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Abstract
In this note, first we show that there is no uniform divisor bound for the Bézout identity
using Dirichlet’s theorem on arithmetic progressions. Then, we discuss for which rings the
absolute value bound for the Bézout identity is not trivial and the answer depends on the
number of small primes in the ring.
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1. Introduction and definitions
Let d(n) be the number of positive divisors of a given positive integer n. More precisely,

d(n) = |{m ≥ 1 : m divides n}| =
∑
m|n

1.

For instance for a prime number p, we have d(p) = 2. If pα1
1 ···pαk

k is the prime factorization
of n, then

d(n) = d(pα1
1 · · · pαk

k ) = (α1 + 1) · · · (αk + 1). (1.1)
The divisor function and its extensions have been studied extensively in terms of both
analytic and arithmetic properties. It is well-known that (see [2, Chapter 3])∑

n≤x

d(n) ∼ x log x + (2γ − 1)x, (1.2)

where γ is Euler’s constant. Using equation (1.1), one can prove that for a given ε > 0
there exist n0 = n0(ε) ≥ 1 and Cε > 0 such that if n ≥ n0 then d(n) ≤ Cεnε. The
remainder term in the asymptotic expansion (1.2) is an important problem in number
theory and it is called the Dirichlet divisor problem. Details can be found in [3, 6].

Now let R be a domain. The arithmetic version of Hilbert’s Nullstellensatz states that
if the polynomials f1, ..., fs belong to the ring R[X1, ..., Xn] without a common zero in
an algebraically closed field containing R, then there exist a in R \ {0} and h1, ..., hs in
R[X1, ..., Xn] such that

a = f1h1 + · · · + fshs. (1.3)
One can see that Nullstellensatz implies its arithmetic version. Finding degree bounds
for h1, ..., hs in equation (1.3) has received continuous attention, see [7–10]. By deg f , we
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mean the total degree of the polynomial f in several variables. More generally given a
field K, if f0, f1, ..., fs in K[X1, ..., Xn] all have degree less than D and f0 is in the ideal
⟨f1, ..., fs⟩, then

f0 =
s∑

i=1
fihi

for certain hi whose degree is bounded by a constant c1(n, D) depending only on n and
D, not to K, the number of generators s or the polynomials f1, ..., fs. This result was first
validated in a paper of G. Hermann [8], where her pattern was based on linear algebra
and computational methods.

Throughout this note R stands for an integral domain and K for its field of fractions.
Recall that an absolute value on R is a map | · | : R → [0, ∞) such that

• |x| = 0 if and only if x = 0,
• |xy| = |x||y|,
• |x + y| ≤ |x| + |y|.

For a polynomial f ∈ R[X1, ..., Xn], we put
|f | = max

i
{|ai|}

where ai occurs as a coefficient in the monomial expression of f. If there is an absolute
value on R then it extends to K.

The following theorem follows immediately from [8].

Theorem 1.1. Let R be a ring with an absolute value | · |. For all n ≥ 1, D ≥ 1, H ≥ 1
there are two constants c1(n, D) and c2(n, D, H) such that if f1, ..., fs in R[X1, ..., Xn] have
no common zero in the algebraic closure of K with deg(fi) ≤ D and |fi| ≤ H, then there
exist nonzero a in R and h1, ..., hs in R[X1, ..., Xn] such that

(i) a = f1h1 + · · · + fshs

(ii) deg(hi) ≤ c1
(iii) |a|, |hi| ≤ c2

Proof. The degree bound c1 reduces the Bézout identity a = f1h1 + · · · + fshs to a
system of K-linear equations. Applying Gauss-Jordan method to this linear system one
obtains an estimate for the absolute value of a and the polynomials hi. In other words,
the existence of the constant c1 yields the existence of c2. �
Remark 1.2. The constants c1 and c2 do not depend on s because the vector space

V (n, D) = {f ∈ K[X1, ..., Xn] : deg(f) ≤ D}
is finite dimensional over K. In fact the dimension is q = q(n, D) =

(n+D
n

)
. Given

1 = f1h1 + · · · + fshs with fi ∈ V (n, D), we may always assume s ≤ q.

Generally, the Gauss-Jordan method gives a very large value for c2. In order to obtain
more effective and sharp results for c2, there is no technique for an arbitrary domain. In
this note, our aim is to discuss for which domains the bound c2 in Theorem 1.1 is not trivial
and it is worth to try sharper estimates than the one given by the Gauss-Jordan method.
We also show that there is no uniform divisor bound for the Bézout identity (1.3) when
R = Z. This means that Theorem 1.1 fails when we replace the absolute value with the
divisor function with a method based on Dirichlet’s theorem on arithmetic progressions.

Now we explain when the bound c2 is trivial. If R is a ring equipped with an absolute
value which has a non-zero element ε of absolute value < 1, then we can multiply both
sides of the Bézout identity

a = f1h1 + · · · + fshs. (1.4)
by some power of ε ∈ R. Thus, we get that

aεk = f1 · (εkh1) + · · · + fs · (εkhs).
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Therefore, the bound c2 in Theorem 1.1 can be taken 1 and Theorem 1.1 becomes trivial
by [8]. In this note, we also answer when the bound c2 exists non-trivially.

From now on, our ring R is a unique factorization domain, UFD for short, endowed
with an absolute value | · |. By a small element in R, we mean an element of absolute
value less than 1. An element is called big if it is of absolute value larger than 1. If we
multiply both sides of equation (1.4) by en element ε of absolute value < 1, we see that the
elements a, h1, ..., hs have a common divisor ε. However, if there is a unit u with |u| < 1,
then multiplying both sides of the equation with powers of u, the absolute value bound c2
can be made small again as before, as units do not affect the prime factorization. So the
interesting case is when there are no small units, which is equivalent to all the units have
absolute value 1. So imposing the condition

gcd(a, a1, ..., am) = 1
where a1, ..., am are all elements that occur as some coefficient of some hi in equation (1.4)
with all the units have absolute value 1 will make perfect sense for effective and sharper
results as it prevents us from multiplying both sides of equation (1.4) by elements of small
absolute value.

We give a criterion when we can choose a such that gcd(a, a1, ..., am) = 1 where a1, ..., am

are all elements that occur as some coefficient of some hi in equation (1.4) and also ensure
a uniform bound for a, a1, ..., am depending on n, D and the absolute values of fi as in
Theorem 1.1. Interestingly, the answer depends on the number of primes in R of absolute
value less than 1, and this suggests us the following two definitions.

Definition 1.3. We say that R is a UFD with the p-property if R is a unique factorization
domain endowed with an absolute value such that every unit has absolute value 1 and if
there are primes p and q satisfying

|p| < 1 < |q|,
then there exists another prime r non-associated to p with |r| < 1.

Definition 1.4. We say that R is a UFD with the 1-property if R is a unique factorization
domain equipped with an absolute value such that every unit has absolute value 1, and
there is only one prime p of absolute value less than 1, and there exists a prime q of
absolute value greater than 1.

Next, we extend the divisor function to Z. We let d(0) = 0 and if a < 0 then we define
d(a) = d(−a). For a polynomial f ∈ Z[X1, ..., Xn], we put

d(f) = max
i

{d(ai)}

where ai occurs as a coefficient in the monomial expression of f. Now we can state our
results.

Theorem 1.5. There is no uniform divisor bound for the Bézout identity. Precisely, there
exist polynomials fn1, fn2, gn1, gn2 in Z[X] with

d(fn1), d(fn2), d(gn1), d(gn2) ≤ 3
such that fn1, fn2 do not have a common zero in C, the polynomials gn1, gn2 also do not
have a common zero in C, and for every un1, un2, vn1, vn2 in Z[X] and an1, an2 ∈ Z \ {0}
with

fn1un1 + fn2un2 = an1

and
g1nv1n + g2nv2n = an2

we have
lim

n→∞
d(un1) = lim

n→∞
d(an2) = ∞.
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The condition (iv) in the following theorem makes the computation of the absolute
value constant c2 non-trivial.

Theorem 1.6. Let R be a domain with an absolute value |·|. For all n ≥ 1, D ≥ 1, H ≥ 1
there are two constants c1(n, D) and c2(n, D, H) such that if f1, ..., fs in R[X1, ..., Xn] have
no common zero in the algebraic closure of K with deg(fi) ≤ D and |fi| ≤ H, then there
exist nonzero a in R and h1, ..., hs in R[X1, ..., Xn] such that

(i) a = f1h1 + · · · + fshs

(ii) deg(hi) ≤ c1 + D + 1
(iii) |a|, |hi| ≤ c2
(iv) If R is a UFD with the p-property, then we can choose a and a1, ..., am such that

gcd(a, a1, ..., am) = 1 where a1, ..., am are all elements that occur as some coefficient
of some hi.

Moreover, if R is a UFD with the 1-property, then we cannot ensure the existence of c2
and gcd(a, a1, ..., am) = 1 simultaneously.

Note also that if |ab| < 1 then |a| can be very large and |b| can be very small. So
cancellation can make the absolute values larger if there are sufficiently small and big
elements in the ring. Thus for the equation

a = f1h1 + · · · + fshs,

simply dividing by gcd(a, a1, ..., am) may not work in order to obtain (iv) in the previous
theorem.

2. Preliminaries
In this section, we prove several lemmas and we also give some examples of UFD with the

p-property and 1-property. First, we recall Dirichlet’s theorem on arithmetic progressions.

Fact 2.1. (Dirichlet) For any two positive coprime integers a and q, there are infinitely
many primes of the form

a + nq,

where n is a non-negative integer. In other words, there are infinitely many primes p
which are congruent to a modulo q.

The proof of Dirichlet’s theorem is based on the non-vanishing of Dirichlet L-functions
at 1. For more on Dirichlet’s theorem, its generalizations and some special values of L-
functions, we refer the reader to [1, 5]. The next lemma will play a key role in the proof
of Theorem 1.5.

Lemma 2.2. There exist two sequences {αn} and {βn} in N such that d(αn) ≤ 2 and
d(βn) ≤ 2 but

lim
n→∞

d(αn + βn) = ∞.

Proof. Let n ≥ 1 be a positive integer and p be a given prime number. Note that pn and
pn − 1 are coprime positive integers. By Dirichlet’s theorem on arithmetic progressions,
the arithmetic progression

pn − 1, pn − 1 + pn, ..., pn − 1 + kpn, ...

contains infinitely many prime numbers. Let pn be a prime number in this arithmetic
progression. Let αn = 1 and βn = pn. Clearly d(αn) = 1 and d(βn) = 2. However, the
sum αn + βn is divisible by pn and so d(αn + βn) ≥ n + 1. Hence we are done. �

Now we give two examples of rings which have the p-property. At a first glance, the
existence of a ring with the 1-property is not clear.
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Example 2.3.
• Z is a UFD with the p-property whose all primes have absolute value greater than

1.
• Zp (p-adic integers) is a UFD with the p-property whose only prime p has absolute

value 1/p.

Next, we recall the Gauss lemma. Let f = a0 + a1X + · · · + adXd be in Q[X]. For any
prime number p in N we define

|f |p = max
i

{|ai|p},

where | · |p is the p-adic absolute value on Q with |p|p = 1/p.

Lemma 2.4. (Gauss lemma [4, 1.6.3]) Suppose that f and g are in Q[X]. For any prime
number p, we have |fg|p = |f |p|g|p.

Now we give an example of a ring with the p-property which has infinitely many small
and big primes. We also give an example of a ring with the 1-property.

Lemma 2.5. There exist rings S1 and S2 such that S1 is a UFD with the p-property which
has infinitely many small and big primes and S2 is a UFD with the 1-property.

Proof. Let γ ∈ (0, 1) be a transcendental number. Then the ring S1 = Z[γ] can be seen
as a unique factorization domain since it is isomorphic to Z[X] and its units are only 1
and -1. We put the usual absolute value on S1 as it is a subset of R. Then S1 has infinitely
many primes p with |p| < 1 and infinitely many primes q with |q| > 1. In particular S1 is
a UFD with the p-property.

Now let p be a prime number in N. On Z[X], we define

|a0 + a1X + · · · + akXk| := max
i

pi|ai|p =
∣∣∣∣a0 + a1

p
X + · · · + ak

pk
Xk

∣∣∣∣
p

.

Then S2 = Z[X] becomes a UFD with the 1-property by the Gauss lemma with the
absolute value above, and the only small prime is p in S2 which is of absolute value
1/p. �
Lemma 2.6. Suppose R is a UFD with the p-property. If there are primes p and q with
|p| < 1 < |q|, then there are infinitely many non-associated primes with absolute value
strictly less than 1 and infinitely many non-associated primes with absolute value strictly
larger than 1.

Proof. By definition, we know there are at least two non-associated primes with absolute
value less than 1. Let p1, ..., pk (for k ≥ 2) be non-associated primes with absolute value
less than 1. Put A = p1 · · · pk. Now choose m large enough such that∣∣∣∣ k∑

i=1
(A/pi)m

∣∣∣∣ < 1.

Since this element is not a unit as all the units have absolute value 1, it must be divisible
by a prime whose absolute value is strictly less than 1. This yields us a new prime. For the
second part, given q1, ..., qk primes of absolute value larger than 1, for large n the element
q1

nq2 · · · qk + 1 provides a new prime that has absolute value greater than 1. �

3. Proof of Theorem 1.5
Set fn1 = αn + X + β2

nX2 and fn2 = X3 where αn and βn are as in Lemma 2.2. Recall
that αn = 1 for all n ≥ 1. Then d(fn1) and d(fn2) are bounded by 3 and they have no
common zero in C. However, whenever we write

an1 = fn1un1 + fn2un2
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where an1 is non-zero, then un1 must have degree bigger than 2 and the first three coeffi-
cients of un1 are uniquely determined: if

un1(X) = e0 + e1X + e2X2 + · · · + ekXk

then automatically we have e0 = an1, e1 = −an1 and e2 = an1(αn − βn)(αn + βn). Hence
d(un1) ≥ d(e2) ≥ d(αn + βn) ≥ n + 1.

Moreover if we put gn1 = αn + X and gn2 = βn − X then they have no common zero.
Similarly, whenever we write

an2 = gn1vn1 + gn2vn2,

then we see that d(an2) ≥ d(αn +βn) ≥ n+1. Thus an2 has many divisors although d(gn1)
and d(gn2) are bounded by 2.

4. Proof of Theorem 1.6
We already know the existence of c1 and c2 by Theorem 1.1. Now we prove (iv) and

we still keep (i), (ii) and (iii). Clearly we may assume that s ≥ 2 and a is not invertible.
Assume R is a UFD with the p-property. We need to choose a and a1, ..., am such that

gcd(a, a1, ..., am) = 1
where a1, ..., am are all elements that occur as some coefficient of some hi. If all the primes
in R have absolute value larger than 1 or smaller than 1 (like R is Z or Zp respectively),
then we can divide both sides of the equation

a = f1h1 + f2h2 + · · · + fshs

by gcd(a, a1, ..., am) and get the result because if all the primes in R have absolute value
greater than 1, then cancellation makes the absolute value smaller and if all the primes
in R have absolute value less than 1 then we can take c2 to be 1. The remaining case is
when there are primes of absolute value larger than 1 and primes of absolute value smaller
than 1. Let d be the greatest common divisor of all the coefficients of f1 and f2. Then,
the coefficients of f1/d and f2/d have no common divisor. On the other hand, since there
are both small and large elements in the ring, the element d can be very small and so f1/d
and f2/d may have very large absolute values. Let p1, ..., pk be the all prime divisors of
a. By Lemma 2.6, there are infinitely many primes with absolute value strictly less than
1. Now choose a prime p such that |p| < 1 and p does not divide a, in other words p is
not in the finite set {p1, ..., pk}. Choose a natural number k such that pkf1

d and pkf2
d have

absolute values less than c2. Put v = c1(n, D) + 1. Then, we have

0 = f1 · pkXv
1 f2

d
− f2 · pkXv

1 f1
d

.

Therefore, by adding the previous equation to a = f1h1 +f2h2 + · · ·+fshs, we obtain that

a = f1

(
h1 + pkXv

1 f2
d

)
+ f2

(
h2 − pkXv

1 f1
d

)
+ · · · + fshs

= f1t1 + f2t2 + · · · + fsts

where deg ti ≤ c1 + D + 1 and |ti| ≤ c2. Observe that
gcd(a, a1, ..., am) = 1

where a1, ..., am are all elements that occur as some coefficient of some ti.
Finally, we prove the remaining part of the Theorem. Let p be the unique small prime

in R of absolute value less than 1. The reason behind the last part of the Theorem is the
fact that an element has small absolute value if and only if its p-adic valuation is very
large. Let B be an element in R of absolute value very big and coprime to p. Choose m
minimal such that |pmB| ≤ 1. Similarly choose k minimal such that |pkB| ≤ c2. Note
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that as B is very large then so are m and k. Let n = D = H = 1. Set f1 = p2m+1 + p2mX
and f2 = pmB − pmBX. Clearly f1 and f2 have no common zero since

p2mB(p + 1) = Bf1 + pmf2

and p is not -1. Whenever we write a = f1h1 + f2h2, we get that pm divides h2 and B
divides h1. Also we have that p2mB divides a. Now suppose |hi| ≤ c2 for i = 1, 2. Since
B divides h1, we see that pk divides h1 since p is the unique small prime in R. Thus pk

divides a, h1 and h2. Furthermore, we may assume that the only prime divisor of a, h1
and h2 is p, because if there is q dividing all of them which is coprime to p, then there
is ℓ ≥ k such that pℓ divides h1 in order to make the absolute value of h1 less than c2.
Similar observation shows that pℓ also divides h2 and a. Therefore, in order to satisfy the
coprimality in the theorem, we need to divide a, h1 and h2 by pk. So the absolute value
of h1/pk becomes larger than B.

We end our note by posing the following question:

Question 4.1. What is the condition on f1, ..., fs to obtain a uniform divisor bound for
a and h1, ..., hs in (1.3)? For which rings that are a UFD with the p-property which have
infinitely many small and big primes, we can obtain sharper estimates for c2 which is
better than the constant given by the Gauss-Jordan method?
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