

RESEARCH ARTICLE

On generalized autocommutativity degree of finite groups

Parama Dutta^(D), Rajat Kanti Nath^{*}^(D)

Department of Mathematical Sciences, Tezpur University, Napaam-784028, Sonitpur, Assam, India.

Abstract

Let H be a subgroup of a finite group G and Aut(G) be the automorphism group of G. In this paper we introduce and study the probability that the autocommutator of a randomly chosen pair of elements, one from H and the other from Aut(G), is equal to a given element of G.

Mathematics Subject Classification (2010). 20D60, 20P05, 20F28

Keywords. automorphism group, autocommutativity degree, autoisoclinism

1. Introduction

Throughout the paper H denotes a subgroup of a finite group G and $\operatorname{Aut}(G)$ denotes automorphism group of G. The autocommutativity degree of G, denoted by $\operatorname{Pr}(G, \operatorname{Aut}(G))$, is the probability that an automorphism fixes an element of G. In other words,

$$\Pr(G, \operatorname{Aut}(G)) = \frac{|\{(x, \alpha) \in G \times \operatorname{Aut}(G) : [x, \alpha] = 1\}|}{|G||\operatorname{Aut}(G)|}$$

where $[x, \alpha] = x^{-1}\alpha(x)$ is the autocommutator of x and α . The study of autocommutativity degree of finite groups was initiated by Sherman [10] in 1975. Many results on $\Pr(G, \operatorname{Aut}(G))$, including some characterizations of G in terms of $\Pr(G, \operatorname{Aut}(G))$, can be found in [1,3]. In the year 2015, Rismanchian and Sepehrizadeh [9] generalized the concept of autocommutativity degree and studied relative autocommutativity degree of H, that is the probability that an automorphism of G fixes an element of H. However in the year 2011, Moghaddam et al. [8] also studied this notion. We write $\Pr(H, \operatorname{Aut}(G))$ to denote the relative autocommutativity degree of H. Recently, we have obtained several new results on $\Pr(H, \operatorname{Aut}(G))$ in [2]. In this paper, we introduce a new probability concept called the generalized relative autocommutativity degree of H given by the following ratio

$$\Pr_g(H, \operatorname{Aut}(G)) = \frac{|\{(x, \alpha) \in H \times \operatorname{Aut}(G) : [x, \alpha] = g\}|}{|H||\operatorname{Aut}(G)|}$$
(1.1)

where g is an element of G. In other words $Pr_g(H, Aut(G))$ is the probability that the autocommutator of a randomly chosen pair of elements, one from H and the other from Aut(G), is equal to a given element $g \in G$. Clearly, if g = 1 (the identity element of G) then $Pr_g(H, Aut(G)) = Pr(H, Aut(G))$. In the forthcoming sections, we obtain some computing

^{*}Corresponding Author.

Email addresses: parama@gonitsora.com (P. Dutta), rajatkantinath@yahoo.com (R.K. Nath) Received: 02.06.2017; Accepted: 08.11.2017

formulae and bounds for $\Pr_g(H, \operatorname{Aut}(G))$. We also obtain some characterizations of groups through $\Pr_g(H, \operatorname{Aut}(G))$.

Let $S(H, \operatorname{Aut}(G)) = \{[x, \alpha] : x \in H \text{ and } \alpha \in \operatorname{Aut}(G)\}$ and $[H, \operatorname{Aut}(G)]$ be the subgroup generated by $S(H, \operatorname{Aut}(G))$. Let $L(H, \operatorname{Aut}(G)) = \{x \in H : [x, \alpha] = 1 \text{ for all } \alpha \in \operatorname{Aut}(G)\}$ and $L(G) = L(G, \operatorname{Aut}(G))$, the absolute center of G defined in [5]. Clearly, $L(H, \operatorname{Aut}(G))$ is a normal subgroup of H contained in $H \cap Z(G)$. Let $C_{\operatorname{Aut}(G)}(x) = \{\alpha \in \operatorname{Aut}(G) : \alpha(x) = x\}$ for $x \in G$ and $C_{\operatorname{Aut}(G)}(H) = \{\alpha \in \operatorname{Aut}(G) : \alpha(x) = x \text{ for all } x \in H\}$. Then $C_{\operatorname{Aut}(G)}(x)$ is a subgroup of $\operatorname{Aut}(G)$ and $C_{\operatorname{Aut}(G)}(H) = \bigcap_{x \in H} C_{\operatorname{Aut}(G)}(x)$. Note that if $g \notin S(H, \operatorname{Aut}(G))$ then $\operatorname{Pr}_q(H, \operatorname{Aut}(G)) = 0$, therefore throughout the paper we consider $g \in S(H, \operatorname{Aut}(G))$.

2. Some computing formulae

We begin with the following results.

Proposition 2.1. Let H be a subgroup of G. If $g \in G$ then

$$\Pr_{q^{-1}}(H,\operatorname{Aut}(G)) = \Pr_g(H,\operatorname{Aut}(G)).$$

Proof. Let $A = \{(x, \alpha) \in H \times \operatorname{Aut}(G) : [x, \alpha] = g\}$ and $B = \{(y, \beta) \in H \times \operatorname{Aut}(G) : [y, \beta] = g^{-1}\}$. Then $(x, \alpha) \mapsto (\alpha(x), \alpha^{-1})$ gives a bijection between A and B. Therefore, |A| = |B| and hence the result follows from (1.1). \Box

Proposition 2.2. Let G_1 and G_2 be two finite groups such that $gcd(|G_1|, |G_2|) = 1$. Let H_1 and H_2 be subgroups of G_1 and G_2 respectively. If $(g_1, g_2) \in G_1 \times G_2$ then

$$\Pr_{(g_1,g_2)}(H_1 \times H_2, \operatorname{Aut}(G_1 \times G_2)) = \Pr_{g_1}(H_1, \operatorname{Aut}(G_1)) \Pr_{g_2}(H_2, \operatorname{Aut}(G_2)).$$

Proof. Let

$$\begin{aligned} \mathfrak{X} &= \{ ((x,y), \alpha_{G_1 \times G_2}) \in (H_1 \times H_2) \times \operatorname{Aut}(G_1 \times G_2) : \\ & [(x,y), \alpha_{G_1 \times G_2}] = (g_1, g_2) \}, \\ \mathfrak{Y} &= \{ (x, \alpha_{G_1}) \in H_1 \times \operatorname{Aut}(G_1) : [x, \alpha_{G_1}] = g_1 \} \text{ and} \\ \mathfrak{Z} &= \{ (y, \alpha_{G_2}) \in H_2 \times \operatorname{Aut}(G_2) : [y, \alpha_{G_2}] = g_2 \}. \end{aligned}$$

Since $gcd(|G_1|, |G_2|) = 1$, by [6, Lemma 2.1], we have $Aut(G_1 \times G_2) = Aut(G_1) \times Aut(G_2)$. Therefore, for every $\alpha_{G_1 \times G_2} \in Aut(G_1 \times G_2)$ there exist unique $\alpha_{G_1} \in Aut(G_1)$ and $\alpha_{G_2} \in Aut(G_2)$ such that $\alpha_{G_1 \times G_2} = \alpha_{G_1} \times \alpha_{G_2}$, where $\alpha_{G_1} \times \alpha_{G_2}((x, y)) = (\alpha_{G_1}(x), \alpha_{G_2}(y))$ for all $(x, y) \in H_1 \times H_2$. Also, for all $(x, y) \in H_1 \times H_2$, we have $[(x, y), \alpha_{G_1 \times G_2}] = (g_1, g_2)$ if and only if $[x, \alpha_{G_1}] = g_1$ and $[y, \alpha_{G_2}] = g_2$. These lead to show that $\mathfrak{X} = \mathfrak{Y} \times \mathfrak{Z}$. Therefore

$$\frac{|\mathcal{X}|}{|H_1 \times H_2||\operatorname{Aut}(G_1 \times G_2)|} = \frac{|\mathcal{Y}|}{|H_1||\operatorname{Aut}(G_1)|} \cdot \frac{|\mathcal{Z}|}{|H_2||\operatorname{Aut}(G_2)|}.$$
sult follows from (1.1).

Hence, the result follows from (1.1).

In the year 1940, Hall [4] introduced the concept of isoclinism between two groups. Following Hall, Moghaddam et al. [7] have defined autoisoclinism between two groups, in the year 2013. Recently in [2], we generalize the notion of autoisoclinism between two groups. Let H_1 and H_2 be subgroups of the groups G_1 and G_2 respectively. The pairs (H_1, G_1) and (H_2, G_2) are said to be autoisoclinic if there exist isomorphisms ψ : $\frac{H_1}{L(H_1, \operatorname{Aut} G_1)} \rightarrow \frac{H_2}{L(H_2, \operatorname{Aut} (G_2))}, \beta$: $[H_1, \operatorname{Aut} (G_1)] \rightarrow [H_2, \operatorname{Aut} (G_2)]$ and γ : $\operatorname{Aut} (G_1) \rightarrow$ $\operatorname{Aut} (G_2)$ such that the following diagram commutes

$$\begin{array}{ccc} \frac{H_1}{L(H_1,\operatorname{Aut}(G_1))} \times \operatorname{Aut}(G_1) & \xrightarrow{\psi \times \gamma} & \frac{H_2}{L(H_2,\operatorname{Aut}(G_2))} \times \operatorname{Aut}(G_2) \\ & & \downarrow^{a_{(H_1,\operatorname{Aut}(G_1))}} & & \downarrow^{a_{(H_2,\operatorname{Aut}(G_2))}} \\ & & [H_1,\operatorname{Aut}(G_1)] & \xrightarrow{\beta} & [H_2,\operatorname{Aut}(G_2)] \end{array}$$

where the maps $a_{(H_i,\operatorname{Aut}(G_i))}$: $\frac{H_i}{L(H_i,\operatorname{Aut}(G_i))} \times \operatorname{Aut}(G_i) \to [H_i,\operatorname{Aut}(G_i)]$, for i = 1, 2, are given by

$$a_{(H_i,\operatorname{Aut}(G_i))}(x_i L(H_i,\operatorname{Aut}(G_i)),\alpha_i) = [x_i,\alpha_i].$$

Such a pair $(\psi \times \gamma, \beta)$ is said to be an autoisoclinism between the pairs of groups (H_1, G_1) and (H_2, G_2) . We have the following generalization of [3, Theorem 5.1] and [9, Lemma 2.5].

Theorem 2.3. Let G_1 and G_2 be two finite groups with subgroups H_1 and H_2 respectively. If $(\psi \times \gamma, \beta)$ is an autoisoclinism between the pairs (H_1, G_1) and (H_2, G_2) then, for $g \in G_1$,

$$\Pr_{\beta(g)}(H_2, \operatorname{Aut}(G_2)) = \Pr_g(H_1, \operatorname{Aut}(G_1))$$

Proof. Let $S_g = \{(x_1L(H_1, \operatorname{Aut}(G_1)), \alpha_1) \in \frac{H_1}{L(H_1, \operatorname{Aut}(G_1))} \times \operatorname{Aut}(G_1) : [x_1, \alpha_1] = g\}$ and $\mathcal{T}_{\beta(g)} = \{(x_2L(H_2, \operatorname{Aut}(G_2)), \alpha_2) \in \frac{H_2}{L(H_2, \operatorname{Aut}(G_2))} \times \operatorname{Aut}(G_2) : [x_2, \alpha_2] = \beta(g)\}.$ Since (H_1, G_1) is autoisoclinic to (H_2, G_2) we have $|S_g| = |\mathcal{T}_{\beta(g)}|$. Again, it is clear that

$$|\{(x_1, \alpha_1) \in H_1 \times \operatorname{Aut}(G_1) : [x_1, \alpha_1] = g\}| = |L(H_1, \operatorname{Aut}(G_1))||\mathfrak{S}_g|$$
(2.1)

and

$$|\{(x_2, \alpha_2) \in H_2 \times \operatorname{Aut}(G_2) : [x_2, \alpha_2] = \beta(g)\}| = |L(H_2, \operatorname{Aut}(G_2))||\mathcal{T}_{\beta(g)}|.$$
(2.2)

Hence, the result follows from (1.1), (2.1) and (2.2).

Note that $\operatorname{Aut}(G)$ acts on G by the action $(\alpha, x) \mapsto \alpha(x)$ where $\alpha \in \operatorname{Aut}(G)$ and $x \in G$. Let $\operatorname{orb}(x) = \{\alpha(x) : \alpha \in \operatorname{Aut}(G)\}$ be the orbit of $x \in G$. Then by orbit-stabilizer theorem, we have

$$|\operatorname{orb}(x)| = \frac{|\operatorname{Aut}(G)|}{|C_{\operatorname{Aut}(G)}(x)|}$$

Now we obtain the following computing formula for $Pr_g(H, Aut(G))$ in terms of the order of $C_{Aut(G)}(x)$ and orb(x).

Theorem 2.4. Let H be a subgroup of G. If $g \in G$ then

$$\Pr_g(H, \operatorname{Aut}(G)) = \frac{1}{|H||\operatorname{Aut}(G)|} \sum_{\substack{x \in H \\ xg \in \operatorname{orb}(x)}} |C_{\operatorname{Aut}(G)}(x)| = \frac{1}{|H|} \sum_{\substack{x \in H \\ xg \in \operatorname{orb}(x)}} \frac{1}{|\operatorname{orb}(x)|}.$$

Proof. Let $T_{x,g}(H,G) = \{\alpha \in \operatorname{Aut}(G) : [x,\alpha] = g\}$ for any $x \in H$. Then $T_{x,g}(H,G) \neq \emptyset$ if and only if $xg \in \operatorname{orb}(x)$. We also have

$$\{(x,\alpha) \in H \times \operatorname{Aut}(G) : [x,\alpha] = g\} = \bigsqcup_{x \in H} (\{x\} \times T_{x,g}(H,G)),$$

where \sqcup represents the union of disjoint sets. Therefore, by (1.1), we have

$$H||\operatorname{Aut}(G)|\operatorname{Pr}_{g}(H,\operatorname{Aut}(G))| = |\underset{x \in H}{\sqcup} (\{x\} \times T_{x,g}(H,G))| = \sum_{x \in H} |T_{x,g}(H,G)|.$$
(2.3)

Let $\sigma \in T_{x,g}(H,G)$ and $\beta \in \sigma C_{\operatorname{Aut}(G)}(x)$. Then $\beta = \sigma \alpha$ for some $\alpha \in C_{\operatorname{Aut}(G)}(x)$. We have

$$[x,\beta] = [x,\sigma\alpha] = x^{-1}\sigma(\alpha(x)) = [x,\sigma] = g.$$

Therefore, $\beta \in T_{x,g}(H,G)$ and so $\sigma C_{\operatorname{Aut}(G)}(x) \subseteq T_{x,g}(H,G)$. Again, let $\gamma \in T_{x,g}(H,G)$ then $\gamma(x) = xg$. We have $\sigma^{-1}\gamma(x) = \sigma^{-1}(xg) = x$ and so $\sigma^{-1}\gamma \in C_{\operatorname{Aut}(G)}(x)$. Therefore, $\gamma \in \sigma C_{\operatorname{Aut}(G)}(x)$ which gives $T_{x,g}(H,G) \subseteq \sigma C_{\operatorname{Aut}(G)}(x)$. Thus, $\sigma C_{\operatorname{Aut}(G)}(x) = T_{x,g}(H,G)$ and hence

$$|T_{x,g}(H,G)| = |C_{\text{Aut}(G)}(x)| = \frac{|\operatorname{Aut}(G)|}{|\operatorname{orb}(x)|}.$$
(2.4)

Therefore, the result follows from (2.3) and (2.4).

Putting g = 1 in Theorem 2.4 we get the following corollary.

Corollary 2.5. Let H be a subgroup of G. Then

$$\Pr(H, \operatorname{Aut}(G)) = \frac{1}{|H||\operatorname{Aut}(G)|} \sum_{x \in H} |C_{\operatorname{Aut}(G)}(x)| = \frac{|\operatorname{orb}(H)|}{|H|}$$

where $\operatorname{orb}(H) = {\operatorname{orb}(x) : x \in H}.$

As an application of Theorem 2.4 we have the following result.

Proposition 2.6. Let H be a subgroup of G. If $\operatorname{orb}(x) = x[H, \operatorname{Aut}(G)]$ for all $x \in H \setminus L(H, \operatorname{Aut}(G))$ then

$$\Pr_{g}(H, \operatorname{Aut}(G)) = \begin{cases} \frac{1}{|[H, \operatorname{Aut}(G)]|} \left(1 + \frac{|[H, \operatorname{Aut}(G)]| - 1}{|H : L(H, \operatorname{Aut}(G))|}\right), & \text{if } g = 1\\ \frac{1}{|[H, \operatorname{Aut}(G)]|} \left(1 - \frac{1}{|H : L(H, \operatorname{Aut}(G))|}\right), & \text{if } g \neq 1. \end{cases}$$

Proof. If g = 1 then the result follows from [2, Proposition 3.4]. If $g \neq 1$, we have $xg \notin \operatorname{orb}(x)$ for all $x \in L(H, \operatorname{Aut}(G))$. Again, since $g \in S(H, \operatorname{Aut}(G)) \subseteq [H, \operatorname{Aut}(G)]$ therefore $xg \in x[H, \operatorname{Aut}(G)] = \operatorname{orb}(x)$ for all $x \in H \setminus L(H, \operatorname{Aut}(G))$. Now from Theorem 2.4 we have

$$\begin{aligned} \Pr_{g}(H, \operatorname{Aut}(G)) &= \frac{1}{|H|} \sum_{\substack{x \in H \setminus L(H, \operatorname{Aut}(G)) \\ xg \in \operatorname{orb}(x)}} \frac{1}{|\operatorname{orb}(x)|} \\ &= \frac{1}{|H|} \sum_{\substack{x \in H \setminus L(H, \operatorname{Aut}(G)) \\ xg \in \operatorname{orb}(x)}} \frac{1}{|H, \operatorname{Aut}(G)|} \\ &= \frac{1}{|[H, \operatorname{Aut}(G)]|} \left(1 - \frac{1}{|H: L(H, \operatorname{Aut}(G))|}\right). \end{aligned}$$

3. Various bounds

In this section, we obtain various bounds for $Pr_g(H, Aut(G))$. We begin with the following lower bounds.

Proposition 3.1. Let H be a subgroup of G. Then, for $g \in G$, we have

$$\Pr_g(H, \operatorname{Aut}(G)) \ge \begin{cases} \frac{|L(H, \operatorname{Aut}(G))|}{|H|} + \frac{|C_{\operatorname{Aut}(G)}(H)|(|H| - |L(H, \operatorname{Aut}(G))|)}{|H||\operatorname{Aut}(G)|}, & \text{if } g = 1\\ \frac{|L(H, \operatorname{Aut}(G))||C_{\operatorname{Aut}(G)}(H)|}{|H||\operatorname{Aut}(G)|}, & \text{if } g \neq 1. \end{cases}$$

Proof. Let \mathcal{C} denotes the set $\{(x, \alpha) \in H \times \operatorname{Aut}(G) : [x, \alpha] = g\}$.

If g = 1 then $(L(H, \operatorname{Aut}(G)) \times \operatorname{Aut}(G)) \cup (H \times C_{\operatorname{Aut}(G)}(H))$ is a subset of \mathcal{C} and $|(L(H, \operatorname{Aut}(G)) \times \operatorname{Aut}(G)) \cup (H \times C_{\operatorname{Aut}(G)}(H))| = |L(H, \operatorname{Aut}(G))||\operatorname{Aut}(G)| + |C_{\operatorname{Aut}(G)}(H)||H| - |L(H, \operatorname{Aut}(G))||C_{\operatorname{Aut}(G)}(H)|.$ Hence, the result follows from (1.1).

If $g \neq 1$ then C is non-empty since $g \in S(H, \operatorname{Aut}(G))$. Let $(y, \beta) \in \mathbb{C}$ then $(y, \beta) \notin L(H, \operatorname{Aut}(G)) \times C_{\operatorname{Aut}(G)}(H)$ otherwise $[y, \beta] = 1$. It is easy to see that the coset $(y, \beta)(L(H, \operatorname{Aut}(G)) \times C_{\operatorname{Aut}(G)}(H))$ having order $|L(H, \operatorname{Aut}(G))||C_{\operatorname{Aut}(G)}(H)|$ is a subset of C. Hence, the result follows from (1.1). \Box

Proposition 3.2. Let H be a subgroup of G. If $g \in G$ then

$$\Pr_g(H, \operatorname{Aut}(G)) \le \Pr(H, \operatorname{Aut}(G)).$$

The equality holds if and only if g = 1.

Proof. By Theorem 2.4, we have

$$\Pr_{g}(H, \operatorname{Aut}(G)) = \frac{1}{|H||\operatorname{Aut}(G)|} \sum_{\substack{x \in H \\ xg \in \operatorname{orb}(x)}} |C_{\operatorname{Aut}(G)}(x)|$$
$$\leq \frac{1}{|H||\operatorname{Aut}(G)|} \sum_{x \in H} |C_{\operatorname{Aut}(G)}(x)| = \Pr(H, \operatorname{Aut}(G)).$$
e equality holds if and only if $q = 1$.

Clearly the equality holds if and only if g = 1.

Proposition 3.3. Let H be a subgroup of G. Let $g \in G$ and p the smallest prime dividing $|\operatorname{Aut}(G)|$. If $g \neq 1$ then

$$\Pr_g(H, \operatorname{Aut}(G)) \le \frac{|H| - |L(H, \operatorname{Aut}(G))|}{p|H|} < \frac{1}{p}.$$

Proof. By Theorem 2.4, we have

$$\Pr_{g}(H, \operatorname{Aut}(G)) = \frac{1}{|H|} \sum_{\substack{x \in H \setminus L(H, \operatorname{Aut}(G)) \\ xg \in \operatorname{orb}(x)}} \frac{1}{|\operatorname{orb}(x)|}$$
(3.1)

noting that for $x \in L(H, \operatorname{Aut}(G))$ we have $xg \notin \operatorname{orb}(x)$. Also, for $x \in H \setminus L(H, \operatorname{Aut}(G))$ and $xg \in \operatorname{orb}(x)$ we have $|\operatorname{orb}(x)| > 1$. Since $|\operatorname{orb}(x)|$ is a divisor of $|\operatorname{Aut}(G)|$ we have $|\operatorname{orb}(x)| \ge p$. Hence, the result follows from (3.1).

Proposition 3.4. Let H_1 and H_2 be two subgroups of G such that $H_1 \subseteq H_2$. Then

$$\Pr_g(H_1, \operatorname{Aut}(G)) \le |H_2: H_1| \Pr_g(H_2, \operatorname{Aut}(G)).$$

The equality holds if and only if $xg \notin \operatorname{orb}(x)$ for all $x \in H_2 \setminus H_1$.

Proof. By Theorem 2.4, we have

$$\begin{aligned} |H_1||\operatorname{Aut}(G)|\operatorname{Pr}_g(H_1,\operatorname{Aut}(G)) &= \sum_{\substack{x \in H_1 \\ xg \in \operatorname{orb}(x)}} |C_{\operatorname{Aut}(G)}(x)| \\ &\leq \sum_{\substack{x \in H_2 \\ xg \in \operatorname{orb}(x)}} |C_{\operatorname{Aut}(G)}(x)| \\ &= |H_2||\operatorname{Aut}(G)|\operatorname{Pr}_g(H_2,\operatorname{Aut}(G)). \end{aligned}$$

Hence, the result follows.

We conclude this section with the following result.

Proposition 3.5. Let H be a subgroup of G. If $g \in G$ then

$$\Pr_g(H, \operatorname{Aut}(G)) \le |G:H| \Pr(G, \operatorname{Aut}(G))$$

with equality if and only if g = 1 and H = G.

Proof. By Proposition 3.2, we have

$$\begin{aligned} \Pr_{g}(H,\operatorname{Aut}(G)) &\leq \Pr(H,\operatorname{Aut}(G)) \\ &= \frac{1}{|H||\operatorname{Aut}(G)|} \sum_{x \in H} |C_{\operatorname{Aut}(G)}(x)| \\ &\leq \frac{1}{|H||\operatorname{Aut}(G)|} \sum_{x \in G} |C_{\operatorname{Aut}(G)}(x)| \\ &= |G:H|\operatorname{Pr}(G,\operatorname{Aut}(G)). \end{aligned}$$

Hence, the result follows from Corollary 2.5.

476

4. Characterizations through $Pr_q(H, Aut(G))$

In this section, we obtain some characterizations of groups through $\Pr_g(H, \operatorname{Aut}(G))$. The following lemma is useful in this regard.

Lemma 4.1. Let H be a subgroup of G. If p is the smallest prime divisor of $|\operatorname{Aut}(G)|$ and $|[H, \operatorname{Aut}(G)]| = p$ then $\operatorname{orb}(x) = x[H, \operatorname{Aut}(G)]$ for all $x \in H \setminus L(H, \operatorname{Aut}(G))$.

Proof. We have $\operatorname{orb}(x) \subseteq x[H, \operatorname{Aut}(G)]$ for all $x \in H$. Also, $|\operatorname{orb}(x)|$ is a divisor of $|\operatorname{Aut}(G)|$ for all $x \in H$. Therefore, $|\operatorname{orb}(x)| \geq p$ for all $x \in H \setminus L(H, \operatorname{Aut}(G))$. Hence, $|\operatorname{orb}(x)| = |x[H, \operatorname{Aut}(G)]| = p$ for all $x \in H \setminus L(H, \operatorname{Aut}(G))$ and the result follows.

Now we derive the following characterizations.

Theorem 4.2. Let H be a subgroup of a finite group G and $g \in G$. Let p be the smallest prime dividing $|\operatorname{Aut}(G)|$ and $|[H, \operatorname{Aut}(G)]| = p$. If $g \neq 1$ and $\Pr_g(H, \operatorname{Aut}(G)) = \frac{n-1}{np}$ or g = 1 and $\Pr_g(H, \operatorname{Aut}(G)) = \frac{n+p-1}{np}$ (where n is a positive integer) then $\frac{H}{L(H, \operatorname{Aut}(G))}$ is isomorphic to a group of order n. In particular,

- (1) if n = q or q^2 for some prime q then $\frac{H}{L(H,\operatorname{Aut}(G))} \cong \mathbb{Z}_q, \mathbb{Z}_{q^2}$ or $\mathbb{Z}_q \times \mathbb{Z}_q$.
- (2) if H is abelian and $n = q_1^{k_1} q_2^{k_2} \dots q_m^{k_m}$, where q_i 's are primes not necessarily dis-tinct, then $\frac{H}{L(H,\operatorname{Aut}(G))} \cong \mathbb{Z}_{q_1^{k_1}} \times \mathbb{Z}_{q_2^{k_2}} \times \dots \times \mathbb{Z}_{q_m^{k_m}}$.

Proof. If $g \neq 1$ and $\Pr_g(H, \operatorname{Aut}(G)) = \frac{n-1}{np}$ then, by Lemma 4.1 and Proposition 2.6, we have

$$\frac{n-1}{np} = \frac{1}{p} \left(1 - \frac{1}{|H: L(H, \operatorname{Aut}(G))|} \right)$$

which gives $|H : L(H, \operatorname{Aut}(G))| = n$.

If g = 1 and $\Pr_g(H, \operatorname{Aut}(G)) = \frac{n+p-1}{np}$ then, by Lemma 4.1 and Proposition 2.6, we have

$$\frac{n+p-1}{np} = \frac{1}{p} \left(1 + \frac{p-1}{|H:L(H, \text{Aut}(G))|} \right)$$

which also gives $|H : L(H, \operatorname{Aut}(G))| = n$. Hence, $\frac{H}{L(H, \operatorname{Aut}(G))}$ is isomorphic to a group of order n.

(1) If n = q or q^2 for some prime q then $|H : L(H, \operatorname{Aut}(G))| = q$ or q^2 . Therefore $\frac{H}{L(H,\operatorname{Aut}(G))}$ is abelian. Hence, the result follows from fundamental theorem of finite abelian groups.

(2) If *H* is abelian and $n = q_1^{k_1} q_2^{k_2} \dots q_m^{k_m}$, where q_i 's are primes not necessarily distinct then $\frac{H}{L(H,\operatorname{Aut}(G))}$ is an abelian group of order $q_1^{k_1} q_2^{k_2} \dots q_m^{k_m}$. Hence, the result follows from fundamental theorem of finite abelian groups.

Putting H = G, in Theorem 4.2, we have the following corollary.

Corollary 4.3. Let G be a finite group and $g \in G$. Let p be the smallest prime dividing $|\operatorname{Aut}(G)|$ and $|[G,\operatorname{Aut}(G)]| = p$. If $g \neq 1$ and $\operatorname{Pr}_g(G,\operatorname{Aut}(G)) = \frac{n-1}{np}$ or g = 1 and $\Pr_g(G, \operatorname{Aut}(G)) = \frac{n+p-1}{np}$ (where *n* is a positive integer) then $\frac{G}{L(G)}$ is isomorphic to a group of order *n*. In particular,

- (1) if n = q or q^2 for some prime q then $\frac{G}{L(G)} \cong \mathbb{Z}_q, \mathbb{Z}_{q^2}$ or $\mathbb{Z}_q \times \mathbb{Z}_q$.
- (2) if G is abelian and $n = q_1^{k_1} q_2^{k_2} \dots q_m^{k_m}$, where q_i 's are primes not necessarily distinct, then $\frac{G}{L(G)} \cong \mathbb{Z}_{q_1^{k_1}} \times \mathbb{Z}_{q_2^{k_2}} \times \dots \times \mathbb{Z}_{q_m^{k_m}}$.

We conclude the paper with the following result which gives converse of Theorem 4.2.

Theorem 4.4. Let H be a subgroup of a finite group G and $g \in G$. Let p be the smallest prime dividing $|\operatorname{Aut}(G)|$ and $|[H, \operatorname{Aut}(G)]| = p$. If $\frac{H}{L(H, \operatorname{Aut}(G))}$ is isomorphic to a group of order n then

$$\Pr_g(H, \operatorname{Aut}(G)) = \begin{cases} \frac{n-1}{np}, & \text{if } g \neq 1\\ \frac{n+p-1}{np}, & \text{if } g = 1. \end{cases}$$

Proof. If p is the smallest prime dividing $|\operatorname{Aut}(G)|$ and $|[H, \operatorname{Aut}(G)]| = p$ then, by Lemma 4.1, we have $\operatorname{orb}(x) = x[H, \operatorname{Aut}(G)]$ for all $x \in H \setminus L(H, \operatorname{Aut}(G))$. Therefore, by Proposition 2.6, we have

$$\Pr_g(H, \operatorname{Aut}(G)) = \begin{cases} \frac{1}{p} \left(1 + \frac{p-1}{|H:L(H, \operatorname{Aut}(G))|} \right), & \text{if } g = 1\\ \frac{1}{p} \left(1 - \frac{1}{|H:L(H, \operatorname{Aut}(G))|} \right), & \text{if } g \neq 1. \end{cases}$$

If $\frac{H}{L(H,\operatorname{Aut}(G))}$ is isomorphic to a group of order *n* then $|H: L(H,\operatorname{Aut}(G))| = n$ and hence the result follows.

Note that putting H = G in Theorem 4.4, we get the converse of Corollary 4.3.

Acknowledgment. The authors would like to thank the referee for his/her valuable comments and suggestions. The first author would like to thank DST for the INSPIRE Fellowship.

References

- H. Arora and R. Karan, What is the probability an automorphism fixes a group element?, Comm. Algebra 45 (3), 1141-1150, 2017.
- [2] P. Dutta and R.K. Nath, On relative autocommutativity degree of a subgroup of a finite group, arXiv:1706.05614v1 [math.GR], 2017.
- [3] P. Dutta and R.K. Nath, Autocommuting probability of a finite group, Comm. Algebra 46 (3), 961-969, 2018.
- [4] P. Hall, The classification of prime power groups, J. Reine Angew. Math. 182, 130-141, 1940.
- [5] P.V. Hegarty, The absolute centre of a group, J. Algebra 169 (3), 929-935, 1994.
- [6] C. J. Hillar and D. L. Rhea, Automorphism of finite abelian groups, Amer. Math. Monthly 114 (10), 917-923, 2007.
- [7] M.R.R. Moghaddam, M.J. Sadeghifard and M. Eshrati, Some properties of autoisoclinism of groups, Fifth International group theory conference, Islamic Azad University, Mashhad, Iran, 13-15 March 2013.
- [8] M.R.R. Moghaddam, F. Saeedi and E. Khamseh, The probability of an automorphism fixing a subgroup element of a finite group, Asian-Eur. J. Math. 4 (2), 301308, 2011.
- [9] M.R. Rismanchian and Z. Sepehrizadeh, Autoisoclinism classes and autocommutativity degrees of finite groups, Hacet. J. Math. Stat. 44 (4), 893-899, 2015.
- [10] G.J. Sherman, What is the probability an automorphism fixes a group element?, Amer. Math. Monthly 82, 261-264, 1975.