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Abstract

In this paper, we investigate some properties of the (right) modules constructed over
the local ring and also construct a projective coordinate space over the (right) module.
Finally, in a 3-dimensional projective coordinate space, the incidence matrix for a line
that combines the certain two points and also all points of a line given with the incidence
matrix are found by the help of Maple programme.
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1. Introduction

Jukl, in [5], introduced the real plural algebra of order m and so investigated the linear
forms on a free finite dimensional module M, especially their kernel. Jukl continued to
study on free finite dimensional modules in [6]. In [3], Erdogan et. al. investigated some
properties of the (left) modules constructed over the real plural algebra and later, in [2],
Cift¢i and Erdogan obtained an n-dimensional projective coordinate space over (n + 1)-
dimensional (left) module constructed by the help of this real plural algebra. For more
detailed information on modules, see [8]. For the algebraic and linear algebraic notions
that will be used throughout this paper, we refer to [4] and [9].

In this paper we will study by the algebra A := Fng + Fn + Fna + ... + Fn,—1 with
a basis {1,71,72,m3,...,in—1} such that n;n; = 0 for n; ¢ F (where F is a field). We
immediately state that this algebra is not isomorphic to the real plural algebra of order
m. For this reason, by taking this algebra instead of the real plural algebra of order m, we
will reconsider almost all of the results that are obtained in [2,3]. So, we will be able to
investigate some properties of the (right) modules constructed over the algebra and also
to construct an (m — 1)- dimensional projective coordinate space over the m- dimensional
(right) module.

The remainder of the paper is organized as follows. In Section 2, there are some basic
definitions and results from the literature. In Section 3, we investigate some properties of
the (right) modules constructed over A. In Section 4, we construct an projective coordinate
space over the (right) module. Finally, in a 3-dimensional projective coordinate space, the
incidence matrix for a line that combines the certain two points and also all points of a
line given with the incidence matrix are found by the help of Maple programme.
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2. Preliminaries

In this section, first of all, we will start by recalling some definitions and results from
[5].
Definition 2.1 ([5, Def. 1.1]). The real plural algebra of order n is every linear algebra A
on R having as a vector space over R a basis {1, 7, n, -, ,17”*1} where n" = 0 for n ¢ R.

By Definition 2.1, we see that an element = of A is of the form x = ag + a1n + asn? +
oot ap_1n™ ! wherea; ERfor 0 <i<n—1.

A ring with identity element is called local if the set of its non-units form an ideal.

Now we can state the following two results without proof.

Proposition 2.2 ([5, Prop. 1.3]). An element x = ag +ain+asn’+---+an_1n" ' € A
is a unit if and only if ag # 0.

Proposition 2.3 ([5, Prop. 1.5]). A is a local ring with the mazimal ideal nA. The ideals
WA, 1 <75 <n, are all ideals in A.

In [5, Prop. 1.7], it is stated that A is isomorphic to the linear algebra of matrix M, (R)
of the form

bo b by - bno by

0 b b1 . . bps

L0 by . by
L0 b by |

R by

0 0 0 - 0 b

where b; € R for 0 <i <mn —1 (for the detailed proof of this fact, see [3]).
A module that is constructed over a local ring A is called an A-module. So, we can
give the following definition.

Definition 2.4. Let A be a local ring. Let M be a finitely generated A-module. Then
M is an A-space of finite dimension if there exists E1, Fo, ..., F, in M with

i1) the map A — E; A defined by x — E;x is an isomorphism for 1 <i < n.

Let F be a field. Consider A := Fng + Fm + Fno + ... + Fn,—1 with componentwise
addition and multiplication as follows:

a-b=(ao+arm + agnz + ... + an—1Mn—1) - (bo + bim + banz + ... + bp—11n—1)
= apbo + (apb1 + a1bo) m + (apbz + azbo) N2 + ... + (aobp—1 + an—1bo) Nn—1,

where n;mn; = 0 for 1 < 4, j < n —1 and the set {1,11,72,73,...,0n—1} is a basis of
A. Then, A is a unital, commutative and associative local ring with the maximal ideal
I=nA={am+tamp+..+ap-1Mm-1]a; € F, 1<i<n-—1}. So, we can reach the
result that an element a = ag+a1n1+asns+...+an_11m,—1 € A is a unit if and only if ag # 0.
In that case, note that =t = agl — aglalaglm — aalagaalng — = aglan_laalnn_l.
Moreover, the local ring we will study on is considered as the vector space F' (n) :=
F x F*=1 = {(ap,v) | v=(a1,a2,...,an—1) € F*"1} with with componentwise addition
and multiplication as follows:

a-b=(ap,v) - (by,w)
= (aobg, apgw + ’Ubo)
= (apbo, (apb1 + a1bo, agbz + agbo, ..., apbp—1 + an—1bo)) ,
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where v = (a1, a2, - an_1), w = (by,b2, -+ ,bp_1) € F* 1. In this case, F (n) is local
with T = {0} x F"~! as ideal of non-units. For more detailed information on F (n), see
[1].

Hence, it is clear that the local ring A is not isomorphic to the real plural algebra of
order n. But, it is isomorphic to F'(n). Throughout this paper we restrict ourselves to
the local ring A.

3. A-Modules

In this section, we investigate some properties of the (right) modules constructed over
A. First, we give the following result, the analogue of Theorem 6 in [3]

Proposition 3.1. None of the units of A are zero divisors, namely for every a, 8 € A;
a = aptarm+aznz+...+an-_1Mn-1, ao 7 0 and 8 = bo+bim+banz+...+bp—11n—1 if :f =0
or B-a=0, then B =0. Also for1 <k <n—1 and o = apng + ax11Mks1 + - + An—1Mn—1,
ar Z0ifa-8=0o0rB-a=0then B=0bin +bana+ ... + by_1Mn—1.

Proof. If « is a unit, then there is an inverse element a~! and since A is associative;
a-f=0=aa-B)=at-0=p=0. For B-a =0, it is easily seen that 3 = 0 by
similar calculations.

Now let @ = agnr + agr1Mk+1 + - + Ap—1Mn—1, ax # 0 for 1 < k < n — 1, we have
a-f = (aknk + ap+1Mk4+1 + ... + anfl’l’]nfl)(bo + b1 + bome + ... + bnflﬁnfl) = 0. Then
a-=0= (akbo) Nk + (ak+1b0) Me+1 + ...+ (anflbo) Mn—1 = 0k + 01 + ... + 011

Forcing the coefficient of nx to be zero, we obtain aipby = 0, and since ap # 0, we find
bg = 0. Thus we have 8 =bym +bang + ... + bp—1n—1, b; € F;, 1 <i <n—1. O

Now, we can state the following result without proof, the analogue of Proposition 7 in
[3].

Proposition 3.2. Let K = M,,,,(F) be the (linear) algebra of matriz of the form

ap ai az ag ap—1
0 a O 0
0 - a O 0
: ‘. . . ‘. 0
O 0 -~ 0 0 a /,.,
where a; € F' for 0 <i <n—1. Then the map f: A — K = My, (F) which is given as
ai;=ap, 1<i<n
fla)=(ay) =1 aij=a;-1, 2<j<n
ai; =0 otherwise

for every a = ag + a1y + agme + ... + an_1Mp—1 € A is an isomorphism.

Now we would like to find a basis of K =M,,,,(F'). Let us take any element of K such

that

ap a1 a9 Gp—1
0 a O 0
0 a 0 0
a= € K.
: .. .. .. O
0 0 0 0 aop

Then, the element can be written in the following form:
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1 0 0 0 0 1 0 0
0 1 0 0 0 O 0 0
a=a| 0 - 1 -+ 0 |4+a| O 0 0 0 |+
0 0 0 1 0 0 0 O
0 0 1 0 00O 1
0 O 0 0 000 0
as 0 0 0 0 + -t an—1 000 0
: . R R 0
o o --- 0 O 000 0
Thus we have a = agl, + a1 + asne + ... + ap—1Mn—1- Moreover, the set

{no = In,m,n2,...,Mn—1} is a basis of K. We can express any element of this set in general
as follows: for 1 <k <n —1, Ny = (aij)nxn, where

(a”)_ aljzl j:k+1,
W7 aij =0 otherwise.
Now, we will construct a (right) module M over the algebra A, by the following propo-
sition, although a (left) module is obtained in Proposition 8 of [3]. Thanks to this, we will
obtain a basis of M.

Proposition 3.3. M = F" is a right module over the linear algebra of matrix
K =M, (F). Then the following set as a basis of K-(right)module M.

1 00 0 0 0 O 0
0 0 O 0 1 0 0 0
E1:000 0,E2—000 0,7
0O 00 0 O 000 0 O
0 0 0 0
0 0 0 0
Em::f. :
o000 --- 0
1 00 0 O

Proof. Linear independence of this set is obvious. Moreover for every X € M, X can be
written ag follows:

11 T12 T13 - Tin
To1  T22 T2 . T2
X =

Tml Tm2 Tm3 - Tmn mxn
100 --- 0 i1 12 13 0 Tin
000 --- 0 0O 1 0 --- O

0
0 0 O 0
mxn 0 0 11 nxn
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O 0 0 --- 0 r21 T22 T23 -+ XT2n
100 -~ 0 0 2z 0 - 0
+ 0 0 O 0 . . . . .
oo : 0
o000 -0/ 0 o o 0 am )
0 0 O 0 Tml Tm2 Tm3 - Tmn
0 00 0 0O zpnu O -~ 0
et 5 P ' . :
0 00 0 0
100 0/ .. 0 o e 0 @ )
Thus [Fy, Es,- -+, E;] = M. Consequently, the set {Eq, Eo, -+, E,,} is a basis of K-
module M. O

Now, from [7], we give a definiton, will be used in the next section.

Definition 3.4. Let R be a local ring, Ry be the maximal ideal of R and M be a free
module with unity over R. Let S be a non-empty subset of the module M. Let My be a

submodule of M constructed over Ry. For x1,x9, -+ , 2 € S and aq,as, -+ ,ap € R, if
k
Zaixi € My = «; € Ry for every ¢
i=1

holds, then S is called R—independent. Otherwise, S is called an R—dependent subset.

Finally, we would like to complete this section by giving two results, without proof, on
A-spaces. They are the analogues of Theorem 9 and Proposition 10 in [3], respectively.

Proposition 3.5. Let M = A". Then, for uj,ug,..,uy € A\I and z;; € I,
there are linearly independent wvectors such that oy = (u1,x21,%31,...,Tn1), Qo =
(12, u2, 232, ..., Tn2), @3 = (713,23, U3, ..., Tn3),...,Qk = (T1k, Tok, T3k, -, Ug). For k =n,
the set {ay, o, ...,an} is a basis for M.

Proposition 3.6. An A-module M over a local ring A is an A-space if and only if it is
a free finitely dimensional module.

4. Construction of a projective coordinate space

In this section, an (m — 1)-dimensional projective coordinate space over the right modu-
le obtained in the previous section will be constructed with the help of equivalence classes,
by following the similar method given in [2]. So, the points and lines of this space are
determined and the points are classified.

We know from the previous section that, the set M = F" is a m-dimensional right-
module over the local ring K =M,,,,(F) and the set {Ej, Es,...,E,,} is a basis of M.
Each element of a K-module M can be expressed uniquely as a linear combination of

FEy, Es, ..., E,. Furthermore a maximal ideal of K is denoted by
0 al “ e PEEEEY anfl
0 0 - .- 0
1= 0 0 0

a;,€eF1<i1<n—-1
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Now let us define the set

MOZ{ZEZA1|A1€I, 1<i<m}.

i=1
Then, we get
0 212 - T1n
0 @o2 -+ @2y
My = . . . | Tij € F
0 Tm2 - Tmn

Now, we consider equivalence relation on the elements of

Tl T2 o Tin
. To1 T2 o T2p )
M* = M\ My = . . : . 1<i<m, 3z #0,
ITml Tm2 - Tmn

whose equivalence classes are the one-dimensional right submodules of M with the set My
deleted. Thus, if X,Y € M*, then X is equivalent to Y if Y = X\ for A € K* = K\I. The
set of equivalence classes is denoted by P(M). Then P(M) is called an (m—1)-dimensional
projective coordinate space and the elements of P(M) are called points; the equivalence
class of vector X is the point X. Consequently, X is called a coordinate vector for X or
that X is a vector representing of X. In this case, X\ with A € K* also represents X;
that is, by XA = X. Thus, X can be expressed as follows:

ao a/]. a2 e “ e an_l
11 12 r13 T1in 0 ap 0 0
B 21 22 23 n 0 ao 0 0
X =
Iml ITm2 ITm3 *°° Tmn . " . . . 0
0 o --- 0 0 ao nxn
ri11ap  Ti1101 + X200 - - T110n—1 + T1n00
To1ag  T21a1 + XT22a0 - - T210n—1 + T2n00
= b
Tm1G0 Tm101 + Tm200 **  Tmlln-1 1 Tmndo / ..

where ag #0 A 1 <i<m, dJux; #0.

Let X,Y,--- be p+ 1 points such that any two of them are K-independent. Then the
set I, = Sp{X,Y,--- }\ M is called a subspace of dimension p or p-space.

In P(M), a point is a subspace of dimension 0 and a line is a subspace of dimension 1.

For X € M*, the set X = {XA|\ € K*} is a O-dimensional subspace of P(M). So, X
is a point of P(M).

Now, we investigate the condition of being K-independent for two different points X
and Y of P(M).

Firstly, let us denote the coordinate vectors for the points X and Y by X and Y,
respectively. We form a linear combination as
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apg aip a2 ap—1
Tl T2 T13 ZT1in 0 a O 0
x T x T
21 22 23 2n 0 ao 0 0
. . +
Tml Tm2 Tm3 *°° Tmn el T - - 0
o o0 --- 0 0 ag
bo by by e e by
Y11 Y12 Y13 . Yln 0 bO 0 N . 0
Y21 Y22 Y23 - Yo 0 . b 0 ... 0
Yml Ym2 Ym3 ° YUmn . T ‘e e e 0
o o --- 0 0 bo
(r1100+Yy11b0) (z11a1+21200) + (Y1101+Y12b0) (r11an—14+T1na0) + (y110n—1+y1,b0)
r21ao+y21bo) (z21014222a0) + (y21b1+y22b0) -+ (z21an-1+T2000) + (Y210n—14+Y2,,bo)
$m1ao+ym1 bo) (rmi1a1+Tm2a0) + (Ym1b1+y,,200) (Tm1an—1+Tmnao) + (Ym1bn—1+Ymnbo)
If this matrix is an element of M then we can write

x1100 + Y110 = 0,
x21a0 + Y2100 = 0,

(4.1)

Tm100 + Ym1bo = 0.

Let us denote the coefficient matrix of (4.1) by

11 Y11

21 Y21
A= .

ITml Yml

If rankA = 2, then we get ag = bg = 0. So this shows that

0 a Gp—1 0 b bn—1
0 O 0 0 O 0
. ) . cl
0 : 0
0 0 0 0 0 0

In that case, the coordinate vectors X and Y for the points X and Y, respectively, are
K-independent if and only if the rank of the coefficient matrix is equal to 2. That is, first
columns of the coordinate vectors X and Y are linearly independent vectors.

Let the set Sp{X,Y} = {XA+Y~|3 \,v € K*} be a 1-dimensional subspace of P(M)
such that X and Y are K-independent elements. Then Sp{X,Y} is a line of P(M). It is
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denoted by
T11 T2 213
Tl T2 23
ITml ITm2 ITm3
Sp{X,Y} =

Y11 Yi2 Y13
Y21 Y22 Y23

Yml Ym2 Ym3

where ag ZO0AN1 <i<m,Jx;1 #00r by #A0A1<i<m, Iy #0.

Lin
T2n

Tmn

Yin
Yan

Ymn

ao

0

ai
ao

0

a2

ao

bo

413

We know that for every coordinate vector X € M* of the point X € P(M), X can be
-+, Ep,. So the matrix X

written uniquely as a linear combination of the vectors E1, Eo,

m
is expressed as X = Y FE;X; or as
i=1

X = (X17X2>"' 7Xm) GKma

where

11 T12 T13 - Tin
0O zn O -~ 0
X1= : 0
. 0
0 0 0 11
Tml ITm2 ITm3
0 Iml 0
W Xm=| 0
0 0 0

There are two cases:

) X2:

Tmn

Tml

Z21
0

Z22
T21

0

x23

T2n

Case 1: For the first component of the coordinate vector X of the point X, if 211 # 0,

then X; ¢ I and

Ti1 T2

0 =1
Xi1= 0

0 0

13
0

Tin

T11
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is a unit element so there is an inverse of X;. If we multiply both sides of the equation
with the inverse matrix X', we get

21 x22 e Ton
X = (InaXQ)"' 7Xm) =
ITml Tm2 - Tmn

Thus, this type of points are called proper points.

Case 2: For the first component of the coordinate vector X of the point X, if z11 = 0,
then X7 € I. So, the inverse of the matrix X; does not exist. Thus we call the points of
P(M) whose coordinate vectors are in the form

0 z12 -+ Zin
21 22 o Ton
ITml Tm2 - Tmn

as ideal points.
Now, by giving a definition we will handle a special example related to the definition.

Definition 4.1. An s-space is the set of points whose representing vectors

T11 x12 Tlin
21 x22 e Tn
ITml Tm2 - Tmn

of the points X satisfy the equations X A = 0, where A is an m x ((m — 1) — s) matrix of
rank (m — 1) — s with coefficients in K.

Now let us take m = 4 and n = 2, so we study an example of a 3-dimensional projective
coordinate space P(M). For the 3-dimensional projective coordinate space, first we will
determine all points of a line whose incidence matrix is given and then we will determine
the incidence matrix of a line that goes through the given points.

Example 4.2. In the 3-dimensional projective coordinate space P(M), any line, 1-

Tl T12

di . . . . T21 22
imensional subspace II; is the set of points whose representing vectors ot

31 T32

T4l T42

of the points X satisfy the equations XA = 0, where A is a 4 x 2 matrix of rank 2 with
coefficients in K. Thus II; = {Y ‘XA =0,A¢€ K%\Ié} is obtained. First, we identify
all points of a line whose incidence matrix is

I ap aip €y €1
0 ag 0 €0
( bo b1 ) < Jfo N
0 bo 0 Jo 4 74
= € K\ U,.
co 1 g0 91 2\D
0 co 0 9o
dy dy ho hi
i 0 dy 0 ho ) |
As a consequence of the incidence matrix, it is trivial to see that dag, bo, cg, do, €o,

fo, 90, ho # 0.
For XA = 0, we have the following cases:

_Q O QR
S -0
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Case 1: For the coordinate vector X of the point X, if z1; # 0, then

X = (I, X2, X3, X4) € K*. Thus we obtain the following equations from XA = 0:

ap + x21bo + w3100 + T41dp = 0,
ay + w2101 + x22bo + w3101 + T3200 + wa1d1 + Tg2do = 0,
eo + 21 fo + 3190 + Ta1ho = 0,
e1 + w21 f1 + w22 fo + 3191 + 3290 + Ta1h1 + xa2ho = 0.

If we solve (4.2) by using the Maple programme, we get the following solutions:

(aogo — coeo) + (dogo — coho)wa1

ZT21 = —

bogo — foco '
a/
Tog =
3 f& + b3gd — 2bogo foco
_ (=boeo + foao) + (fodo — boho)za1
x31 =
bogo — foco
b/
xT32 =

3+ B398 — 2bogo foco

T4l = Ta1, T42 = T42,

where

—goc1 foao — gobicoeo + bogocoer + bogocieo—
bocogieo + ficgeo — boggar
a = ( —hi focd + ficdho — bogddy + cogi fodo + gibido )
T41+

( gébrag — e1 fock + cog1 foao + goar foco — goco frao )
+

+go0d1 foco — goci fodo — goficodo — gobicoho+
bogocoh1 + bogociho — bocogiho
(—hofock — bogddo + godo foco + bogocoho) Ta2

( bie1go — bigieo — c1feag + ai fico — boer foco — boer foco )
+

— f1apbogo + bogi foao + ficoboeo — foboaigo + fobocieo+

Y — fobraogo — fobicoeo

—c1 f2do + di f§co + fobociho — fobodigo — fobicoho + fobidogo
+(b3hogo — boho foco + doféco — fobodogo)Tas

(4.2)

( b3h1go + b3g1ho — bohi foco — fidobogo + bogi fodo + ficoboho ) - ’

Case 2: For the coordinate vector X of the point X, if 217 = 0, then X is an ideal

point of the form
. 0 z19 i 21 T22
Xl_(o 0)’X2_<0 .%'21)’

. xr31 I32 o T41 T42
X3_< 0 $31>’X4_( 0 1’41>

Here, we know that 3 xo9, x93, 724 # 0. Thus we obtain the following equations from

XA=0:

T21bo + w3100 + w41dp = 0,
T1200 + T2101 + T22bo + T3101 + w3200 + T41d1 + T42dp = 0,
w21 fo + 3190 + T41ho = 0,
T12€0 + 21 f1 + w22 fo + 3191 + T3290 + Ta1h1 + Ta2ho = 0.

(4.3)
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If we solve (4.3) by using the Maple programme, we get the following solutions:

(—dogo + hoco) T4

T =

2 — foco + bogo

a//
To2 = )
95b0® + fcg — 2focobogo
g = — (—fodo + boho) z41
—foco + bogo
b//

32 = —

2 2.2
g5bo? + ficg — 2 focobogo
T4l = T41, T42 = T42, T12 = T12

where
(=boggao + bogoeoco + gofoaoco — focieo) z12+
—boggdi + bogohico + bogociho — bocogiho + bidogd
a' = +g0 fodico — gobihoco — gocofido — gofocido + fihocd | xa1 |,
+co fogido — focdhi)

+(—bogddo + bogohoco + go fodoco — fockho)zaz

(eobggo — bo foeoco + faoco — foaobogo) 212

B — ( —bo fohaco + bo fogido — bof1godo + bofrhoco + hibggo — g1bgho+ ) .
+ fEdico + brgo fodo — bihofoco + fociboho — fEeido — fodibogo A
+(f3doco + hobigo — bo fohoco — fodobogo)zaz

Now conversely, we have a new situation. We determine the incidence matrix of a line
whose points are given. This also has two cases:
Case 1: Let us take the coordinate vectors

1 0 1 0
X — To1 X22 and YV = Y21 Y22
31 X32 Y31 Ys2
T41 T42 Y41 Y42

of proper points X and Y, respectively. Then we search the incidence matrix of the form
i ag ai €y €1 i
0 aq 0 €0
< bo b1 > < fo f1
0 bo 0 fo N
= € KoN\U,.
c g0 g1 2\12
0 co 0 go
do di ho hi
i 0 dy 0 ho ) |
we know that the coordinate vectors of these points are as follows

X — 1 0 To1 X292 r31 X32 T41 T42
01 ’ 0 T21 ’ 0 31 ’ 0 T41

v — <( 10 ) ( Y21 Y22 ) < Y31 Y32 ) ( YAl Y42 ))
0o 1)’ 0 yo1 /)’ 0 wys31 /)’ 0 yn ’

QL O o
Qw0

and
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Thus we obtain the following equations from XA =0and YA =0:

ap + x21bo + w3100 + T41dp = 0,

a1 + w2101 + x22bg + w3101 + X320 + T41d1 + T42d0 = 0,
eo + w21 fo + 3190 + Tarho = 0,

e1 + w1 f1 + w22 fo + w3191 + 3290 + Ta1h1 + 24200 = 0,
ao + y21bo + ysico + yardo = 0,

a1 + y21b1 + y22bo + ys1c1 + ys2¢o + Yarda + yaado = 0,
eo + y21.fo + Y3190 + yarho = 0,

e1 + y21/1 + y22fo + Y3191 + Y3290 + yarh1 + yazho = 0.

417

If we solve (4.4) by using the Maple programme, then we get the following solutions:

a0 — — (z21y31 — Y21231)c0 + (T21y41 — Y21241)do 4y = — aj
—Yo1 + Z21 ’ Y3, — 2x91y021 + 23,
bo = — (z31 — ys1)eo + (xa1 — ya)do b — b
—Yy21 + 221 ’ Y31 — 2wyl + a3
o= (z21y31 — y21231)90 + (T21y41 — y219641)h0’ o= el
—Y21 + T21 Y3 — 2wy + 23,
fo=— (z31 — ¥31)g0 + (z41 — ya1) ho f=— f
—Yyo1 + T2 ’ Y31 — 2oy + )

co = ¢o, €1 = c1, do = do, d1 = d1, go = 9o, 91 = g1, ho = ho, h1 = h1,
where

( Y123, — T21Y22T41 — Y21T42T21 + To1Y22y41 — Y21Y42T21 — ) d
Y21222Y41 + Y21T22L41 + a:42y§1 0
/ +(y411‘%1 — Y21Y41221 — Y21241%21 + 5E41y§1)d1
+ ( Z/32$%1 - y219532962% + X21Y22Y31 — T21Y22T31 — Y21Y32221+ ) co
T32Y51 + Y21T22231 — Y21T22Y31
+(?J31$%1 — Y21T31%21 — Y21Y31%21 + 9031.@%1)01

(—x22731 — Y22y31 + Y2231 — Y3221 + T22y31 + T32T21 + Y32Y21 — T32Y21)C0
b +(31721 — T31Y21 — Y31%21 + Y31Y21)C1

+H(za1221 + Ya1y21 — Y1221 — Ta1y21)d1

2
( Y3251 — T21Y22T31 — Y21T32%21 — Y21Y32T21+ ) 4
2

T21Y22Y31 + T32Y51 + Y21222T31 — Y21222Y31

2 2
o (Y3125 — Y21231%21 — Y21Y31%21 + T31Y51) 1+
= 2
! < Y4225 — T21Y22%41 — Y21T42T21 + T21Y22Y41 — Y21Y42221 > ho ’
2
+T42Y51 — Y21T22Y41 + Y21T22T41

+(y4196%1 — Y21Y41221 — Y21T41T21 + 9641y%1)h1

(—ya2m91 + Ya2Y21 — T42Y21 + Y22741 + T22Ya1 — Y22Ya1 — ToaTa1 + T42221)ho
f +(—ya1221 — T1Y21 + Ya1Y21 + Ta1221) 1

+(x31021 — Z31Y21 — Y31%21 + Y31Y21) 01

Case 2: Let us take the coordinate vectors

1 0 0 w2
X — Tr21 22 and YV = Y21 Y22
31 T32 Y31 Y32

T41 T42 Ya1 Y42

+(—ya2221 + Ya2y21 — Ta2y21 + Y2241 + T22Ya1 — Y22Ya1 — T22T41 + Ta42221)dp

I

+(—ma2w31 — Y22U31 + Y2231 — Y3221 + T22Y31 + T32T21 + Y32Y21 — T32Y21)90
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of proper and ideal points X and Y, respectively. Here for the point Y, we know that 3
Yo1, Y31, Y41 7 0. The coordinate vectors of these points as follows:

X — 1 0 T21 X2 r31 32 T41 T42
01 ’ 0 I21 ’ 0 I31 ’ 0 T41

v — (( 0 w12 ) ( Y21 Y22 ) ( Y31 Y32 > ( Yal Y42 ))
0 0 /U0 wyu /)’ 0 w31 /)’ '\ 0 wysm

Then we obtain the following equations from XA =0and YA=0:

and

ag + x21bo + w3100 + T41dp = 0,
a1 + x21b1 + x22by + x31€1 + T3200 + Ta1d1 + T42do = 0,
eo + 21 fo + 3190 + Ta1ho = 0,

e1 + x21f1 + 22 fo + 23191 + 23290 + Ta1h1 + Ta2ho = 0, (4.5)
Y21bo + ys1co0 + yardo = 0,
Y12a0 + y21b1 + y22bo + y31c1 + Y320 + yardy + yaado = 0,
yo1.fo + Y3190 + yarho = 0,
y12e0 + y21.f1 + Y22 fo + y3191 + Y3290 + yarhy + yazho = 0.

If we solve (4.5) by using the Maple programme, then we get the following solutions:

"
(%4191 — ya1221) bo + (—Ya1231 + T41Y31) Co o= U
= , a1 = —5,

Y41 Yu
bo = bo, b1 =b1, co=co, c1=c1,

y21bo + y31c0 d’!
dy = — "=, dy = ——,
Ya1 Yn
~ (—yuws1 + za1y31) go + (—ya1w21 + za1y21) fo e
€0 = el = —5—
ya ’ i’
h//
hoz_y21fo+y3190, I
Ya1 Ya1

Jo=fo, 1=/f1, 90=90, 91 =1,

where

(T41Y21Y22 — T41Y42Y21 — Ta1Y12Y41T21 + Y1271 Y21 + Ya1T42Y21 — Y1 T22)bo
p +(Ta1Ya1921 — Y3 721)b1
+H(xa1yays2 + y12934211y31 — T41Y42Y31 — T41Y12Y41T31 — yiﬂgz + Y1 z42y31)co+
(41941931 — Y41 231)C1
d] = (ya1y22 — Ya2y21 — Y12941T21 + Y12241y21)bo + (Ya1y21) b1+

(Ya1Y32 + Y12241Y31 — Y4231 — Y12Y41231)C0 + (Ta1Ya1y31) €1

)

(ya1242y21 — yZﬂ?zQ + yl2-734211y21 + T41Y41Y22 — T41Y12Y41021 — Ta1Y42Y21) fo
n_ +(—y21x21 + Ta1ya1921) [
+(—y21x32 + Y41242Y31 — T41Y42Y31 + y12$4211y31 — T41Y12Y41231 + $41y41y32)90
H@ayays: — yhT31)91
/1/ = (3/1236413/21 + Y41Y22 — Y12Y41221 — 942y21)f0 + (y41y21) fi

+ (—ya2y31 + Y12T41Y31 — Y12Y41231 + Y41Y32)90 + (Y41Y31)91-

)
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