ) = 0, ( ) = 1p q p qF x F x  and generalized Lucas polynomials 

, , ( )p q nL x  were given by  

 

, , 1 , , , , 1( ) = ( ) ( ) ( ) ( ), 1p q n p q n p q nL x p x L x q x L x n                                                              (2) 

 
with the initial values  , ,0 , ,1( ) = 2, ( ) =p q p qL x L x p x .  

It is known that the polynomial , , ( )p q nF x  generalizes classical Fibonacci numbers, k -

Fibonacci numbers, generalized Fibonacci numbers, Catalan’s Fibonacci polynomials 

(for more details see [19-24]) . Similarly, the polynomial , , ( )p q nL x  comprises 

generalized Lucas numbers, k -Lucas numbers, classical Lucas numbers  (for more 
details see [22-24] and [27-28]). 

Considering the recurrence relation (1), let  x  and  x  be the roots of the 

following characteristic equation  
 

   2 = 0v vp x q x  . 

 
It is known that the Binet formulas for the  generalized Fibonacci polynomials  , ,p q nF x  

and generalized Lucas polynomials  , ,p q nL x  are of the following forms, respectively 

[18]:  
 

     
   , , = , for 0

n n

p q n

x x
F x n

x x

 
 





 

and 
 

     , , = , for 0,n n
p q nL x x x n    

 
where  

               2 24 4
=  and = .

2 2

p x p x q x p x p x q x
x x    
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It is clear that      = ,x x p x        =x x q x    and 

       2= 4 .x x p x q x    

 
In this study, we investigate right circulant matrices using generalized Fibonacci 

polynomials, generalized Lucas polynomials and geometric sequences. In Section 2, we 
give the eigenvalues and determinants of the right circulant matrices whose entries are 
the ratio of the elements of generalized Fibonacci sequence and some geometric 
sequences. In Section 3, we give right circulant matrices whose entries are the 
generalized Fibonacci and Lucas polynomials and calculate the determinants of these 
matrices. In Section 4, we give some applications of right circulant matrices to coding 
theory. 

 
From now on, we shortly denote  x  by  ,  x  by  ,  p x  by p  and  q x  by 

.q                
 
 
2  Right circulant matrices with generalized Fibonacci polynomials and geometric 
sequences 
 
Let =1{ }n nf   be the sequence of the form 

 

, , ( )
= ,p q n

n n

F x
f

ar
 

 
where , , ( )p q nF x  is the n -th generalized Fibonacci polynomial and nar  is the n -th 

element of any geometric sequence. 
 
Using these types of sequences, we consider the following right circulant matrix nF :  

 

0 1 2 2 1

1 0 1 3 2

2 1 0 4 3

2 3 4 0 1

1 2 3 1 0

= .

n n

n n n

n n n n
n

n

f f f f f

f f f f f

f f f f f

f f f f f

f f f f f

 

  

   



          

�

�

�

� � � � � �

�

�

F  

 
 

Theorem 2.1 The eigenvalues of the matrix nF  are as follows: 

 

 
  

, , , , 1

1

( ) ( )
= ,

m n
p q n p q n

m n m m

rF x w qF x r

ar r w r w
  




  

  
   

where = 0,1,..., 1,m n  
2 24 4

= , =
2 2

p p q p p q    
 and 

2

=
i

nw e


.  
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Proof. From [25], we know that the eigenvalues of a right circulant matrix nF  are  

 
1

=0

= ,
n

mk
m k

k

f w


                                                                                                       (3) 

 

where 
2

=
i

nm e


 and = 0,1,2,..., 1.m n  Using the equation (3) and the Binet’s formula 

for the generalized Fibonacci polynomials , , ( ),p q nF x  we get    

 

 
1 1

, ,

=0 =0

( )
= = ,

k kn n
p q k mk mk

m k k
k k

F x
w w

ar ar

   
 

 



   

 

where 
2 24 4

= , = .
2 2

p p q p p q    
 Then using the properties of the geometric 

series, we obtain 
 

 
   1 / 1 /1

=
1 / 1 /

n n

m m m

r r

a w r w r

      

       
 

       1

1
=

n n n n

n m m

r r

ar r w r w

 
     

        

       
      

  1

1
= .

n n m m n n

n m m

r r w r w r

ar r w r w

   
   

 

  

          
 

 
By the fact = q  , we find 

 

     
     1

=
n n n m m n n

m n m m

r r w w

ar r w r w

         
 

  

      

  
 

      
     

   
1 1

1
=

n n n m m n n

n m m

r r w w q

ar r w r w

     
   

   

  

     

  
 

         
, , , ,1 , , 1

1

( ) ( ) ( )
=

n m m
p q n p q p q n

n m m

rF x r w F x w qF x

ar r w r w 
 



  

  

 
 

 
and so  
 

 
  

, , , , 1

1

( ) ( )
= .

m n
p q n p q n

m n m m

rF x w qF x r

ar r w r w
  





  

  

 

 

  
Now we present the below theorem. 
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Theorem 2.2  The determinant of the matrix nF  is  

   
 
, , , , 1

( 1) 2
, ,

1 ( ) ( )
det( ) = .

( ) ( )

nn n n n
p q n p q n

n n n n n n n
p q n

r F x qF x r

a r r r L x q





  
   F  

 
Proof. Because the product of eigenvalues of a matrix gives its determinant, from 
Theorem 2.1 we obtain 
 

 
 

   
1

, , , , 1

1
=0

( ) ( )
det( ) = .

m nn
p q n p q n

n n m m
m

rF x w qF x r

ar r w r w 




  

  
 F      (4) 

 
From the complex analysis, we know  
 

 1

=0

=
n

m n n

m

x yw x y




   (5) 

 
Applying the equation (5) to the equation (4), we have 
 

   
    

, , , , 1

1

1 ( ) ( )
det( ) =

nn n n n
p q n p q n

n n nn n n n n

r F x qF x r

a r r r 




  
 F  

 
   

      
, , , , 1

1 2

1 ( ) ( )
= .

nn n n n
p q n p q n

nn nn n n n n

r F x qF x r

a r r r q 




  

   
 

 
Using the Binet’s formulas for the generalized Lucas polynomials  , , ,p q nL x  we get 

 

   
    

, , , , 1

1 2
, ,

1 ( ) ( )
det( ) = .

( )

nn n n n
p q n p q n

n nn nn n n
p q n

r F x qF x r

a r r r L x q





  

  
F  

  
Notice that for =p x and = 1q ; for = 2p x and = 1q ; =p k  and =q t ; =p k  and 

= 1q ; = = 1p q  in Theorem 2.1 and Theorem 2.2, we have similar theorems for 

Catalan’s Fibonacci polynomials  nF x , Byrd’s polynomials ( )n x , generalized 

Fibonacci numbers nU , k -Fibonacci numbers ,k nF , classical Fibonacci numbers nF , 

respectively. Also, in [26], the right circulant matrix with Fibonacci sequence was 
defined and given eigenvalues, Euclidean norm of this matrix. 
 
 
3 Right circulant matrices with generalized Fibonacci and Lucas polynomials  
 
In this part, we give the determinant of a right circulant matrix whose elements are 
generalized Fibonacci polynomials  , ,p q nF x  and generalized Lucas polynomials 

 , ,p q nL x . 
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Theorem 3.1 Let nG  be a right circulant matrix of the following form: 

 

, ,1 , ,2 , ,3 , , 1 , ,

, , , ,1 , ,2 , , 2 , , 1

, , 1 , , , ,1 , , 3 , , 2

, ,4 , ,5 , ,6 , ,2 ,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

=

( ) ( ) ( ) ( )

p q p q p q p q n p q n

p q n p q p q p q n p q n

p q n p q n p q p q n p q n

n

p q p q p q p q p q

F x F x F x F x F x

F x F x F x F x F x

F x F x F x F x F x

G

F x F x F x F x F



 

  

�

�

�

� � � � � �

� ,3

, ,3 , ,4 , ,5 , ,1 , ,2

, ,2 , ,3 , ,4 , , , ,1

.

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
p q p q p q p q p q

p q p q p q p q n p q

x

F x F x F x F x F x

F x F x F x F x F x

           
�

�

 (6) 

 
Then we have  

  

   
1

11 2 , , 1
, , 1 , , , ,

=1 , ,

1 ( )
det( ) = 1 ( ) ( ) ( ).

( )

k
nn n p q n

n p q n p q n p q k
k p q n

F x
G F x qF x qF x

qF x


  



        (7) 

  
 

Proof. For =1n , det 1( ) =1G  satisfies the equation (7). Let us consider the case 2n   

and we focus on the following matrices:  
 
 

1 0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1

=

0 0 0 1 0 0 0

0 0 1 0 0 0

0 1 0 0 0
n n

p

q p

A

p

p q


             

�

�

�

� � � � � �

�

�

�

 (8) 

 
and 

 
 

 
 

 
 

2

, ,

, , 1

3

, ,

, , 1

, ,

, , 1

1 0 0 0 0

0 0 0 1
1

0 0 1 0= .1

0 1 0 0
1

0 1 0 0 0

n

p q n

p q n

n

p q n

p q n

p q n

p q n

n n

qF x

F x

qF x
B F x

qF x

F x













                            

�

�

�

� � � � �

�

�
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Notice that  
 

   1 2

2det( ) = det( ) = 1 .
n n

A B
 

  

 
If we multiply the matrices , nA G  and B  we have the following product matrices: 

 
 

       
     

   
 

     

, ,1 , , 1 , ,3 , ,2

, , 2 , ,2 , ,1

, ,1 , , 1

, ,

, , , ,1 , , 1

0

0 0

0 0= ,

0 0

0 0 0

p q n p q n p q p q

n p q n p q p q

p q p q n

p q nn

p q n p q p q n

F x F x F x F x

F x qF x qF x

F x F x

qF xAG B

qF x F x F x












            

�

�

�

� � �

�

 
 

where  
 

 1
1

, ,
, , , , 1

=1 , ,1 , , 1

( )
= ( )

( ) ( )

n k
n

p q n
n p q p q k

k p q p q n

qF x
F x

F x F x


 






      (9) 

 
and 
 

  
 

 
1

1
, ,

, , , , 1 , ,
=1 , ,1 , , 1

( )
= 1 .

( ) ( )

n k
n

p q n
n p q p q n p q k

k p q p q n

qF x
F x qF x

F x F x


 






        (10) 

 
Then we have 
 

         2

, ,1 , , , ,1 , , 1det = .
n

n p q n p q p q p q nAG B F x F x F x 

  

Using the equation (10), we get  
 

         
1

11 2 , , 1
, , 1 , , , ,

=1 , ,

1 ( )
det = 1 .

( )

k
nn n p q n

n p q n p q n p q k
k p q n

F x
AG B F x qF x qF x

qF x


  



        

 
Since    det = det ,n nAG B G  we find 

 
 

         
1

11 2 , , 1
, , 1 , , , ,

=1 , ,

1 ( )
det = 1 .

( )

k
nn n p q n

n p q n p q n p q k
k p q n

F x
G F x qF x qF x

qF x
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Now we give the following theorem for generalized Lucas polynomials  , ,p q nL x . 

 
Theorem 3.2 Let nH  be a right circulant matrix of the following form: 

 

, ,1 , ,2 , ,3 , , 1 , ,

, , , ,1 , ,2 , , 2 , , 1

, , 1 , , , ,1 , , 3 , , 2

, ,4 , ,5 , ,6 , ,2 ,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

=

( ) ( ) ( ) ( )

p q p q p q p q n p q n

p q n p q p q p q n p q n

p q n p q n p q p q n p q n

n

p q p q p q p q p q

L x L x L x L x L x

L x L x L x L x L x

L x L x L x L x L x

H

L x L x L x L x L



 

  

�

�

�

� � � � � �

� ,3

, ,3 , ,4 , ,5 , ,1 , ,2

, ,2 , ,3 , ,4 , , , ,1

.

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
p q p q p q p q p q

p q p q p q p q n p q

x

L x L x L x L x L x

L x L x L x L x L x

           
�

�

 (11) 

 
Then we have  
 

    
     

   

1

, ,1 , ,1 , , 1

1
12 , ,1 , , 11

, ,1 , , , ,
=1 , ,

1
12 , ,1 , , 11

, , , , 1
=1 , ,

det( ) = ( )

( )
( ) 2 ( )

( ) 2

( )
2 ( ) 2

( ) 2

n

n p q p q p q n

k
nn p q p q nn

p q p q n p q k
k p q n

k
nn p q p q nn

p q n p q k
k p q n

H L x L x L x

L x L x
L x q L x L x

qL x q

L x L x
q L x L

qL x q






 


 




      

      



 ( ).x

 (12) 

 
Proof. For =1n , det 1( ) =H p  satisfies the equation (12). Let us consider the case 

2.n   Let A  be a matrix of the form given in (8) and D be a matrix of the following 
form: 

 
   

 
   

 
   

2

, ,

, ,1 , , 1

3

, ,

, ,1 , , 1

, ,

, ,1 , , 1

1 0 0 0 0

2
0 0 0 1

2
0 0 1 0= .

2
0 1 0 0

0 1 0 0 0

n

p q n

p q p q n

n

p q n

p q p q n

p q n

p q p q n

n n

qL x q

L x L x

qL x q
D L x L x

qL x q

L x L x













                            

�

�

�

� � � � �

�

�

 

 
Using the properties of determinants and multiplying these matrices , nA H  and D , the 

proof can be fulfilled by an analogous way applied in the proof of the above theorem.  
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4 An Application to coding theory 
 
In this section, we give two new coding/decoding methods using the right circulant 
matrices nG  and nH  for = =1p q . At first, we give an algorithm by means of the 

generalized Fibonacci polynomials. Following the notations in [5], we give generalized 
Fibonacci and Lucas blocking algorithms with transformations 
 

= , =n nM G E M H E   

 
and 
 

   1 1
= , = ,n nE G M E H M

 

   

 
where M  is nonsingular square message matrix, E  is a code matrix, nG  is coding 

matrix and the inverse matrix   1

nG


 is decoding matrix. 

 
We put our message in a matrix adding zero between two words and end of the message 
until we obtain the size of the message matrix is 3m. Dividing the message square 
matrix M  into the block matrices, named iB  ( 21 i m  ), of size 3 3 , from left to 

right, we can construct a new coding method. 
 
Now we explain the symbols of our coding method. Suppose that matrices iB  and iE  

are of the following forms: 
 

1 2 3 1 2 3

4 5 6 4 5 6

7 8 9 7 8 9

=  and = .

i i i i i i

i i i i i i
i i

i i i i i i

b b b e e e

B b b b E e e e

b b b e e e

               
 

 
We use the matrix nG  given in (6) for = =1p q  and rewrite the elements of this matrix 

as 
1 2 3

3 1 2

2 3 1

= .n

g g g

G g g g

g g g

     
 The number of the block matrices iB  is denoted by b . In 

accordance with b , we choose the number n  as follows: 
 

3 , = 1
= .

3 , 1

b
n

b b

   

 
Using the chosen n , we write the following character table according to 27mod  (this 
table can be enlarged according to the used characters in the message matrix). We begin 
the “n ” for the first character. 
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A B C D E F G H I 

(13) 

n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 
J K L M N O P Q R 

n+9 n+10 n+11 n+12 n+13 n+14 n+15 n+16 n+17 
S T U V W X Y Z 0 

n+18 n+19 n+20 n+21 n+22 n+23 n+24 n+25 n+26 
 
Generalized Fibonacci Blocking Algorithm 
Coding Algorithm  

Step 1. Divide the matrix M  into blocks iB   21 i m  . 

Step 2. Choose n . 
Step 3. Determine i

jb   1 9j  . 

Step 4. Compute det( )i iB d . 

Step 5. Construct 
{1,2,3,4,6,7,8,9}

= , i
i k k

K d b


   . 

Step 6. End of algorithm. 
Decoding Algorithm  
Step 1. Compute nG . 

Step 2. Determine jg  (1 3)j  . 

Step 3. Compute 1 1 3 2 2 3 1,
i i i ig b g b g b e     21 i m  . 

                            2 1 1 2 3 3 2,
i i i ig b g b g b e    

                            3 1 2 2 1 3 3,
i i i ig b g b g b e    

                            1 7 3 8 2 9 7,
i i i ig b g b g b e    

                            2 7 1 8 3 9 8,
i i i ig b g b g b e    

                           3 7 2 8 1 9 9.
i i i ig b g b g b e    

Step 4. Solve 

 3 1 9 2 4 1 3 6 8 3 1 4 3 2 6det = ( ) ( )i i i i i i i i
i i iG d e e g b g x g b e e g b g x g b       

 7 2 3 4 2 1 6 3 7 2 4 1 3 6( ) ( ( )i i i i i i i i
i ie e g b g x g b e e g b g x g b       

 8 1 3 4 2 1 6 9 2 1 4 3 2 6( ) ( ).i i i i i i i i
i ie e g b g x g b e e g b g x g b       

 
Step 5. Substitute for 5= i

ix b . 

Step 6. Construct iB . 

Step 7. Construct M . 
Step 8. End of algorithm. 
 
We give an application of the above generalized Fibonacci blocking algorithm in the 
following example for =1b . 
 
Example 4.1 Let us consider the message matrix for the following message text: 
 
“ SUMEYRA” 

 
Using the message text, we get the following message matrix :M  
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3 3

= .

0 0

S U M

M E Y R

A


     
 

 
Coding Algorithm: 
Step 1. We construct the message text M  of size 3 3 , named 1 :B  

 

1 = .

0 0

S U M

B E Y R

A

     
 

 
Step 2. Since =1b , we calculate = 3n . For = 3n , we use the following “letter table” 
for the message matrix :M  
 
S U M E Y R A 0 
21 23 15 7 27 20 3 2 

 
Step 3. We have the elements of the block 1B  as follows: 

1
1 = 21b  1

2 = 23b  1
3 = 15b  

1
4 = 7b  1

5 = 27b  1
6 = 20b  

1
7 = 3b  1

8 = 2b  1
9 = 2.b  

 
Step 4. Now we calculate the determinant 1d  of the block 1 :B  

 

1 1= det( ) = 347.d B  

 
Step 5. Using Step 3 and Step 4, we obtain the following matrix :K  
 

 = 347 21 23 15 7 20 3 2 2 .K  

 
Step 6. End of algorithm. 
 
Decoding algorithm: 
Step 1. By (6), we know that 
 

3

1 1 2

= 2 1 1 .

1 2 1

G

     
 

 
Step 2. The elements of 3G  are denoted by 

 

1 2 3=1, =1 and = 2.g g g  
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Step 3. We compute the elements 1 1 1 1 1 1 1
1 2 3 4 7 8 9, , , , , ,e e e e e e e to construct the matrix 1 :E  

 
1 1 1 1 1 1
1 2 3 7 8 9= 82, = 74, = 80, = 9, = 9 and =10.e e e e e e  

 
Step 4. We calculate the elements 1 :x  

 

1 14 347 = 80624 2926 78912 2938x x     

1 = 27.x  

Step 5. We rename 1x  as follows: 

 
1

1 5= = 27.x b  

 
Step 6. We construct the block matrix 1 :B  

 

1

21 23 15

= 7 27 20 .

3 2 2

B

     
 

 
Step 7. We obtain the message matrix :M  
 

21 23 15

= 7 27 20 = .

3 2 2 0 0

S U M

M E Y R

A

               
 

 
Step 8. End of algorithm.  
 
Now, we give another blocking algorithm benefiting from the generalized Lucas 
polynomials  , ,p q nL x . Let’s suppose  

 

1 2 1 2

3 4 3 4

=  and = .
i i i i

i ii i i i

b b e e
B E

b b e e

         
 

 
We use the matrix nH  given in (11) for = =1p q  and we rewrite the elements of this 

matrix as 1 2

2 1

= .n

h h
H

h h

     Similarly, the number of the block matrices iB  is denoted by 

b . According to b , we choose the number n  as follows:  
 

2 , = 1
= .

2 , 1

b
n

b b
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Using the chosen n , we write the character table given in (13) according to 27mod  or 
we can differently array this table. For example, we begin the " "n  for the first, 
second,central, last character etc. 
 
Generalized Lucas Blocking Algorithm    
Coding Algorithm           
Step 1. Divide the matrix M  into blocks iB   21 i m  . 

Step 2. Choose n . 
Step 3. Determine i

jb   1 4j  . 

Step 4. Compute det( )i iB d . 

Step 5. Construct 
{1,3,4}

= , i
i k k

K d b


   . 

Step 6. End of algorithm. 
Decoding Algorithm  
Step 1. Compute nH . 

Step 2. Determine jh  (1 2)j  . 

Step 3. Compute 1 3 2 4 3,
i i ih b h b e    21 i m  . 

                2 3 1 4 4.
i i ih b h b e   

Step 4. Solve  2 4 1 1 2 3 2 1 1det = ( ) ( )i i i i
i i iH d e h b h x e h b h x    . 

Step 5. Substitute for 2= i
ix b . 

Step 6. Construct iB . 

Step 7. Construct M . 
Step 8. End of algorithm. 
 
We give following example as an application of the generalized Lucas blocking 
algorithm for =1b . 

 
Example 4.2 Let us consider the message matrix for the following message text: 
 
“ GOOD” 

 
Using the message text, we get the following message matrix :M  
 

2 2

= .
G O

M
O D



     

 
Coding Algorithm:  
Step 1. We construct the message text M  of size 2 2 , named 1 :B  

 

1 = .
G O

B
O D

     

 
Step 2. Since =1b , we calculate = 2n . For = 2n , we use the following “letter table” 
for the message matrix :M  
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G O O D 
8 16 16 5 

 
Step 3. We have the elements of the block 1B  as follows: 

 
1
1 = 8b  1

2 =16b  1
3 = 16b  1

4 = 5.b  

 
Step 4. Now we calculate the determinants 1d  of the block 1 :B  

 

1 1= det( ) = 216.d B   

 
Step 5. Using Step 3 and Step 4 we obtain the following matrix :K  
 

 = 216 8 16 5 .K   

 
Step 6. End of algorithm. 
Decoding algorithm: 
Step 1. By (11), we know that 
 

2

1 3
= .

3 1
H

     

 
Step 2. The elements of 2H  are denoted by 

 

1 2=1 and = 3.h h  

 
Step 3. We compute the elements 1 1

3 4,e e  to construct the matrix 1 :E  

 
1 1
3 4= 31, = 53.e e  

 
Step 4. We calculate the elements 1 :x  

    1 18 216 = 424 159 744 31x x       

1 =16.x  

 
Step 5. We rename 1x  as follows: 

 
1

1 2= =16.x b  

 
Step 6. We construct the block matrix 1 :B  

 

1

8 16
= .

16 5
B

     

 
Step 7. We obtain the message matrix :M  
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8 16

= = .
16 5

G O
M

O D

           

 
Step 8. End of algorithm.  
 
 
5  Conclusions 

 
We have presented two new coding/decoding algorithms by means of the blocks of 
sizes 3 3  and 2 2 . Since the determinant of the matrix 2G  is 0 , we study the matrix 

nG  for 3n   in the generalized Fibonacci blocking algorithm, although we can study 

with the matrix nH  for 2n   in the generalized Lucas blocking algorithm. 

 
By differently taking p  and q , we can obtain different algorithms. Furthermore it can 
be mixed the above new blocking methods with the previous methods given in [5-7]. It 
is possible to produce new blocking methods similar to minesweeper algorithm given in 
[7]. 
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