
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 48 (2) (2019), 439 – 450

DOI : 10.15672/HJMS.2019.662

Research Article

The equivalence of uninorms induced by the
U-partial order

Emel Aşıcı
Department of Software Engineering, Faculty of Technology, Karadeniz Technical University, 61080

Trabzon, Turkey

Abstract
In this paper, some properties of an order induced by uninorms are investigated. In this
aim, the set of incomparable elements with respect to the U -partial order for any uninorm
is introduced and studied. Also, by defining such an order, an equivalence relation on the
class of uninorms is defined and this equivalence is deeply investigated. Finally, another set
of incomparable elements with respect to the U -partial order for any uninorm is introduced
and studied.
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1. Introduction
Uninorms were introduced by Yager and Rybalov [27]. Uninorms are special aggregation

operators which have proven to be useful in many applications like fuzzy logic, expert
systems, neural networks, fuzzy system modeling [16,18,26].

In recent years, the notation of the order induced by uninorms (nullnorms, triangular
norms) has been studied widely. In this sense, in [22], T - partial order, denoted ≼T ,
defined by means of t-norms on a bounded lattice has been introduced.

Based on these previous studies, in [1, 17], respectively, U -partial order and F -partial
order obtained from the uninorm and nullnorm have been introduced and some properties
of these orders have been investigated.

The uninorms, nullnorms and t-norms were also studied by many other authors [2–4,
8–12,14,15,19–21,24].

In the present paper, we introduce the set of incomparable elements with respect to the
U -partial order for any uninorm on [0, 1]. The main aim is to investigate some properties
of this set. The paper is organized as follows. We shortly recall some basic notions in
Section 2. In Section 3, we define the set of incomparable elements with respect to the
U -partial order for any uninorm on [0, 1]. Also, we determine the set of incomparable
elements w.r.t. U -partial order for some special uninorms. So, we obtain general form for
t-norms and t-conorms. Then, we define an equivalence relation on the class of uninorms
on [0, 1]. In section 4, we define the set I(x)

U , consisting all incomparable elements with any
x ∈ (0, 1) according to ≼U . Furthermore, we show that even if uninorms are equivalent
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under this relation, it need not be the case that their partial orders coincide. Finally, we
define and study another set of incomparable elements with respect to the U -partial order
for any uninorm on [0, 1].

2. Preliminaries
Definition 2.1 ([25]). Let (L, ≤, 0, 1) be a bounded lattice. A triangular norm T (briefly
t-norm) is a binary operation on L which is commutative, associative, non-decreasing in
each variable and has neutral element 1.

Definition 2.2 ([25]). Let (L, ≤, 0, 1) be a bounded lattice. A triangular conorm S (briefly
t-conorm) is a binary operation on L which is commutative, associative, non-decreasing
in each variable and has neutral element 0.

Example 2.3 ([23]). Well-known triangular norms and triangular conorms on [0, 1] are:

TM (x, y) = min(x, y)
TP (x, y) = x.y
TL(x, y) = max(x + y − 1, 0)

TD(x, y) =
{

0 (x, y) ∈ [0, 1)2,
min(x, y) otherwise.

SM (x, y) = max(x, y)
SP (x, y) = x + y − x.y
SL(x, y) = min(x + y, 1)

SD(x, y) =
{

1 (x, y) ∈ (0, 1]2,
max(x, y) otherwise.

Extremal t-norms T∧ and TW on L are defined as follows, respectively:
T∧(x, y) = x ∧ y

TW (x, y) =


x if y = 1,
y if x = 1,
0 otherwise.

Similarly, the t-conorms S∨ and SW can be defined as above.
Especially we have obtained TW = TD and T∧ = TM for L = [0, 1].

Definition 2.4 ([7]). A t-norm T on L is divisible if the following condition holds:
∀ x, y ∈ L with x ≤ y there is a z ∈ L such that x = T (y, z).

The infimum t-norm T∧ is divisible: x ≤ y is equivalent to x ∧ y = x. A basic example
of a non-divisible t-norm on an arbitrary bounded lattice L (i.e., card L > 3) is the t-norm
TW . Similarly, t-conorm S∨ is divisible. SW is a non-divisible t-conorm on an arbitrary
bounded lattice L (i.e., cardL > 3).

Definition 2.5 ([6]). Let (L, ≤, 0, 1) be a bounded lattice. An operation U : L2 → L is
called a uninorm on L, if it is commutative, associative, non-decreasing in each variable
and has a neutral element e ∈ L.

We denote by U(e) the set of all uninorms on L with the neutral element e ∈ L.
A(e) = (0, e] × [e, 1) ∪ [e, 1) × (0, e] for e ∈ (0, 1).

Definition 2.6 ([6]). A uninorm U is called idempotent if U(x, x) = x for all x ∈ [0, 1].

Definition 2.7 ([22]). Let L be a bounded lattice, T be a t-norm on L. The order defined
as following is called a T− partial order (triangular order) for t-norm T :

x ≼T y :⇔ T (ℓ, y) = x for some ℓ ∈ L.
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Definition 2.8 ([17]). Let L be a bounded lattice, S be a t-conorm on L. The order
defined as following is called a S− partial order for t-conorm S:

x ≼S y :⇔ S(ℓ, x) = y for some ℓ ∈ L.

Definition 2.9 ([17]). Let (L, ≤, 0, 1) be a bounded lattice and U be a uninorm with
neutral element e on L. Define the following relation, for x, y ∈ L, as

x ≼U y :⇔



if x, y ∈ [0, e] and there exist k ∈ [0, e] such that
U(y, k) = x or,

if x, y ∈ [e, 1] and there exist ℓ ∈ [e, 1] such that
U(x, ℓ) = y or,

if (x, y) ∈ L∗ and x ≤ y,

(2.1)

where Ie = {x ∈ L | x ∥ e} and L∗ = [0, e] × [e, 1] ∪ [0, e] × Ie ∪ [e, 1] × Ie ∪ [e, 1] × [0, e] ∪
Ie × [0, e] ∪ Ie × [e, 1] ∪ Ie × Ie.

Proposition 2.10 ([17]). The relation ≼U defined in (2.1) is a partial order on L.

Proposition 2.11 ([13]). Let T be a t-norm on [0, 1]. T is divisible if and only if T is
continuous.

3. The set KU ⊂ [0, 1] consisting of incomparable elements with respect
to ≼U on [0, 1]

In this section, we study the set of elements being incomparable with some other element
with respect to the U -partial order ≼U with some uninorm U on [0, 1].

Let U be a uninorm on [0, 1] and let KU be defined by
KU = {x ∈ (0, 1) | for some y ∈ (0, 1), [x < y and x �U y]

or [y < x and y �U x]}.

Note that an element x ∈ KU is not necessarily incomparable with all elements y ∈
[0, 1] \ {0, 1, x}.

We want to determine above introduced set for the smallest and greatest uninorms on
[0, 1].

Proposition 3.1. Let e ∈ [0, 1]. Consider the uninorm Ue : [0, 1]2 → [0, 1] with neutral
element e defined by

Ue(x, y) =


0 (x, y) ∈ [0, e)2,
max(x, y) (x, y) ∈ [e, 1]2,
min(x, y) otherwise.

Then, KUe = (0, e).

Proof. Let x ∈ (0, e) and y < x < 1. Let us show that y �Ue x. We consider y ≼Ue x.
Then, there exists an element ℓ ∈ [0, e] such that y = Ue(x, ℓ). Since y ̸= x, it is not
possible ℓ = e. Since (x, ℓ) ∈ [0, e)2, it is obtained that

y = Ue(x, ℓ) = 0,

a contradiction. Since for any x ∈ (0, e), there exists an element y < x < 1 such that
y �Ue x. So, we have x ∈ KUe . Thus, it is obtained that (0, e) ⊆ KUe .

Conversely, let x ∈ KUe . We need to show that x ∈ (0, e). Suppose that x /∈ (0, e).
Since x ∈ KUe , there exists an element y ∈ (0, 1) such that x < y and x �Ue y or y < x

and y �Ue x.
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We assume that e ≤ x.
• Let x < y and x �Ue y.
Since e ≤ x, it must be the case that e < y. Since x < y, we have max(x, y) = y. By the
definition of Ue, we obtain that

y = max(x, y) = Ue(x, y).
Then, it holds that x ≼Ue y, a contradiction.
• Let y < x and y �Ue x. Since e ≤ x, we have that e < y. Otherwise, if y ≤ e, then it is
obtained that y ≼Ue x, a contradiction by the definition of ≼Ue . Since y < x, it must be
max(x, y) = x. By the definition of Ue, we obtain that

x = max(x, y) = Ue(x, y).
Then, it holds that y ≼Ue x, a contradiction.

We consider that x = 0. In this case, we have 0 ≼Ue y, a contradiction. So, it must
be the case that x ∈ (0, e). Thus, it is obtained that KUe ⊆ (0, e). Consequently, we can
show that KUe = (0, e). �
Corollary 3.2. For the drastic product t-norm TD on [0, 1], KTD

= (0, 1).
Corollary 3.3. For the maximum t-conorm SM on [0, 1], KSM

= ∅.

Proposition 3.4. Let e ∈ [0, 1]. Consider the uninorm U e : [0, 1]2 → [0, 1] with neutral
element e defined by

Ue(x, y) =


min(x, y) (x, y) ∈ [0, e]2,
1 (x, y) ∈ (e, 1]2,
max(x, y) otherwise.

Then, KUe
= (e, 1).

Corollary 3.5. For the minimum t-norm TM on [0, 1], KTM
= ∅.

Corollary 3.6. For the drastic sum t-conorm SD on [0, 1], KSD
= (0, 1).

Lemma 3.7. Let U be a uninorm on [0, 1]. Then, 0 ≼U x, x ≼U x and x ≼U 1 for all
x ∈ [0, 1].
Theorem 3.8. ([18]). Let e ∈ [0, 1]. U ∈ U(e) if and only if

U(x, y) =


TU (x, y) ∈ [0, e]2,
SU (x, y) ∈ [e, 1]2,
C (x, y) ∈ A(e),

where TU and SU are operations respectively isomorphic with some triangular norm and
triangular conorm and increasing operation C : A(e) → [0, 1] fulfills

min(x, y) ≤ C(x, y) ≤ max(x, y) for (x, y) ∈ A(e).
Proposition 3.9. Let U be a uninorm on [0, 1] with neutral element e in Theorem 3.8.
If TU and SU are continuous, then KU = ∅.
Corollary 3.10. Let e ∈ [0, 1]. Consider the uninorms Umin and Umax as unique idem-
potent uninorm Umin

e and Umax
e , respectively:

Umin(x, y) =
{

max(x, y) (x, y) ∈ [e, 1]2,
min(x, y) otherwise.

Umax(x, y) =
{

min(x, y) (x, y) ∈ [0, e]2,
max(x, y) otherwise.
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Then, it is obtained that KUmin = ∅ and KUmax = ∅ .

Theorem 3.11. ([18]). Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element e ∈]0, 1[.
Then the sections x 7→ U(x, 1) and x 7→ U(x, 0) are continuous in each point except perhaps
for e if and only if U is given by one of the following formulas.
(a) If U(0, 1) = 0, then

U(x, y) =


eT (x

e , y
e ) , (x, y) ∈ [0, e]2

e + (1 − e)S(x−e
1−e , y−e

1−e ) , (x, y) ∈ [e, 1]2

min(x, y) , (x, y) ∈ A(e),
(3.1)

where T is a t-norm and S is a t-conorm.
(b) If U(0, 1) = 1, then the same structure holds, changing minimum by maximum in A(e).

The class of uninorms as in case (a) will be denoted by Umin and the class of uninorms
as in case (b) by Umax. We will denote a uninorm U in Umin with underlying t-norm T ,
underlying t-conorm S and neutral element e by U ≡ ⟨T, e, S⟩min and in a similar way, a
uninorm in Umax by U ≡ ⟨T, e, S⟩max.

Proposition 3.12. Let U be a uninorm such that U ≡ ⟨T, e, S⟩min or U ≡ ⟨T, e, S⟩max.
Then,

KU = eKT ∪ (e + (1 − e)KS).

Proof. For any two elements x, y ∈ [0, e], the U -comparability of x and y is equivalent to
the T -comparability of x

e and y
e . Therefore, KU contains the set eKT . Similary, for any two

elements x, y ∈ [e, 1], the U -comparability of x and y is equivalent to the S-comparability
of x−e

1−e and y−e
1−e .

Therefore, KU contains the set e + (1 − e)KS .
For any two elements x, y ∈ A(e), we have that KU = ∅ by the definition of ≼U . On the
other hand, if (x, y) ∈ [0, e]2 ∪ [e, 1]2, then proof is trivial. Also, if (x, y) ∈ A(e), then
proof is trivial by the definition of Umin or Umax. �

As an example of application of the previous proposition we consider U = ⟨TD, e, SM ⟩
such that drastic product t-norm and maximum t-conorm. Then,

KU = (0, e).

Proposition 3.13. Let U be a uninorm such that U ≡ ⟨T, e, S⟩min or U ≡ ⟨T, e, S⟩max.
Then,

i) If x, y ∈ [0, e], then x ≼U y if and only if x
e ≼T

y
e .

ii) If x, y ∈ [e, 1], then x ≼U y if and only if x−e
1−e ≼S

y−e
1−e .

Proof. (i)(Necessity) Let x ≼U y for x, y ∈ [0, e]. Then, there exists an element k ∈ [0, e]
such that U(y, k) = x. By the definition of U , it must be the case that x = eT (y

e , k
e ).

Then, we have x
e = T (y

e , k
e ). Since k

e ≤ 1, it is obtained that x
e ≼T

y
e .

(Sufficiency) Let x
e ≼T

y
e for x, y ∈ [0, e]. Then, there exists an element ℓ ∈ [0, e]

such that T (y
e , ℓ) = x

e , that is x = eT (y
e , ℓ). Clearly, x = eT (y

e , ℓe
e ). This means that

x = U(y, ℓe). Since ℓe ≤ e, it is obtained that x ≼U y.

(ii) (Necessity) It can be shown that the case (i).
(Sufficiency) Let x−e

1−e ≼S
y−e
1−e for x, y ∈ [e, 1]. Then, there exists an element ℓ ∈ [e, 1]

such that S(x−e
1−e , ℓ) = y−e

1−e , that is y = e + (1 − e)S(x−e
1−e , ℓ). It is clear that y = e + (1 −

e)S(x−e
1−e , (ℓ−ℓe+e)−e

1−e ). Since e ≤ ℓ − ℓe + e, it is obtained that x ≼U y. �
≼U -partial order introduced above allows us to introduce the next equivalence relation

on the class of all uninorms on [0, 1].
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Definition 3.14. Define a relation β on the class of all uninorms on [0, 1] by U1βU2,
U1βU2 :⇔ KU1 = KU2 .

Lemma 3.15. The relation β given in Definition 3.14 is an equivalence relation.

Definition 3.16. For a given uninorm U on [0, 1], we denote by U the β equivalence class
linked to U , i.e,

U = {U ′| U ′βU}.

Proposition 3.17. The set [0, 1]/β, is uncountably infinite.

Proof. Let e1, e2 ∈ (0, 1) and e1 ̸= e2. Suppose that e1 < e2.
Consider the functions on [0, 1] defined as follows:

Ue1(x, y) =


0 (x, y) ∈ [0, e1)2,
max(x, y) (x, y) ∈ [e1, 1]2,
min(x, y) otherwise,

and

Ue2(x, y) =


0 (x, y) ∈ [0, e2)2,
max(x, y) (x, y) ∈ [e2, 1]2,
min(x, y) otherwise.

The functions Ue1 and Ue2 are uninorms on [0, 1] with neutral elements e1 and e2,
respectively. Since KUe1

= (0, e1) and KUe2
= (0, e2) by Proposition 3.1 and e1 < e2, then

we have that the uninorms Ue1 and Ue2 are not equivalent under the relation β. So, we
obtain that Ue1 ̸= Ue2 .
Define the mapping δ : (0, 1) → [0, 1]/β by

δ(e) = Ue.

We showed that if e1 ̸= e2, then it must be δ(e1) ̸= δ(e2). So, δ is an injective function, it
is obtained that |(0, 1)| ≤ |[0, 1]/β|. So, the set [0, 1]/β has uncountably infinite cardinality.

�
Definition 3.18. Let U1 and U2 be two uninorms on [0, 1]. If ≼U1⊆≼U2 , then we say that
U2 is order-stronger than U1, or equivalently, that U1 is order-weaker than U2.

In [5], it was shown that for t-norms TW and T∧ on L, TW is the order-weakest and T∧
is the order-strongest t-norm, i.e., ≼TW

⊆≼T ⊆≼T∧ . But for the uninorms, it need not be
that case. Now, let us investigate the following example.

Example 3.19. Let us consider a smallest uninorm Ue : [0, 1]2 → [0, 1] in Proposition 3.1
and a greatest uninorm U e : [0, 1]2 → [0, 1] in Proposition 3.4 with neutral elements e.
We claim that Ue is not order-weakest and Ue is not order-strongest uninorm. We choose
e = 1

3 . Since Ue(1
2 , 2

3) = 2
3 , it is obtained that 1

2 ≼Ue

2
3 .

On the other hand, 1
2 �Ue

2
3 . On the condition that 1

2 ≼Ue

2
3 , there exists an element

ℓ ≥ 1
3 such that Ue(1

2 , ℓ) = 2
3 . By the definition of Ue, we have that Ue(1

2 , ℓ) = min(1
2 , ℓ) = 2

3
or Ue(1

2 , ℓ) = max(1
2 , ℓ) = 2

3 . In first condition, we have ℓ = 2
3 , a contradiction. In second

condition, it is obtained that ℓ = 2
3 and (1

2 , 2
3) ∈ (e, 1]2, a contradiction. So, 1

2 �Ue

2
3 .

4. About the set I
(x)
U consisting all incomparable elements with any x ∈

(0, 1) according to ≼U

Definition 4.1. Let U be a uninorm on [0, 1] and let I
(x)
U for x ∈ (0, 1) be defined by

I
(x)
U = {y ∈ (0, 1) | [x < y and x �U y] or [y < x and y �U x]}.
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After that the notation will be I
(x)
U to denote the set of all incomparable elements with

x ∈ (0, 1) according to ≼U . The set I
(x)
U in Definition 4.1 can be defined on a bounded

lattice and uninorm acting on this lattice.
We want to determine above introduced set for the smallest and greatest uninorms on

[0, 1].

Proposition 4.2. Let us consider the smallest uninorm Ue with neutral element e in
Proposition 3.1. Then,

a) I
(x)
Ue

= {y ∈ (0, e) | x ̸= y} for x ∈ (0, e).

b) I
(x)
Ue

= ∅ for e ≤ x.

a) Let y ∈ (0, e) be arbitrary such that x ̸= y for x ∈ (0, e). Let us show that y ∈ I
(x)
Ue

.

Suppose that y /∈ I
(x)
Ue

. That is, y is comparable to x according to ≼Ue . Then, y < x and
y ≼Ue x or x < y and x ≼Ue y.
• Let y < x and y ≼Ue x. Then there exists an element k ∈ [0, e] such that y = Ue(x, k).
Since y ̸= 0, it must be case that

y = min(x, k) = Ue(x, k)

or
y = max(x, k) = Ue(x, k).

If y = min(x, k) = Ue(x, k), then we have that y = k by x ̸= y. In this case, we have that
y = 0, a contradiction from x, y < e. If y = max(x, k) = Ue(x, k), then we have that y = k

by x ̸= y. Then, we have that y = 0, a contradiction from x, y < e. So, y ∈ I
(x)
Ue

.
• Let x < y and x ≼Ue y. Then, there exists an element ℓ ∈ [0, e] such that x = Ue(y, ℓ).
Since x ̸= 0, it must be the case that

y = min(x, k) = U(x, k)

or
y = max(x, k) = U(x, k)

and similar argument can be done for this case. So, y ∈ I
(x)
Ue

.

Conversely, let y ∈ I
(x)
Ue

be arbitrary for x ∈ (0, e). By Lemma 3.7 it must be x ̸= y. So,
we need to show that y ∈ (0, e). Suppose that y /∈ (0, e). First, we assume that y = 0. In
this case 0 ≼Ue x, a contradiction. So, it must be y ̸= 0. Let e ≤ y. Since y ∈ I

(x)
Ue

, we
have y < x and y �Ue x or x < y and x �Ue y.
Let y < x and y �Ue x. Since x = max(x, y), by the definition of Ue,

x = max(x, y) = Ue(x, y).

It is obtained that y ≼Ue x, a contradiction. Similarly, it can be shown that x �Ue y

for x < y. So, it must be the case that y ∈ (0, e). Consequently, we can show that
I

(x)
Ue

= {y ∈ (0, e) x ̸= y} for x ∈ (0, e).

b) Let e ≤ x. Suppose that I
(x)
Ue

̸= ∅. Let y ∈ I
(x)
Ue

be arbitrary. So, it must be y < x

and y �Ue x or x < y and x �Ue y.
Let y < x and y �Ue x. If y < e ≤ x, by the definition of ≼Ue , it would be y ≼Ue x, a
contradiction. If e < y < x, then we have that x = max(x, y). By the definition of Ue, we
have that x = max(x, y) = Ue(x, y). It leads to y �Ue x, a contradiction. Similarly it can
be shown that x < y and x �Ue y. So, I(x)

Ue
= ∅ for e ≤ x.
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Proposition 4.3. Let us consider the greatest uninorm Ue with neutral element e in
Proposition 3.4. Then,

a) I
(x)
Ue

= {y ∈ (e, 1) | x ̸= y} for x ∈ (e, 1).

b) I
(x)
Ue

= ∅ for x ≤ e.

Since we will use the results of the following example in subsequent propositions, it is
useful to elaborate on the example.

Example 4.4. The uninorm U := Umin(T nM ,SM , 1
2 ) : [0, 1]2 → [0, 1] with neutral element

e = 1
2 defined as follows:

Umin(T nM ,SM , 1
2 )(x, y) =


0 (x, y) ∈ [0, 1

2 ]2 and x + y ≤ 1
2 ,

max(x, y) (x, y) ∈ [1
2 , 1]2,

min(x, y) otherwise.

Then,

a)I(x)
U = {y ∈ (0, 1

2 − x] | x ̸= y} for x ∈ (0, 1
2).

b) I
(x)
U = ∅ for 1

2 ≤ x.
Now, we want to show this claims.

a) Let x < 1
2 and y ∈ (0, 1

2 − x]. Let us show that y ∈ I
(x)
U . We assume that y /∈ I

(x)
U , i.e.,

y < x and y ≼U x or x < y and x ≼U y.
Let y < x and y ≼U x. Then, there exists an element k ∈ [0, 1

2 ] such that y = U(x, k).
Since y ̸= 0, it must be the case that

y = min(x, k) = U(x, k).

Since x ̸= y, it is obtained that y = k. Since x, y < 1
2 and y ∈ (0, 1

2 − x], it is obtained
that x + y ≤ 1

2 , a contradiction. Then, it must be the case that y ∈ I
(x)
U .

Let x < y and x ≼U y. Since y ∈ (0, 1
2 − x], it is not possible the case x < 1

2 < y. So,
x < y < 1

2 . Then, there exists an element ℓ ∈ [0, 1
2 ] such that x = U(y, ℓ). Since x ̸= 0, it

must be
x = min(y, ℓ) = U(y, ℓ)

and similar argument can be done for this case. So, y ∈ I
(x)
U .

Conversely, let y ∈ I
(x)
U . Suppose that y /∈ (0, 1

2 − x]. Since y ∈ I
(x)
U , we have y < x and

y �U x or x < y and x �U y. Let y > 1
2 − x.

Let y < x and y �U x. Since y = min(x, y) and x + y > 1
2 , by the definition of U , we have

that
y = min(x, y) = U(x, y).

It is obtained that y ≼U x, a contradiction.
Let x < y. Similarly it can be shown that x �U y.
If y = 0, we have that 0 ≼U x, a contradiction. So it must be y ∈ (0, 1

2 −x]. Consequently,
we can show that I

(x)
U = {y ∈ (0, 1

2 − x] x ̸= y} for x ∈ (0, 1
2).

b) Let 1
2 ≤ x. We assume that I

(x)
U ̸= ∅. Let y ∈ I

(x)
U be arbitrary. That is, y < x and

y �U x or x < y and x �U y.
Let y < x and y �U x. If y < 1

2 ≤ x, by the definition of ≼U , it would be y ≼U x, a
contradiction. If 1

2 < y < x, then we have that x = max(x, y). By the definition of U , we
have that x = max(x, y) = U(x, y). It leads to y �U x, contradiction. Similarly, if x < y

and x �U y, then we have similar contradiction. So, it is obtained that I(x)
U = ∅ for 1

2 ≤ x.
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Lemma 4.5. Let U be a uninorm on [0, 1]. Then KU =
∪

x∈[0,1] I
(x)
U .

Proposition 4.6. Let U1 and U2 be two uninorms on [0, 1] with neutral element e. If
≼U1⊆≼U2, then I

(x)
U2

⊆ I
(x)
U1

for all x ∈ [0, 1].

Proof. Let U1 and U2 be two uninorms on [0, 1] with neutral elements e and ≼U1⊆≼U2 .
We assume that I(x)

U2
* I

(x)
U1

for some x ∈ (0, 1). Let y ∈ I
(x)
U2

and y /∈ I
(x)
U1

for some y ∈ (0, 1).
Since y ∈ I

(x)
U2

, then it must be case that x < y, x �U2 y or y < x, y �U2 x.
Without loss of generality, we assume that x < y and x �U2 y. Then, it must be

x < y < e or e < x < y. If x < e < y or y < e < x, then we have that x ≼U y or
y ≼U x, a contradiction by the definition of ≼U . Without loss of generality, we assume
that x < y < e and x �U2 y. Since y /∈ I

(x)
U1

and x < y, it is obtained that x ≼U1 y. Since
≼U1⊆≼U2 , then we have that x ≼U2 y, i.e., y /∈ I

(x)
U2

, a contradiction. Thus, it is obtained
that I

(x)
U2

⊆ I
(x)
U1

for all x ∈ [0, 1]. �

Remark 4.7. In Proposition 4.6, if ≼U1⊆≼U2 , then we can not say I
(x)
U1

⊆ I
(x)
U2

for all
x ∈ [0, 1]. To illustrate this claim, the following example can be given:

Example 4.8. Consider the functions on [0, 1] defined as follows:

U1(x, y) =



0 (x, y) ∈ [0, 1
2)2,

1 (x, y) ∈ (1
2 , 1]2,

y x = 1
2 ,

x y = 1
2 ,

min(x, y) otherwise,

and

U2(x, y) =
{

min(x, y) (x, y) ∈ [0, 1
2 ]2,

max(x, y) otherwise.

U1 and U2 are uninorms with neutral elements 1
2 by [23]. It is clear that ≼U1⊆≼U2 . We

claim that 1
5 ∈ I

( 1
3 )

U1
but 1

5 /∈ I
( 1

3 )
U2

. On the condition that 1
5 ≼U1

1
3 , there exists an element

k ∈ [0, 1
2 ] such that U1(1

3 , k) = 1
5 . If k = 1

2 , then we have 1
5 = 1

3 , a contradiction. If

k ∈ [0, 1
2), then we have 1

5 = 0, a contradiction. So, 1
5 �U1

1
3 . Thus, 1

5 ∈ I
( 1

3 )
U1

. On the

other hand, 1
5 /∈ I

( 1
3 )

U2
by U2(1

3 , 1
5) = 1

5 . We can generalize this set for the uninorms above
as follows:

I
(x)
U1

= {y ∈ (0, 1) | x ̸= y and y ̸= 1
2} for x ∈ (0, 1) and x ̸= 1

2 .
I

(x)
U2

= ∅ for x ∈ [0, 1].

Corollary 4.9. Let U1 and U2 be two uninorms on [0, 1] with neutral elements e. If
≼U1=≼U2, then IU1

(x) = IU2
(x) for all x ∈ [0, 1].

Corollary 4.10. Let U1 and U2 be two uninorms on [0, 1] with neutral elements e. If
≼U1=≼U2, then KU1 = KU2.

Proposition 4.11. Let U1 and U2 be two uninorms on [0, 1]. If for all x ∈ [0, 1], IU1
(x) =

IU2
(x), then the uninorms U1 and U2 are equivalent under the relation β.

Remark 4.12. The converse of Proposition 4.11 does not have to be true. Below is an
example.
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Example 4.13. Let us consider a uninorm U on [0, 1] in Example 4.4 and a uninorm
Ue on [0, 1] in Proposition 3.1 with neutral elements e = 1

2 . By Proposition 3.1, we have
KUe = (0, 1

2). Now, we want to show KU = (0, 1
2). Let x ∈ (0, 1

2) and y ≤ 1
2 . By Example

4.4, it is clear that x < y, x �U y or y < x, y �U x. So, x ∈ KU . That is, (0, 1
2) ⊆ KU .

Conversely let x ∈ KU be arbitrary. We need to show that x ∈ (0, 1
2). Suppose that

x /∈ (0, 1
2). Since x ∈ KU , then there exists an element y ∈ (0, 1) such that x < y, x �U y

or y < x, y �U x. Without loss of generality, we assume that x < y, x �U y. If x ≥ 1
2 ,

then we have that y > x ≥ 1
2 . So, we have max(x, y) = y. By the definition of U ,

U(x, y) = max(x, y) = y.

It is obtained that x ≼U y, a contradiction. If x = 0, then we have 0 ≼U y, a contradiction.
So, it must be the case that x ∈ (0, 1

2). Thus, KU ⊆ (0, 1
2). This proves that KU = (0, 1

2).
So, it is obtained that KUe = KU = (0, 1

2). Thus, the uninorms U and Ue are equivalent
under the relation β. But, we claim that IU

(x) = IUe
(x) for some x ∈ (0, 1).

Now, we want to show that this claim. Since 1
5 = U(2

5 , 1
5), we have that 1

5 /∈ IU
( 2

5 ).
On the other hand, 1

5 �Ue
2
5 . On the condition that 1

5 ≼Ue
2
5 , there exists an element

k ∈ [0, 1
2 ] such that Ue(2

5 , k) = 1
5 . By the definition of Ue, we have that 0 = 1

5 = Ue(2
5 , k),

a contradiction. So, 1
5 ∈ IUe

( 2
5 ). Thus, we have IU

( 2
5 ) ̸= IUe

( 2
5 ).

Corollary 4.14. Although the uninorms U1 and U2 are equivalent under the relation β,
it need not be the case that the U1-partial order coincides with the U2-partial order.

Definition 4.15. Let U be a uninorm on [0, 1] with neutral element e. K⋆
U is defined by

K⋆
U = {x ∈ KU | for some y, y′ ∈ (0, e), [x < y but x �U y]

and [y′ < x but y′ �U x]}.

Remark 4.16. By the definition of K⋆
U , it is clear that K⋆

U ⊆ KU . But the reverse
inclusion may not be true. Now, let us investigate the following example.

Example 4.17. Let us consider a uninorm U on [0, 1] with neutral element e = 1
2 in

Example 4.4. Since KU = (0, 1
2) by Example 4.13, it is clear that 1

4 ∈ KU . But 1
4 /∈ K⋆

U .
That is, there does not exist some y ∈ (0, 1), 1

4 < y and 1
4 �U y. It is because that we

have 1
4 + y > 1

2 since 1
4 < y. So, we have that U(y, 1

4) = 1
4 by the definition of U . So,

1
4 ≼U y for all 1

4 < y.

Remark 4.18. One can wonder which uninorms are provided K⋆
U = KU . Consider the

smallest uninorm Ue on [0, 1] with neutral element e in Proposition 3.1. It can be shown
that, for all x ∈ (0, e), there exist elements y, y′ ∈ (0, e) such that x < y, x �Ue y and
y′ < x, y′ �Ue x. So, K⋆

Ue
= (0, e). This show that K⋆

Ue
= KUe . Also, consider the greatest

uninorm Ue on [0, 1] with neutral element e in Proposition 3.4. Similarly, K⋆
Ue

= (e, 1).
So, we have that K⋆

Ue
= KUe

.

The set, denoted K⋆
U , allows us to introduce the next equivalence relation on the class

of all uninorms on [0, 1].

Definition 4.19. Define a relation β⋆ on the class of all uninorms on [0, 1] by U1β⋆U2,
U1β⋆U2 :⇔ K⋆

U1 = K⋆
U2 .

Lemma 4.20. The relation β⋆ given in Definition 4.19 is an equivalence relation.

Remark 4.21. Although KU1 = KU2 for the uninorms U1 and U2, it need not be the case
that K⋆

U1
= K⋆

U2
. To illustrate this claim we shall give the following example.
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Example 4.22. Let us consider a uninorm U on [0, 1] in Example 4.4 and a uninorm Ue

on [0, 1] in Proposition 3.1 with neutral elements e = 1
2 . We know that KUe = KU = (0, 1

2).
So, it is obtained that the uninorms Ue and U are equivalent under the relation β. Also,
we have K⋆

Ue
= (0, 1

2) by Remark 4.18. It is obtained that K⋆
U = (0, 1

4) by Example 4.17.

5. Conclusion
We have defined the set of incomparable elements with respect to the U -partial order

for any uninorm on [0, 1]. Also we have introduced and studied an equivalence relation β

defined on the class of all uninorms on [0, 1]. We have defined that the set I
(x)
U , consisting

all incomparable elements with any x ∈ (0, 1) accordingly to ≼U . Furthermore, we have
shown that even if uninorms are equivalent under this relation, it need not be the case
that their partial orders coincide. Finally, we have defined and studied another set of
incomparable elements with respect to the U -partial order for any uninorm on [0, 1].
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