On generalized autocommutativity degree of finite groups

Parama Dutta(i), Rajat Kanti Nath* ${ }^{\text {(D) }}$
Department of Mathematical Sciences, Tezpur University, Napaam-784028, Sonitpur, Assam, India.

Abstract

Let H be a subgroup of a finite group G and $\operatorname{Aut}(G)$ be the automorphism group of G. In this paper we introduce and study the probability that the autocommutator of a randomly chosen pair of elements, one from H and the other $\operatorname{from} \operatorname{Aut}(G)$, is equal to a given element of G.

Mathematics Subject Classification (2010). 20D60, 20P05, 20F28
Keywords. automorphism group, autocommutativity degree, autoisoclinism

1. Introduction

Throughout the paper H denotes a subgroup of a finite group G and $\operatorname{Aut}(G)$ denotes automorphism group of G. The autocommutativity degree of G, denoted by $\operatorname{Pr}(G, \operatorname{Aut}(G))$, is the probability that an automorphism fixes an element of G. In other words,

$$
\operatorname{Pr}(G, \operatorname{Aut}(G))=\frac{|\{(x, \alpha) \in G \times \operatorname{Aut}(G):[x, \alpha]=1\}|}{|G||\operatorname{Aut}(G)|}
$$

where $[x, \alpha]=x^{-1} \alpha(x)$ is the autocommutator of x and α. The study of autocommutativity degree of finite groups was initiated by Sherman [10] in 1975. Many results on $\operatorname{Pr}(G, \operatorname{Aut}(G))$, including some characterizations of G in terms of $\operatorname{Pr}(G, \operatorname{Aut}(G))$, can be found in $[1,3]$. In the year 2015, Rismanchian and Sepehrizadeh [9] generalized the concept of autocommutativity degree and studied relative autocommutativity degree of H, that is the probability that an automorphism of G fixes an element of H. However in the year 2011, Moghaddam et al. [8] also studied this notion. We write $\operatorname{Pr}(H, \operatorname{Aut}(G))$ to denote the relative autocommutativity degree of H. Recently, we have obtained several new results on $\operatorname{Pr}(H, \operatorname{Aut}(G))$ in [2]. In this paper, we introduce a new probability concept called the generalized relative autocommutativity degree of H given by the following ratio

$$
\begin{equation*}
\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))=\frac{|\{(x, \alpha) \in H \times \operatorname{Aut}(G):[x, \alpha]=g\}|}{|H||\operatorname{Aut}(G)|} \tag{1.1}
\end{equation*}
$$

where g is an element of G. In other words $\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))$ is the probability that the autocommutator of a randomly chosen pair of elements, one from H and the other from $\operatorname{Aut}(G)$, is equal to a given element $g \in G$. Clearly, if $g=1$ (the identity element of G) then $\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))=\operatorname{Pr}(H, \operatorname{Aut}(G))$. In the forthcoming sections, we obtain some computing

[^0]formulae and bounds for $\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))$. We also obtain some characterizations of groups through $\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))$.

Let $S(H, \operatorname{Aut}(G))=\{[x, \alpha]: x \in H$ and $\alpha \in \operatorname{Aut}(G)\}$ and $[H, \operatorname{Aut}(G)]$ be the subgroup generated by $S(H, \operatorname{Aut}(G))$. Let $L(H, \operatorname{Aut}(G))=\{x \in H:[x, \alpha]=1$ for all $\alpha \in \operatorname{Aut}(G)\}$ and $L(G)=L(G, \operatorname{Aut}(G))$, the absolute center of G defined in [5]. Clearly, $L(H, \operatorname{Aut}(G))$ is a normal subgroup of H contained in $H \cap Z(G)$. Let $C_{\text {Aut }(G)}(x)=\{\alpha \in \operatorname{Aut}(G): \alpha(x)=x\}$ for $x \in G$ and $C_{\operatorname{Aut}(G)}(H)=\{\alpha \in \operatorname{Aut}(G): \alpha(x)=x$ for all $x \in H\}$. Then $C_{\operatorname{Aut}(G)}(x)$ is a subgroup of $\operatorname{Aut}(G)$ and $C_{\operatorname{Aut}(G)}(H)=\bigcap_{x \in H} C_{\operatorname{Aut}(G)}(x)$. Note that if $g \notin S(H, \operatorname{Aut}(G))$ then $\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))=0$, therefore throughout the paper we consider $g \in S(H, \operatorname{Aut}(G))$.

2. Some computing formulae

We begin with the following results.
Proposition 2.1. Let H be a subgroup of G. If $g \in G$ then

$$
\operatorname{Pr}_{g^{-1}}(H, \operatorname{Aut}(G))=\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))
$$

Proof. Let $A=\{(x, \alpha) \in H \times \operatorname{Aut}(G):[x, \alpha]=g\}$ and $B=\{(y, \beta) \in H \times \operatorname{Aut}(G):$ $\left.[y, \beta]=g^{-1}\right\}$. Then $(x, \alpha) \mapsto\left(\alpha(x), \alpha^{-1}\right)$ gives a bijection between A and B. Therefore, $|A|=|B|$ and hence the result follows from (1.1).
Proposition 2.2. Let G_{1} and G_{2} be two finite groups such that $\operatorname{gcd}\left(\left|G_{1}\right|,\left|G_{2}\right|\right)=1$. Let H_{1} and H_{2} be subgroups of G_{1} and G_{2} respectively. If $\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}$ then

$$
\operatorname{Pr}_{\left(g_{1}, g_{2}\right)}\left(H_{1} \times H_{2}, \operatorname{Aut}\left(G_{1} \times G_{2}\right)\right)=\operatorname{Pr}_{g_{1}}\left(H_{1}, \operatorname{Aut}\left(G_{1}\right)\right) \operatorname{Pr}_{g_{2}}\left(H_{2}, \operatorname{Aut}\left(G_{2}\right)\right) .
$$

Proof. Let

$$
\begin{aligned}
& x=\left\{\left((x, y), \alpha_{G_{1} \times G_{2}}\right) \in\left(H_{1} \times H_{2}\right) \times \operatorname{Aut}\left(G_{1} \times G_{2}\right):\right. \\
& {\left.\left[(x, y), \alpha_{G_{1} \times G_{2}}\right]=\left(g_{1}, g_{2}\right)\right\}, } \\
& y=\left\{\left(x, \alpha_{G_{1}}\right) \in H_{1} \times \operatorname{Aut}\left(G_{1}\right):\left[x, \alpha_{G_{1}}\right]=g_{1}\right\} \text { and } \\
& z=\left\{\left(y, \alpha_{G_{2}}\right) \in H_{2} \times \operatorname{Aut}\left(G_{2}\right):\left[y, \alpha_{G_{2}}\right]=g_{2}\right\} .
\end{aligned}
$$

Since $\operatorname{gcd}\left(\left|G_{1}\right|,\left|G_{2}\right|\right)=1$, by $\left[6\right.$, Lemma 2.1], we have $\operatorname{Aut}\left(G_{1} \times G_{2}\right)=\operatorname{Aut}\left(G_{1}\right) \times \operatorname{Aut}\left(G_{2}\right)$. Therefore, for every $\alpha_{G_{1} \times G_{2}} \in \operatorname{Aut}\left(G_{1} \times G_{2}\right)$ there exist unique $\alpha_{G_{1}} \in \operatorname{Aut}\left(G_{1}\right)$ and $\alpha_{G_{2}} \in \operatorname{Aut}\left(G_{2}\right)$ such that $\alpha_{G_{1} \times G_{2}}=\alpha_{G_{1}} \times \alpha_{G_{2}}$, where $\alpha_{G_{1}} \times \alpha_{G_{2}}((x, y))=\left(\alpha_{G_{1}}(x), \alpha_{G_{2}}(y)\right)$ for all $(x, y) \in H_{1} \times H_{2}$. Also, for all $(x, y) \in H_{1} \times H_{2}$, we have $\left[(x, y), \alpha_{G_{1} \times G_{2}}\right]=\left(g_{1}, g_{2}\right)$ if and only if $\left[x, \alpha_{G_{1}}\right]=g_{1}$ and $\left[y, \alpha_{G_{2}}\right]=g_{2}$. These lead to show that $X=y \times z$. Therefore

$$
\frac{|X|}{\left|H_{1} \times H_{2}\right|\left|\operatorname{Aut}\left(G_{1} \times G_{2}\right)\right|}=\frac{|y|}{\left|H_{1}\right|\left|\operatorname{Aut}\left(G_{1}\right)\right|} \cdot \frac{|z|}{\left|H_{2}\right|\left|\operatorname{Aut}\left(G_{2}\right)\right|} .
$$

Hence, the result follows from (1.1).
In the year 1940, Hall [4] introduced the concept of isoclinism between two groups. Following Hall, Moghaddam et al. [7] have defined autoisoclinism between two groups, in the year 2013. Recently in [2], we generalize the notion of autoisoclinism between two groups. Let H_{1} and H_{2} be subgroups of the groups G_{1} and G_{2} respectively. The pairs $\left(H_{1}, G_{1}\right)$ and $\left(H_{2}, G_{2}\right)$ are said to be autoisoclinic if there exist isomorphisms ψ : $\frac{H_{1}}{L\left(H_{1}, \operatorname{Aut} G_{1}\right)} \rightarrow \frac{H_{2}}{L\left(H_{2}, \operatorname{Aut}\left(G_{2}\right)\right)}, \beta:\left[H_{1}, \operatorname{Aut}\left(G_{1}\right)\right] \rightarrow\left[H_{2}, \operatorname{Aut}\left(G_{2}\right)\right]$ and $\gamma: \operatorname{Aut}\left(G_{1}\right) \rightarrow$ $\operatorname{Aut}\left(G_{2}\right)$ such that the following diagram commutes

$$
\begin{array}{rrr}
\frac{H_{1}}{L\left(H_{1}, \operatorname{Aut}\left(G_{1}\right)\right)} \times \operatorname{Aut}\left(G_{1}\right) & \stackrel{\psi \times \gamma}{\longrightarrow} \frac{H_{2}}{L\left(H_{2}, \operatorname{Aut}\left(G_{2}\right)\right)} \times \operatorname{Aut}\left(G_{2}\right) \\
\downarrow_{\left(H_{1}, \operatorname{Aut}\left(G_{1}\right)\right)} & & \downarrow_{\left(H_{2}, \operatorname{Aut}\left(G_{2}\right)\right)} \\
{\left[H_{1}, \operatorname{Aut}\left(G_{1}\right)\right]} & \xrightarrow{\beta} & {\left[H_{2}, \operatorname{Aut}\left(G_{2}\right)\right]}
\end{array}
$$

where the maps $a_{\left(H_{i}, \operatorname{Aut}\left(G_{i}\right)\right)}: \frac{H_{i}}{L\left(H_{i}, \operatorname{Aut}\left(G_{i}\right)\right)} \times \operatorname{Aut}\left(G_{i}\right) \rightarrow\left[H_{i}, \operatorname{Aut}\left(G_{i}\right)\right]$, for $i=1,2$, are given by

$$
a_{\left(H_{i}, \operatorname{Aut}\left(G_{i}\right)\right)}\left(x_{i} L\left(H_{i}, \operatorname{Aut}\left(G_{i}\right)\right), \alpha_{i}\right)=\left[x_{i}, \alpha_{i}\right] .
$$

Such a pair $(\psi \times \gamma, \beta)$ is said to be an autoisoclinism between the pairs of groups $\left(H_{1}, G_{1}\right)$ and $\left(H_{2}, G_{2}\right)$. We have the following generalization of [3, Theorem 5.1] and [9, Lemma 2.5].

Theorem 2.3. Let G_{1} and G_{2} be two finite groups with subgroups H_{1} and H_{2} respectively. If $(\psi \times \gamma, \beta)$ is an autoisoclinism between the pairs $\left(H_{1}, G_{1}\right)$ and $\left(H_{2}, G_{2}\right)$ then, for $g \in G_{1}$,

$$
\operatorname{Pr}_{\beta(g)}\left(H_{2}, \operatorname{Aut}\left(G_{2}\right)\right)=\operatorname{Pr}_{g}\left(H_{1}, \operatorname{Aut}\left(G_{1}\right)\right)
$$

Proof. Let $\mathcal{S}_{g}=\left\{\left(x_{1} L\left(H_{1}, \operatorname{Aut}\left(G_{1}\right)\right), \alpha_{1}\right) \in \frac{H_{1}}{L\left(H_{1}, \operatorname{Aut}\left(G_{1}\right)\right)} \times \operatorname{Aut}\left(G_{1}\right):\left[x_{1}, \alpha_{1}\right]=g\right\}$ and $\mathcal{T}_{\beta(g)}=\left\{\left(x_{2} L\left(H_{2}, \operatorname{Aut}\left(G_{2}\right)\right), \alpha_{2}\right) \in \frac{H_{2}}{L\left(H_{2}, \operatorname{Aut}\left(G_{2}\right)\right)} \times \operatorname{Aut}\left(G_{2}\right):\left[x_{2}, \alpha_{2}\right]=\beta(g)\right\}$. Since $\left(H_{1}, G_{1}\right)$ is autoisoclinic to $\left(H_{2}, G_{2}\right)$ we have $\left|\mathcal{S}_{g}\right|=\left|\mathcal{T}_{\beta(g)}\right|$. Again, it is clear that

$$
\begin{equation*}
\left|\left\{\left(x_{1}, \alpha_{1}\right) \in H_{1} \times \operatorname{Aut}\left(G_{1}\right):\left[x_{1}, \alpha_{1}\right]=g\right\}\right|=\left|L\left(H_{1}, \operatorname{Aut}\left(G_{1}\right)\right)\right|\left|\mathcal{S}_{g}\right| \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\{\left(x_{2}, \alpha_{2}\right) \in H_{2} \times \operatorname{Aut}\left(G_{2}\right):\left[x_{2}, \alpha_{2}\right]=\beta(g)\right\}\right|=\left|L\left(H_{2}, \operatorname{Aut}\left(G_{2}\right)\right)\right|\left|\mathcal{T}_{\beta(g)}\right| \tag{2.2}
\end{equation*}
$$

Hence, the result follows from (1.1), (2.1) and (2.2).
Note that $\operatorname{Aut}(G)$ acts on G by the action $(\alpha, x) \mapsto \alpha(x)$ where $\alpha \in \operatorname{Aut}(G)$ and $x \in G$. Let $\operatorname{orb}(x)=\{\alpha(x): \alpha \in \operatorname{Aut}(G)\}$ be the orbit of $x \in G$. Then by orbit-stabilizer theorem, we have

$$
|\operatorname{orb}(x)|=\frac{|\operatorname{Aut}(G)|}{\left|C_{\operatorname{Aut}(G)}(x)\right|}
$$

Now we obtain the following computing formula for $\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))$ in terms of the order of $C_{\text {Aut }(G)}(x)$ and $\operatorname{orb}(x)$.
Theorem 2.4. Let H be a subgroup of G. If $g \in G$ then

$$
\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))=\frac{1}{|H \| \operatorname{Aut}(G)|} \sum_{\substack{x \in H \\ x g \in \operatorname{orb}(x)}}\left|C_{\operatorname{Aut}(G)}(x)\right|=\frac{1}{|H|} \sum_{\substack{x \in H \\ x g \in \operatorname{orb}(x)}} \frac{1}{|\operatorname{orb}(x)|}
$$

Proof. Let $T_{x, g}(H, G)=\{\alpha \in \operatorname{Aut}(G):[x, \alpha]=g\}$ for any $x \in H$. Then $T_{x, g}(H, G) \neq \emptyset$ if and only if $x g \in \operatorname{orb}(x)$. We also have

$$
\{(x, \alpha) \in H \times \operatorname{Aut}(G):[x, \alpha]=g\}=\underset{x \in H}{\sqcup}\left(\{x\} \times T_{x, g}(H, G)\right),
$$

where \sqcup represents the union of disjoint sets. Therefore, by (1.1), we have

$$
\begin{equation*}
|H \| \operatorname{Aut}(G)| \operatorname{Pr}_{g}(H, \operatorname{Aut}(G))=\left|\underset{x \in H}{\sqcup}\left(\{x\} \times T_{x, g}(H, G)\right)\right|=\sum_{x \in H}\left|T_{x, g}(H, G)\right| . \tag{2.3}
\end{equation*}
$$

Let $\sigma \in T_{x, g}(H, G)$ and $\beta \in \sigma C_{\operatorname{Aut}(G)}(x)$. Then $\beta=\sigma \alpha$ for some $\alpha \in C_{\operatorname{Aut}(G)}(x)$. We have

$$
[x, \beta]=[x, \sigma \alpha]=x^{-1} \sigma(\alpha(x))=[x, \sigma]=g .
$$

Therefore, $\beta \in T_{x, g}(H, G)$ and so $\sigma C_{\operatorname{Aut}(G)}(x) \subseteq T_{x, g}(H, G)$. Again, let $\gamma \in T_{x, g}(H, G)$ then $\gamma(x)=x g$. We have $\sigma^{-1} \gamma(x)=\sigma^{-1}(x g)=x$ and so $\sigma^{-1} \gamma \in C_{\operatorname{Aut}(G)}(x)$. Therefore, $\gamma \in \sigma C_{\operatorname{Aut}(G)}(x)$ which gives $T_{x, g}(H, G) \subseteq \sigma C_{\operatorname{Aut}(G)}(x)$. Thus, $\sigma C_{\operatorname{Aut}(G)}(x)=T_{x, g}(H, G)$ and hence

$$
\begin{equation*}
\left|T_{x, g}(H, G)\right|=\left|C_{\operatorname{Aut}(G)}(x)\right|=\frac{|\operatorname{Aut}(G)|}{|\operatorname{orb}(x)|} \tag{2.4}
\end{equation*}
$$

Therefore, the result follows from (2.3) and (2.4).
Putting $g=1$ in Theorem 2.4 we get the following corollary.

Corollary 2.5. Let H be a subgroup of G. Then

$$
\operatorname{Pr}(H, \operatorname{Aut}(G))=\frac{1}{|H||\operatorname{Aut}(G)|} \sum_{x \in H}\left|C_{\operatorname{Aut}(G)}(x)\right|=\frac{|\operatorname{orb}(H)|}{|H|}
$$

where $\operatorname{orb}(H)=\{\operatorname{orb}(x): x \in H\}$.
As an application of Theorem 2.4 we have the following result.
Proposition 2.6. Let H be a subgroup of G. If $\operatorname{orb}(x)=x[H, \operatorname{Aut}(G)]$ for all $x \in$ $H \backslash L(H, \operatorname{Aut}(G))$ then

$$
\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))= \begin{cases}\frac{1}{|[H, \operatorname{Aut}(G)]|}\left(1+\frac{|[H, \operatorname{Aut}(G)]|-1}{|H: L(H, \operatorname{Aut}(G))|}\right), & \text { if } g=1 \\ \frac{1}{|[H, \operatorname{Aut}(G)]|}\left(1-\frac{1}{|H: L(H, \operatorname{Aut}(G))|}\right), & \text { if } g \neq 1\end{cases}
$$

Proof. If $g=1$ then the result follows from [2, Proposition 3.4]. If $g \neq 1$, we have $x g \notin \operatorname{orb}(x)$ for all $x \in L(H, \operatorname{Aut}(G))$. Again, since $g \in S(H, \operatorname{Aut}(G)) \subseteq[H, \operatorname{Aut}(G)]$ therefore $x g \in x[H, \operatorname{Aut}(G)]=\operatorname{orb}(x)$ for all $x \in H \backslash L(H, \operatorname{Aut}(G))$. Now from Theorem 2.4 we have

$$
\begin{aligned}
\operatorname{Pr}_{g}(H, \operatorname{Aut}(G)) & =\frac{1}{|H|} \sum_{\substack{x \in H \backslash L(H, \operatorname{Aut}(G)) \\
x g \in \operatorname{orb}(x)}} \frac{1}{|\operatorname{orb}(x)|} \\
& =\frac{1}{|H|_{\substack{x \in H \backslash L(H, \operatorname{Aut}(G)) \\
x g \in \operatorname{orb}(x)}} \frac{1}{[H, \operatorname{Aut}(G)]}} \\
& =\frac{1}{|[H, \operatorname{Aut}(G)]|}\left(1-\frac{1}{|H: L(H, \operatorname{Aut}(G))|}\right) .
\end{aligned}
$$

3. Various bounds

In this section, we obtain various bounds for $\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))$. We begin with the following lower bounds.
Proposition 3.1. Let H be a subgroup of G. Then, for $g \in G$, we have

$$
\operatorname{Pr}_{g}(H, \operatorname{Aut}(G)) \geq \begin{cases}\frac{|L(H, \operatorname{Aut}(G))|}{|H|}+\frac{\left|C_{\operatorname{Aut}(G)}(H)\right|(|H|-|L(H, \operatorname{Aut}(G))|)}{|H||\operatorname{Aut}(G)|}, & \text { if } g=1 \\ \frac{|L(H, \operatorname{Aut}(G))|\left|C_{\operatorname{Aut}(G)}(H)\right|}{|H||\operatorname{Aut}(G)|}, & \text { if } g \neq 1\end{cases}
$$

Proof. Let \mathcal{C} denotes the set $\{(x, \alpha) \in H \times \operatorname{Aut}(G):[x, \alpha]=g\}$.
If $g=1$ then $(L(H, \operatorname{Aut}(G)) \times \operatorname{Aut}(G)) \cup\left(H \times C_{\operatorname{Aut}(G)}(H)\right)$ is a subset of \mathcal{C} and $\left|(L(H, \operatorname{Aut}(G)) \times \operatorname{Aut}(G)) \cup\left(H \times C_{\operatorname{Aut}(G)}(H)\right)\right|=|L(H, \operatorname{Aut}(G))||\operatorname{Aut}(G)|+$ $\left|C_{\operatorname{Aut}(G)}(H)\right||H|-|L(H, \operatorname{Aut}(G))|\left|C_{\operatorname{Aut}(G)}(H)\right|$. Hence, the result follows from (1.1).

If $g \neq 1$ then \mathcal{C} is non-empty since $g \in S(H, \operatorname{Aut}(G)) . \quad$ Let $(y, \beta) \in \mathcal{C}$ then $(y, \beta) \notin L(H, \operatorname{Aut}(G)) \times C_{\operatorname{Aut}(G)}(H)$ otherwise $[y, \beta]=1$. It is easy to see that the coset $(y, \beta)\left(L(H, \operatorname{Aut}(G)) \times C_{\operatorname{Aut}(G)}(H)\right)$ having order $\left|L(H, \operatorname{Aut}(G)) \| C_{\operatorname{Aut}(G)}(H)\right|$ is a subset of \mathcal{C}. Hence, the result follows from (1.1).
Proposition 3.2. Let H be a subgroup of G. If $g \in G$ then

$$
\operatorname{Pr}_{g}(H, \operatorname{Aut}(G)) \leq \operatorname{Pr}(H, \operatorname{Aut}(G))
$$

The equality holds if and only if $g=1$.

Proof. By Theorem 2.4, we have

$$
\begin{aligned}
\operatorname{Pr}_{g}(H, \operatorname{Aut}(G)) & =\frac{1}{|H||\operatorname{Aut}(G)|} \sum_{\substack{x \in H \\
x g \in \operatorname{orb}(x)}}\left|C_{\operatorname{Aut}(G)}(x)\right| \\
& \leq \frac{1}{|H||\operatorname{Aut}(G)|} \sum_{x \in H}\left|C_{\operatorname{Aut}(G)}(x)\right|=\operatorname{Pr}(H, \operatorname{Aut}(G))
\end{aligned}
$$

Clearly the equality holds if and only if $g=1$.
Proposition 3.3. Let H be a subgroup of G. Let $g \in G$ and p the smallest prime dividing $|\operatorname{Aut}(G)|$. If $g \neq 1$ then

$$
\operatorname{Pr}_{g}(H, \operatorname{Aut}(G)) \leq \frac{|H|-|L(H, \operatorname{Aut}(G))|}{p|H|}<\frac{1}{p}
$$

Proof. By Theorem 2.4, we have

$$
\begin{equation*}
\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))=\frac{1}{|H|} \sum_{\substack{x \in H \backslash L(H, \operatorname{Aut}(G)) \\ x g \in \operatorname{orb}(x)}} \frac{1}{|\operatorname{orb}(x)|} \tag{3.1}
\end{equation*}
$$

noting that for $x \in L(H, \operatorname{Aut}(G))$ we have $x g \notin \operatorname{orb}(x)$. Also, for $x \in H \backslash L(H, \operatorname{Aut}(G))$ and $x g \in \operatorname{orb}(x)$ we have $|\operatorname{orb}(x)|>1$. Since $|\operatorname{orb}(x)|$ is a divisor of $|\operatorname{Aut}(G)|$ we have $|\operatorname{orb}(x)| \geq p$. Hence, the result follows from (3.1).
Proposition 3.4. Let H_{1} and H_{2} be two subgroups of G such that $H_{1} \subseteq H_{2}$. Then

$$
\operatorname{Pr}_{g}\left(H_{1}, \operatorname{Aut}(G)\right) \leq\left|H_{2}: H_{1}\right| \operatorname{Pr}_{g}\left(H_{2}, \operatorname{Aut}(G)\right)
$$

The equality holds if and only if $x g \notin \operatorname{orb}(x)$ for all $x \in H_{2} \backslash H_{1}$.
Proof. By Theorem 2.4, we have

$$
\begin{aligned}
\left|H_{1}\right||\operatorname{Aut}(G)| \operatorname{Pr}_{g}\left(H_{1}, \operatorname{Aut}(G)\right) & =\sum_{\substack{x \in H_{1} \\
x g \in \operatorname{orb}(x)}}\left|C_{\operatorname{Aut}(G)}(x)\right| \\
& \leq \sum_{\substack{x \in H_{2} \\
x g \in \operatorname{orb}(x)}}\left|C_{\operatorname{Aut}(G)}(x)\right| \\
& =\left|H_{2}\right||\operatorname{Aut}(G)| \operatorname{Pr}_{g}\left(H_{2}, \operatorname{Aut}(G)\right) .
\end{aligned}
$$

Hence, the result follows.
We conclude this section with the following result.
Proposition 3.5. Let H be a subgroup of G. If $g \in G$ then

$$
\operatorname{Pr}_{g}(H, \operatorname{Aut}(G)) \leq|G: H| \operatorname{Pr}(G, \operatorname{Aut}(G))
$$

with equality if and only if $g=1$ and $H=G$.
Proof. By Proposition 3.2, we have

$$
\begin{aligned}
\operatorname{Pr}_{g}(H, \operatorname{Aut}(G)) & \leq \operatorname{Pr}(H, \operatorname{Aut}(G)) \\
& =\frac{1}{|H||\operatorname{Aut}(G)|} \sum_{x \in H}\left|C_{\operatorname{Aut}(G)}(x)\right| \\
& \leq \frac{1}{|H||\operatorname{Aut}(G)|} \sum_{x \in G}\left|C_{\operatorname{Aut}(G)}(x)\right| \\
& =|G: H| \operatorname{Pr}(G, \operatorname{Aut}(G))
\end{aligned}
$$

Hence, the result follows from Corollary 2.5.

4. Characterizations through $\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))$

In this section, we obtain some characterizations of groups through $\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))$. The following lemma is useful in this regard.

Lemma 4.1. Let H be a subgroup of G. If p is the smallest prime divisor of $|\operatorname{Aut}(G)|$ and $|[H, \operatorname{Aut}(G)]|=p$ then $\operatorname{orb}(x)=x[H, \operatorname{Aut}(G)]$ for all $x \in H \backslash L(H, \operatorname{Aut}(G))$.

Proof. We have $\operatorname{orb}(x) \subseteq x[H, \operatorname{Aut}(G)]$ for all $x \in H$. Also, $|\operatorname{orb}(x)|$ is a divisor of $|\operatorname{Aut}(G)|$ for all $x \in H$. Therefore, $|\operatorname{orb}(x)| \geq p$ for all $x \in H \backslash L(H, \operatorname{Aut}(G))$. Hence, $|\operatorname{orb}(x)|=|x[H, \operatorname{Aut}(G)]|=p$ for all $x \in H \backslash L(H, \operatorname{Aut}(G))$ and the result follows.

Now we derive the following characterizations.
Theorem 4.2. Let H be a subgroup of a finite group G and $g \in G$. Let p be the smallest prime dividing $|\operatorname{Aut}(G)|$ and $|[H, \operatorname{Aut}(G)]|=p$. If $g \neq 1$ and $\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))=\frac{n-1}{n p}$ or $g=1$ and $\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))=\frac{n+p-1}{n p}$ (where n is a positive integer) then $\frac{H}{L(H, \operatorname{Aut}(G))}$ is isomorphic to a group of order n. In particular,
(1) if $n=q$ or q^{2} for some prime q then $\frac{H}{L(H, \operatorname{Aut}(G))} \cong \mathbb{Z}_{q}, \mathbb{Z}_{q^{2}}$ or $\mathbb{Z}_{q} \times \mathbb{Z}_{q}$.
(2) if H is abelian and $n=q_{1}^{k_{1}} q_{2}^{k_{2}} \ldots q_{m}^{k_{m}}$, where q_{i} 's are primes not necessarily distinct, then $\frac{H}{L(H, A u t(G))} \cong \mathbb{Z}_{q_{1}^{k_{1}}} \times \mathbb{Z}_{q_{2}^{k_{2}}} \times \cdots \times \mathbb{Z}_{q_{m}^{k_{m}}}$.
Proof. If $g \neq 1$ and $\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))=\frac{n-1}{n p}$ then, by Lemma 4.1 and Proposition 2.6, we have

$$
\frac{n-1}{n p}=\frac{1}{p}\left(1-\frac{1}{|H: L(H, \operatorname{Aut}(G))|}\right)
$$

which gives $|H: L(H, \operatorname{Aut}(G))|=n$.
If $g=1$ and $\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))=\frac{n+p-1}{n p}$ then, by Lemma 4.1 and Proposition 2.6, we have

$$
\frac{n+p-1}{n p}=\frac{1}{p}\left(1+\frac{p-1}{|H: L(H, \operatorname{Aut}(G))|}\right)
$$

which also gives $|H: L(H, \operatorname{Aut}(G))|=n$.
Hence, $\frac{H}{L(H, A u t(G))}$ is isomorphic to a group of order n.
(1) If $n=q$ or q^{2} for some prime q then $|H: L(H, \operatorname{Aut}(G))|=q$ or q^{2}. Therefore $\frac{H}{L(H, A u t(G))}$ is abelian. Hence, the result follows from fundamental theorem of finite abelian groups.
(2) If H is abelian and $n=q_{1}^{k_{1}} q_{2}^{k_{2}} \ldots q_{m}^{k_{m}}$, where q_{i} 's are primes not necessarily distinct then $\frac{H}{L(H, \operatorname{Aut}(G))}$ is an abelian group of order $q_{1}^{k_{1}} q_{2}^{k_{2}} \ldots q_{m}^{k_{m}}$. Hence, the result follows from fundamental theorem of finite abelian groups.

Putting $H=G$, in Theorem 4.2, we have the following corollary.
Corollary 4.3. Let G be a finite group and $g \in G$. Let p be the smallest prime dividing $|\operatorname{Aut}(G)|$ and $|[G, \operatorname{Aut}(G)]|=p$. If $g \neq 1$ and $\operatorname{Pr}_{g}(G, \operatorname{Aut}(G))=\frac{n-1}{n p}$ or $g=1$ and $\operatorname{Pr}_{g}(G, \operatorname{Aut}(G))=\frac{n+p-1}{n p}$ (where n is a positive integer) then $\frac{G}{L(G)}$ is isomorphic to a group of order n. In particular,
(1) if $n=q$ or q^{2} for some prime q then $\frac{G}{L(G)} \cong \mathbb{Z}_{q}, \mathbb{Z}_{q^{2}}$ or $\mathbb{Z}_{q} \times \mathbb{Z}_{q}$.
(2) if G is abelian and $n=q_{1}^{k_{1}} q_{2}^{k_{2}} \ldots q_{m}^{k_{m}}$, where q_{i} 's are primes not necessarily distinct, then $\frac{G}{L(G))} \cong \mathbb{Z}_{q_{1}^{k_{1}}} \times \mathbb{Z}_{q_{2}^{k_{2}}} \times \cdots \times \mathbb{Z}_{q_{m}^{k_{m}}}$.
We conclude the paper with the following result which gives converse of Theorem 4.2.

Theorem 4.4. Let H be a subgroup of a finite group G and $g \in G$. Let p be the smallest prime dividing $|\operatorname{Aut}(G)|$ and $|[H, \operatorname{Aut}(G)]|=p$. If $\frac{H}{L(H, \operatorname{Aut}(G))}$ is isomorphic to a group of order n then

$$
\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))= \begin{cases}\frac{n-1}{n p}, & \text { if } g \neq 1 \\ \frac{n+p-1}{n p}, & \text { if } g=1\end{cases}
$$

Proof. If p is the smallest prime dividing $|\operatorname{Aut}(G)|$ and $|[H, \operatorname{Aut}(G)]|=p$ then, by Lemma 4.1, we have $\operatorname{orb}(x)=x[H, \operatorname{Aut}(G)]$ for all $x \in H \backslash L(H, \operatorname{Aut}(G))$. Therefore, by Proposition 2.6, we have

$$
\operatorname{Pr}_{g}(H, \operatorname{Aut}(G))= \begin{cases}\frac{1}{p}\left(1+\frac{p-1}{|H: L(H, \operatorname{Aut}(G))|}\right), & \text { if } g=1 \\ \frac{1}{p}\left(1-\frac{1}{|H: L(H, \operatorname{Aut}(G))|}\right), & \text { if } g \neq 1 .\end{cases}
$$

If $\frac{H}{L(H, \operatorname{Aut}(G))}$ is isomorphic to a group of order n then $|H: L(H, \operatorname{Aut}(G))|=n$ and hence the result follows.

Note that putting $H=G$ in Theorem 4.4, we get the converse of Corollary 4.3.
Acknowledgment. The authors would like to thank the referee for his/her valuable comments and suggestions. The first author would like to thank DST for the INSPIRE Fellowship.

References

[1] H. Arora and R. Karan, What is the probability an automorphism fixes a group element?, Comm. Algebra 45 (3), 1141-1150, 2017.
[2] P. Dutta and R.K. Nath, On relative autocommutativity degree of a subgroup of a finite group, arXiv:1706.05614v1 [math.GR], 2017.
[3] P. Dutta and R.K. Nath, Autocommuting probabilty of a finite group, Comm. Algebra 46 (3), 961-969, 2018.
[4] P. Hall, The classification of prime power groups, J. Reine Angew. Math. 182, 130-141, 1940.
[5] P.V. Hegarty, The absolute centre of a group, J. Algebra 169 (3), 929-935, 1994.
[6] C. J. Hillar and D. L. Rhea, Automorphism of finite abelian groups, Amer. Math. Monthly 114 (10), 917-923, 2007.
[7] M.R.R. Moghaddam, M.J. Sadeghifard and M. Eshrati, Some properties of autoisoclinism of groups, Fifth International group theory conference, Islamic Azad University, Mashhad, Iran, 13-15 March 2013.
[8] M.R.R. Moghaddam, F. Saeedi and E. Khamseh, The probability of an automorphism fixing a subgroup element of a finite group, Asian-Eur. J. Math. 4 (2), 301308, 2011.
[9] M.R. Rismanchian and Z. Sepehrizadeh, Autoisoclinism classes and autocommutativity degrees of finite groups, Hacet. J. Math. Stat. 44 (4), 893-899, 2015.
[10] G.J. Sherman, What is the probability an automorphism fixes a group element?, Amer. Math. Monthly 82, 261-264, 1975.

[^0]: *Corresponding Author.
 Email addresses: parama@gonitsora.com (P. Dutta), rajatkantinath@yahoo.com (R.K. Nath) Received: 02.06.2017; Accepted: 08.11.2017

