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Abstract

This paper proposed an exact distribution of Hadi’s influence measure
that can be used to evaluate the potential outliers in a linear multiple
regression analysis. The authors explored a relationship between the
measure in terms of two independent F-ratios and they derived density
function of the measure in a complicated series expression form with
Gauss hyper-geometric function. Moreover, the first two moments of
the distribution are derived in terms of Beta function and the authors
computed the critical points of Hadi’s measures at 5% and 1% signif-
icance level for different sample sizes and varying no. of predictors.
Finally, the numerical example shows the identification of the potential
outliers and the results extracted from the proposed approaches are
more scientific, systematic and its exactness outperforms the Hadi’s
traditional approach.
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1. Introduction and Related work
While fitting a regression model it is well understood that not all observations in a

dataset play an equal role. Some observations have more impact than the others. Those
observations which significantly influence the results of a regression analysis are called
influential observations. Andrews and Pregibon [2] highlighted the need to find the out-
liers that matter. This means not all outliers need to be harmful in that they have an
undue influence on the estimation of the parameters in the regression model. Hence,
examining the residuals alone might not lead us to the detection of aberrant or unusual
observations. Thus, other ways for finding influential observations are needed. Hoaglin
and Welsch [9] discussed the importance of the projection matrix in linear regression,
where the projection matrix is the matrix that projects onto the regression space. They
argued that the diagonal elements of the projection matrix are important ingredients in
influence analysis. The diagonal elements are referred to as leverages since they can be
thought of as the amount of leverage concerning the response value on the corresponding
predicted response value. Perhaps the most well-known influence measure was proposed
by Cook [6], referred as Cook’s distance. It is an influence measure used for assessing the
influence of the observations on the estimated parameter vector in the linear regression
model. It is widely used by practitioners for detecting influential observations. There are
other influence measures to use in the linear regression analysis for assessing the influ-
ence of the observations on various results of the regression analysis. Such as, Andrews
and Pregibon [2] derived a measure of the influence of an observation on the estimated
parameters. This measure the AP statistic is based on the change in volume of confi-
dence ellipsoids with and without a particular observation. Moreover, Belsley et al. [3]
suggested an influence measure for assessing the influence of an observation on the vari-
ance of the estimated parameters in the linear regression model, known as COVRATIO.
Besides the influence measures mentioned here there exist much more, see e.g. Chatter-
jee and Hadi [5] and Hadi [8] for excellent overviews of influence measures. Graphical
investigation of data is a powerful tool in exploratory analysis. It can be used to examine
relationships between variables and discover observations deviating from other. Hence,
influential observations can also be detected using graphical tools. Mosteller and Tukey
[11] introduced the added variable plot, which is used for graphically detecting observa-
tions that have a large influence on the parameter estimates. For details concerning the
added variable plot, such as construction and properties, see, Belsley et al. [3], where
the plot is referred to as the partial regression leverage plot, and Cook and Weisberg [7].
Other results on graphical tools in influence analysis are provided by Johnson and Mc-
Culloch [10]. It is important to note that the graphical tools used in influence analysis are
not conclusive, but rather suggestive. From the previous discussions, we can see that the
1970’s and the 1980’s were the decades when most research results on influence analysis
in linear regression came to see the light. However, influence analysis in linear regression
is still an active research area. Nurunnabi et al. [12] proposed a modification of Cook’s
distance. This modification enables the identification of multiple influential observations.
Furthermore, Beyaztas and Alin [4] used a combined Bootstrap and Jackknife algorithm
to detect influential observations. In applied data analysis, there is an increasing avail-
ability of data sets containing a large number of variables. When such data is in the
hands of the researcher sparse regression can be implemented, which is another field of
research active today. In sparse regression, a penalty term on the regression parame-
ters is added which shrinks the number of parameters. Common approaches to estimate
the parameter in the sparse regression are, however, sensitive to influential observations
and new methods are needed. Alfons et al. [1] and Park et al. [13] proposed robust
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estimation methods, where influential observations are not harmful to the resulting es-
timates. Considering the above reviews, the authors proposed the exact distribution of
Hadi’s influence function

(
H2
i

)
which exactly identifies the influential data points and it

is discussed in the subsequent sections.

2. Relationship between Hadi’s
(
H2

)
influence measure and F-

ratios
The multiple linear regression models with random error is given by

(2.1) Y = Xβ + e

where Y
(nX1)

is the matrix of the dependent variable, β
(kX1)

is the vector of beta coefficients

or partial regression coefficients and e
(nX1)

is the residual followed normal distribution

N (0,σ2
eIn). From (2.1), statisticians concentrate and give importance to the error di-

agnostics such as outlier detection, identification of leverage points and evaluation of
influential observations. Several error diagnostics techniques exist in the literature pro-
posed by statisticians, but Hadi’s

(
H2
i

)
influence measure is the interesting technique

based on the simple fact that potentially influential observations are outliers in X-space,
Y-space or both. The general form of the Hadi’s influence measure of the ith observation
is given by

(2.2) H2
i =

(p+ 1)
∧
e2i

(1− hii)

(
∧t
e

∧
e−

∧
e2i

) +
hii

1− hii

Where
∧
e2i is the vector of squared estimated residuals, p is the no.of predictors,

∧
et

∧
e is

the sum of the squared estimated residuals and hii is the hat values of ith observation or
diagonal elements of the hat matrix(H = X(X

′
X)−1X

′
). This diagnostic measure is the

sum of two components each of which has an interpretation. A large value for the first
term indicates that the model has a poor fit (a large prediction error) and a large value
for the second term indicates the presence of an outlier in the X-space. Similarly, Hadi
pointed this diagnostic measure possess several desirable properties and it is also supple-
mented by a graphical display which shows the source of influence. He suggested,

(
H2
i

)
for observations more than a cut-off of E

(
H2
i

)
+c
√
V (H2

i ) which is treated as a potential
outlier. Hadi’s influence measure can also be written in an alternative form as

(2.3) H2
i =

p+ 1

(1− hii)

((
∧t
e

∧
e /

∧
e2i

)
− 1

) +
hii

1− hii

It is known the unbiased estimate of the true error variance is s2 =
∧t
e

∧
e /n − p − 1 and

substitute ∧t
e

∧
e = s2 (n− p− 1) in (2.3) to get

(2.4) H2
i =

p+ 1
n−p−1

∧
e2i /s

2(1−hii)
− (1− hii)

+
hii

1− hii

Rewrite (2.4), in terms of the internally studentized residual (ri)which is equal to
∧
ei /s

√
1− hii and it is given as

(2.5) H2
i =

p+ 1

((n− p− 1) /r2i )− (1− hii)
+

hii
1− hii
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Though Hadi’s influence measure is scientific and the yardstick used to detect the
influential observation is not scientific and the authors believe it is based on the rule of
thumb approach. Because

(
H2
i

)
is non-normally distributed and the usage of mean and

variance in the cut-off
(
E
(
H2
i

)
+ c
√
V (H2

i )
)

is meaningless and illogic. Secondly, when
using the cut-off, it is not recommended by the author to use a specific and fixed value for
the constant (c). Finally, the usage of plots and graphs to identify the potential outliers
and sources of influence leads to imprecision and ambiguity.In order to overcome this rule
of thumb approach of identifying the influential observations, authors proposed the exact
distribution for Hadi’s influence measure and established a scientific yardstick to scruti-
nize the exact influential observations. For this, authors utilize the relationship among
the Hadi’s

(
H2
i

)
, internally studentized residual(ri) and hat elements(hii).The terms

(ri) and (hii) are independent because the computation of (ri) involves the error term
ei ∼ N(0, σ2

e) and hii values involves the set of predictors (H = X(X
′
X)−1X

′
).Therefore,

from the property of least squares E(eX) = 0 , so ri and hii are also uncorrelated and
independent. Using this assumption, authors first determine the distribution of (ri)based
on the relationship given by Weisberg (1980) as

(2.6) ti = ri

√
n− p− 2

(n− p− 1)− r2i
∼ t(n−p−2)

From (2.6) it follows student’s t- distribution with (n− p− 2) degrees of freedom and it
can be written in terms of the F-ratio as

r2i =
(n− p− 1)t2i

(n− p− 2) + t2i

(2.7) r2i =
(n− p− 1)Fi(1,n−p−2)

(n− p− 2) + Fi(1,n−p−2)

From (2.7), if ti follows student’s t- distribution with (n− p− 2) degrees of freedom,
then t2i follows F(1,n−p−2) distribution with (1, n− p− 2) degrees of freedom. Similarly,
authors identify the distribution of hii based on the relationship proposed by Belsey et
al [3] and they showed when the set of predictors is multivariate normal with(µX ,ΣX),
then

(2.8) (n− p) (hii − 1/n)

(p− 1)(1− hii)
∼ F(p−1,n−p)

From (2.8) it follows F-distribution with (p− 1, n− p) degrees of freedom and it can
be written in an alternative form as

(2.9) E
(
H2
i

)
= (p+ 1) (ϕ1 (p, n)) +

n

n− 1
(ϕ2 (p, n))− 1

In order to derive the exact distribution of
(
H2
i

)
, substitute (2.7) and (2.9) in (2.5),

authors get the Hadi’s
(
H2
i

)
measure in terms of the two independent F-ratios with (1, n−

p− 2) and (p− 1, n− p) degrees of freedom respectively and the relationship is given as

(2.10) H2
i =

p+ 1
(n−p−2)+Fi(1,n−p−2)

Fi(1,n−p−2)
− (n−1)/n

1+((p−1)/(n−p))Fi(p−1,n−p)

+
((p− 1)/(n− p))Fi(p−1,n−p) + 1/n

(n− 1)/n
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(2.11) H2
i =

p+ 1

1 + (n− p− 2)Fi(n−p−2,1) − (n−1)/n
1+((p−1)/(n−p))Fi(p−1,n−p)

+

(
1 + ((p− 1)/(n− p))Fi(p−1,n−p)

)
− (n− 1)/n

(n− 1)/n

From (2.11), it can be further simplified and
(
H2
i

)
is expressed in terms of two inde-

pendent beta variables namely θ1i andθ2i of the first kind by using the following facts

(2.12) 1

1 + (n− p− 2)Fi(n−p−2,1)

= θ1i ∼ β1

(
1

2
,
n− p− 2

2

)

(2.13) 1

1 + ((p− 1) / (n− p))Fi(p−1,n−p)
= θ2i ∼ β1

(
n− p

2
,
p− 1

2

)
Then, without loss of generality (2.11) can be written as

(2.14) H2
i =

p+ 1

(1/θ1i)− ((n− 1) /n) θ2i
+

(1/θ2i)− (n− 1) /n

(n− 1) /n

(2.15) H2
i =

(p+ 1) θ1i
1− ((n− 1) /n) θ1iθ2i

+ (n/n− 1) (1/θ2i)− 1

From (2.15), the authors showed the Hadi’s influence measure in terms of θ1i ∼
β1
(
1
2
, n−p−2

2

)
and θ2i ∼ β1

(
n−p
2
, p−1

2

)
which followed beta distribution of first kind with

two shape parameters p and n respectively. To avoid complexity further, the relationship
from (2.15) modified as

(2.16) n− 1

n

(
1 +H2

i

)
=

(
1 + p ((n− 1) /n) θ1iθ2i
1− ((n− 1) /n) θ1iθ2i

)
(1/θ2i) = ψi

Based on the identified relationship from (2.16), the authors derived the distribution
of the Hadi’s

(
H2
i

)
and it is discussed in the next section.

3. Exact Distribution of Hadi’s (H2
i )

Using the technique of two-dimensional Jacobian of transformation, the joint proba-
bility density function of the two Beta variables of kind-1 namelyθ1i,θ2i were transformed
into density function of ψi and it is given as

(3.1) f (ψi, ui) = f (θ1i, θ2i) |J |

From (3.1), It is known thatθ1iand θ2i are independent then rewrite (3.1) as

(3.2) f (ψi, ui) = f (θ1i) f (θ2i) |J |

Using the change of variable technique, substitute θ2i = ui in (2.16) to get

(3.3) θ1i =
ψiui − 1

((n− 1) /n)ui (p+ ψiui)

Then partially differentiate (3.3) and compute the Jacobian determinant in (3.2) as

(3.4) f (ψi, ui) = f (θ1i) f (θ2i)

∣∣∣∣∂ (θ1i, θ2i)∂(ψi, ui)

∣∣∣∣
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(3.5) f (ψi, ui) = f (θ1i) f (θ2i)

∣∣∣∣∣ ∂θ1i
∂ψi

∂θ1i
∂ui

∂θ2i
∂ψi

∂θ2i
∂ui

∣∣∣∣∣
From (3.5), It is known that the θ1i and θ2iare independent, then the density function

of the joint distribution of θ1i and θ1i is given as

(3.6) f (θ1i, θ2i) =
1

B
(
1
2
, n−p−2

2

)θ 1
2
−1

1i (1− θ1i)
n−p−2

2
−1

× 1

B
(
n−p
2
, p−1

2

)θ n−p
2

−1

2i (1− θ2i)
p−1
2

−1

where 0 ≤ θ1i, θ2i ≤ 1,n, p > 0
and

(3.7)

∣∣∣∣∣∣
∂θ1i
∂ψi

∂θ1i
∂ui

∂θ2i
∂ψi

∂θ2i
∂ui

∣∣∣∣∣∣ =
∣∣∣∣∣∣ p+1

((n−1)/n)(p+ψiui)
0

p−ψ2
i u

2
i+2ψiui

((n−1)/n)u21(p+ψiui)
2

1

∣∣∣∣∣∣ = p + 1

((n− 1) /n) (p + ψiui)
2

Then substitute (3.6) and (3.7) in (3.5) in terms of the substitution of ui, to get the
joint distribution of ψi and ui as

(3.8) f (ψi, ui) =

1

B
(
1
2
, n−p−2

2

) ( ψiui − 1(
n−1
n

)
ui (p+ ψiui)

) 1
2
−1(

1− ψiui − 1(
n−1
n

)
ui (p+ ψiui)

)n−p−2
2

−1

× 1

B
(
1
2
, n−p−2

2

)un−p−2
2

−1

i (1− ui)
1
2
−1 × |J |

where n−1
n

≤ ψi <∞, 0 ≤ ui ≤ 1 and |J | = p+1

((n−1)/n)(p+ψiui)
2

Rearrange (3.8) and integrate with respect toui, to get the marginal distribution of
ψi as

(3.9)
f (ψi; p, n) = α (p, n)

(∑n−p−2
2

−1

r=0

∑r+1
2
−1

s=0

(
n−p−2

2
r

−1

)(
r + 1

2
s
−1

)(
n
n−1

)r+1
2
−1

p
−
(
r+3

2

)

× (−1)
2r+s+1

2
−1

ψsi
∫ 1
0 u

n−p−3
2

+s−r−1

i (1 − ui)
p−1
2

−1
(

1
1+(ψi/p)ui

)r+3
2
dui

)

where n−1
n

≤ ψi <∞ and α (p, n) = p+1

(n−1
n )B( 1

2
,n−p−2

2 )B(n−p
2
, p−1

2 )
It is known, from (3.9)

(3.10)
∫ 1

0

u
n−p−3

2
+s−r−1

i (1− ui)
p−1
2

−1

(
1

1 + (ψi/p)ui

)r+ 3
2

dui =

Γ
(
p−1
2

)
(ψi/p) Γ

(
r + 3

2

) (Ω1 (ψi; p, n, r, s) + Ω2 (ψi; p, n, r, s))

where

Ω1 (ψi; p, n, r, s) = (ψi/p)
−
(
n−p−3

2
+s−r

)
+1

Γ
(
n−p−3

2
+ s− r

)
Γ
(
2r + 3

2
−
(
n−p−3

2
+ s
))

Γ
(
p−1
2

)
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2F1

(
n− p− 3

2
+ s− r,

p + 1

2
; 1 −

(
r +

3

2

)
+
n− p− 3

2
+ s− r;

1

ψi/p

)

Ω2 (ψi; p, n, r, s) = (ψi/p)
−
(
r+3

2

)
+1

Γ
(
r + 3

2

)
Γ
(
n−p

2
+ s− 2r

)
Γ
(
p−1
2

)

2F1

(
r +

3

2
, 1 −

(
n− 7

2
+ s− 2r

)
; 1 + r +

3

2
−
(
n− p− 3

2
+ s− r

)
;−

1

ψi/p

)

Then substitute (3.10) in (3.9) and arrange the terms, to get the density function of
ψi in the series expression form as

(3.11)
f (ψi; p, n) = λ (p, n)

(∑n−p−2
2

−1

r=0

∑r+1
2
−1

s=0

(
n−p−2

2
r

−1

)(
r + 1

2
s
−1

)(
n
n−1

)r+1
2
−1

p
−
(
r+3

2

)

× (−1)
2r+s+1

2
−1

ψs−1
i

1

Γ
(
r+3

2

) (Ω1 (ψi; p, n, r, s) + Ω2 (ψi; p, n, r, s))

)

where, (n− 1) /n ≤ ψi < ∞,n, p > 0, n > p and λ (p, n) = (p+ 1)α (p, n) =
(p+1)Γ( p−1

2 )
(n−1
n )B( 1

2
,n−p−2

2 )B(n−p
2
, p−1

2 )
is the normalizing constant as a function of p and n. In

order to derive the density function of Hadi’s measure, the authors again utilize the re-
lationship between ψi and

(
H2
i

)
. It is known H2

i > 0, then (n− 1) /n ≤ ψi < ∞.Hence
from (2.16), using one-dimensional Jacobian of transformation, the density function of(
H2
i

)
can be written as

(3.12) f
(
H2
i

)
= f (ψi) |J |

(3.13) f
(
H2
i

)
= f (ψi)

∣∣∣∣ dψidH2
i

∣∣∣∣
Then substitute ψi = n−1

n

(
1 +H2

i

)
, dψi
dH2

i
= n−1

n
and (3.11) in (3.13), to get the final

form of the density function of
(
H2
i

)
as

(3.14)

f
(
H2
i ; p, n

)
=

φ (p, n)

(∑n−p−2
2

−1

r=0

∑r+1
2
−1

s=0

( n−p−2
2

− 1
r

)(
r + 1

2
− 1

s

)(
Γ
(
r + 3

2

))−1 ( n
n−1

)r−s+1
2

p
−
(
r+3

2

)
+1

(−1)
2r+s+1

2
−1
(
1 +H2

i

)s−1 (
Ω1

(
H2
i ; p, n, r, s

)
+ Ω2

(
H2
i ; p, n, r, s

)))

where,0 ≤ H2
i < ∞,n, p > 0,n > p and φ (p, n) = n−1

n
λ (p, n) =

(p+1)Γ
(
p−1
2

)
B
(
1
2
,
n−p−2

2

)
B
(
n−p

2
,
p−1
2

)

Ω1

(
H2
i ; p, n, r, s

)
=

Γ
(
n−p−3

2
+s−r

)
Γ
(
2r+3

2
−
(
n−p−3

2
+s
))

Γ
(
p−1
2

) (
n−1
np

(
1 +H2

i

))−(n−p−3
2

+s−r
)
+1

×2F1

(
n−p−3

2
+ s− r, p+1

2
; 1 −

(
r + 3

2

)
+ n−p−3

2
+ s− r;− 1

n−1
np

(
1+H2

i

)
)

Ω2

(
H2
i ; p, n, r, s

)
=

Γ
(
r+3

2

)
Γ
(
n−p

2
+s−2r

)
Γ
(
n−7
2

+s−2r
) (

n−1
np

(
1 +H2

i

))−(r+3
2

)
+1

×2F1

(
r + 3

2
, 1 −

(
n−7
2

+ s− 2r
)
; 1 + r + 3

2
−
(
n−p−3

2
+ s− r

)
;− 1

n−1
np

(
1+H2

i

)
)

From (3.14), it is the density function of Hadi’s
(
H2
i

)
influence measure which involves

the following such as Ω1

(
H2
i ; p, n, r, s

)
,Ω2

(
H2
i ; p, n, r, s

)
are the auxiliary functions,2F1 is

the Gauss hypergeometric function and the normalizing constant λ(p, n)comprised of
Beta and Gamma functions (B( 1

2
, n−p−2

2
),B( p−1

2
, n−p

2
),Γ
(
p−1
2

)
) with two shape param-

eters (p, n),n is the sample size and p is the no. of predictors used in a multiple linear
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regression model. In order to know the location and dispersion of Hadi’s
(
H2
i

)
, the au-

thors derived the first two moments in terms of mean, variance from and it is shown as
follows. Using (2.15), rewrite in terms of series expression form as

(3.15) H2
i = (p+ 1)

(
∞∑
k=0

(
n− 1

n

)k
θk+1
1i θk2i

)
+

n

n− 1

(
1

θ2i

)
− 1

Now take expectation and substitute the moments of two independent beta variables
θ1i andθ2iof kind-1, to get the first moment of

(
H2
i

)
as

E
(
H2
i

)
= (p+ 1)

(∑∞
k=0

(
n−1
n

)k
E
(
θk+1
1i

)
E
(
θk2i
))

+ n
n−1

E
(

1
θ2i

)
− 1

(3.16) E
(
H2
i

)
= (p+ 1) (ϕ1 (p, n)) +

n

n− 1
(ϕ2 (p, n))− 1

Where ϕ1 (p, n) =
∑∞
k=0

(
n−1
n

)k (B(k+ 3
2
,n−p−2

2 )
B( 1

2
,n−p−2

2 )

)(
B(n−p

2
+k, p−1

2 )
B(n−p

2
, p−1

2 )

)
ϕ2 (p, n) =

B(n−p−2
2

, p−1
2 )

B(n−p
2
, p−1

2 )
and B is the beta function respectively.

From (2.15), rewrite and square both sides, then take expectation, to get the second
moment of

(
H2
i

)
as

(
H2
i + 1

)2
= (p+ 1)2 θ21i

(
1

1−(n−1
n )θ1iθ2i

)2

+
(

n
n−1

)2 (
1
θ2i

)2
+ 2n(p+1)

n−1

(
θ1i
θ2i

)
1

1−(n−1
n )θ1iθ2i

(
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)2
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)k
θk+2
1i θk2i

)
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n
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)2 (
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E
(
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(
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E
(
θk+2
1i
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E
(
θk2i
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+
(

n
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E
(
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)2
+
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(
n−1
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E
(
θk+1
1i

)
E
(
θk−1
2i
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(3.17)
E
(
H2
i

)2
= (p + 1)2

(∑∞
k=0 (k + 1)

(
n−1
n

)k
E
(
θk+2
1i

)
E
(
θk2i

))
+
(

n
n−1

)2
E
(

1
θ2i

)2
+

2n(p+1)
n−1

(∑∞
k=0

(
n−1
n

)k
E
(
θk+1
1i

)
E
(
θk−1
2i

))
− 2E

(
H2
i

)
− 1

Therefore, It is known

(3.18) V (H2
i ) = E

(
H2
i

)2 − (E (H2
i

))2
Then substitute (3.16) and (3.17) in (3.18), to get the variance of

(
H2
i

)
as

V
(
H2
i

)
= (p+ 1)2 (Φ1 (p, n)) +

(
n

n− 1

)2

(Φ2 (p, n)) +
2n (p+ 1)

n− 1
(Φ3 (p, n))

where

Φ1 (p, n) =
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(
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n
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2
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By using the mean and variance of Hadi’s measure from (3.16) and (3.18), the authors
established the upper control limit of

(
H2
i

)
for different combination of (p, n) by using

(3.20).Therefore

(3.19) UCL
(
H2
i

)
= E

(
H2
i

)
+
√
V (H2

i )

(3.20) UCL
(
H2
i

)
= (p+ 1)ϕ1 (p, n) +

n

n− 1
ϕ2 (p, n)− 1

+

√
(p+ 1)2 Φ1 (p, n) +

(
n

n− 1

)2

Φ2 (p, n) +
2n (p+ 1)

n− 1
Φ3 (p, n)

By using (3.19), as a first approach, the authors utilize the upper control limit as a
cut-off to identify the influential observation in linear multiple regression models. The
computed

(
H2
i

)
of any observation is greater than upper control limit, then the obser-

vation is said to be influential and it may be a potential outlier. As a second approach,
the authors adopted the test of significance approach of evaluating and identifying the
influential observations in a sample. The approach is to derive the critical points of the
Hadi’s

(
H2
i

)
measure by using the following relationship from (2.10) is given as

(3.21) H2
i(p,n) (α) =

p+ 1
(n−p−2)+Fi(1,n−p−2)(α)

Fi(1,n−p−2)
− (n−1)/n

1+((p−1)/(n−p))Fi(p−1,n−p)(α)

+
((p− 1)/(n− p))Fi(p−1,n−p) (α) + 1/n

(n− 1)/n

From (3.21) for a different combination of values of (p, n) and for the significance
probability p

(
H2
i > H2

i(p,n)(α)
)

= α, authors computed the critical points of Hadi’s(
H2
i

)
measure. By using the critical points, it is possible to test the significance of the

influential observation computed from a multiple linear regression model. The following
table-1 visualizes the upper control limit of the Hadi’s

(
H2
i

)
measure computed from

(3.20) and tables 2,3 exhibits the significant percentage points of the distribution of
Hadi’s

(
H2
i

)
measure for varying sample size(n) and no.of predictors (p) at 5% and 1%

significance (α).
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Table 1. Upper control limit of Hadi’s
(
H2
i

)
for combinations of (p, n)

n p
1 2 3 4 5 6 7 8 9 10

5 3.8793 - - - - - - - - -
6 2.7869 4.7824 - - - - - - - -
7 2.0960 4.1205 5.8544 - - - - - - -
8 1.6375 3.0649 5.3089 6.8240 - - - - - -
9 1.3244 2.4222 3.9434 6.4396 7.75516 - - - - -
10 1.1016 1.9860 3.1307 4.7506 7.5498 8.7226 - - - -
11 0.93798 1.6735 2.5131 3.8002 5.7432 8.6542 9.6091 - - -
12 0.81418 1.4407 2.2003 3.1624 4.4486 6.3327 9.7586 10.708 - -
13 0.71781 1.2618 2.8756 2.7015 8.2252 5.0854 9.2888 10.864 13.987 -
14 0.64117 1.1207 1.6800 2.3529 3.1868 4.2587 5.7147 7.8927 11.973 12.787
15 0.57888 1.0069 3.4478 2.0806 9.4703 3.6615 16.541 6.3400 15.101 13.082
16 0.52736 0.91340 1.3518 1.8627 2.4698 3.2076 4.1290 5.3235 6.9626 9.4489
17 0.48413 0.83539 3.7858 1.6843 10.869 2.8508 18.092 4.5913 22.212 7.5833
18 0.44735 0.76937 1.1278 1.5361 2.0085 2.5631 3.2258 4.0347 5.0498 6.3734
19 0.41571 0.71281 4.6021 1.4112 16.095 2.3262 28.296 3.5961 46.585 5.5056
20 0.38821 0.66388 0.96602 1.3042 1.6880 2.1281 2.6393 3.2414 3.9631 4.8466
25 0.29153 0.49344 3.5089 0.94324 18.110 1.4852 42.721 2.1576 76.534 3.0180
30 0.23330 0.39220 0.55879 0.73673 0.92840 1.1359 1.3616 1.6083 1.8790 2.1778
40 0.16665 0.27779 0.39184 0.51107 0.63665 0.76936 0.91011 1.0597 1.2188 1.3888
60 0.10604 0.17523 0.24485 0.31616 0.38966 0.46577 0.54459 0.62640 0.71132 0.79969
80 0.077750 0.12797 0.17792 0.22875 0.28048 0.33352 0.38796 0.44375 0.50114 0.56014
100 0.061377 0.10078 0.13973 0.17908 0.21892 0.25970 0.30113 0.34346 0.38659 0.43076
120 0.050698 0.083074 0.11502 0.14716 0.17970 0.21257 0.24596 0.28005 0.31459 0.34982

p-no.of predictors n-Sample Size

Table 2. Significant two-tail percentage points of Hadi’s

n p
1 2 3 4 5 6 7 8 9 10

3 6.5000 - - - - - - - - -
4 .3457 15.9119 - - - - - - - -
5 .2550 4.4885 28.1667 - - - - - - -
6 .2031 2.5201 7.8663 39.8398 - - - - - -
7 .1689 1.7131 4.2275 11.0202 51.2090 - - - - -
8 .1446 1.2866 2.7941 5.8051 14.0727 62.4021 - - - -
9 .1264 1.0262 2.0582 3.7841 7.3268 17.0683 73.4846 - - -

10 .1123 .8518 1.6185 2.7595 4.7356 8.8176 20.0285 84.4930 - -
11 .1010 .7273 1.3291 2.1536 3.4314 5.6662 10.2892 22.9647 95.4496
12 .0918 .6341 1.1252 1.7579 2.6646 4.0872 6.5836 11.7478 25.8841 106.3683
13 .0842 .5618 .9744 1.4812 2.1664 3.1626 4.7331 7.4923 13.1973 28.7910
14 .0777 .5042 .8585 1.2776 1.8195 2.5639 3.6525 5.3722 8.3947 14.6399
15 .0721 .4572 .7669 1.1220 1.5652 2.1481 2.9544 4.1368 6.0066 9.2924
16 .0673 .4182 .6927 .9995 1.3714 1.8441 2.4706 3.3402 4.6172 6.6373
17 .0631 .3852 .6314 .9006 1.2193 1.6131 2.1176 2.7890 3.7226 5.0947
18 .0594 .3571 .5799 .8192 1.0968 1.4320 1.8498 2.3875 3.1045 4.1025
19 .0561 .3328 .5362 .7511 .9962 1.2865 1.6401 2.0831 2.6546 3.4177
20 .0531 .3115 .4985 .6933 .9122 1.1671 1.4719 1.8453 2.3141 2.9198
25 .0420 .2361 .3685 .4999 .6401 .7944 .9678 1.1654 1.3941 1.6624
30 .0348 .1900 .2921 .3904 .4921 .6006 .7181 .8473 .9905 1.1508
40 .0259 .1366 .2064 .2712 .3360 .4026 .4722 .5457 .6239 .7074
60 .0171 .0874 .1300 .1682 .2052 .2422 .2795 .3177 .3569 .3974
80 .0128 .0643 .0948 .1219 .1477 .1730 .1983 .2238 .2496 .2759

100 .0102 .0508 .0746 .0955 .1153 .1346 .1537 .1727 .1919 .2112
120 .0085 .0420 .0615 .0785 .0946 .1101 .1254 .1406 .1558 .1710
∞ 0 0 0 0 0 0 0 0 0 0
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Table 3. Significant two-tail percentage points of Hadi’s

n p
1 2 3 4 5 6 7 8 9 10

3 6.5000 - - - - - - - - -
4 .3338 69.0471 - - - - - - - -
5 .2502 14.4658 128.0323 - - - - - - -
6 .2001 6.5596 24.8542 183.7271 - - - - - -
7 .1668 3.9604 10.6671 34.5340 237.7744 - - - - -
8 .1429 2.7611 6.2112 14.4528 43.8928 290.8798 - - - -
9 .1251 2.0933 4.2220 8.2658 18.0998 53.0713 343.3963 - - -

10 .1112 1.6749 3.1419 5.5444 10.2376 21.6699 62.1368 395.5203 - -
11 .1000 1.3909 2.4786 4.0844 6.8090 12.1642 25.1921 71.1262 447.3694 -
12 .0909 1.1867 2.0356 3.1965 4.9825 8.0420 14.0624 28.6819 80.0619 499.0186
13 .0834 1.0334 1.7213 2.6083 3.8785 5.8565 9.2553 15.9414 32.1486 88.9580
14 .0770 .9143 1.4879 2.1939 3.1509 4.5409 6.7154 10.4553 17.8068 35.5982
15 .0715 .8193 1.3084 1.8881 2.6406 3.6769 5.1910 7.5641 11.6457 19.6621
16 .0667 .7419 1.1664 1.6541 2.2654 3.0729 4.1926 5.8327 8.4054 12.8289
17 .0625 .6776 1.0514 1.4698 1.9793 2.6300 3.4961 4.7011 6.4685 9.2412
18 .0588 .6234 .9566 1.3213 1.7548 2.2932 2.9866 3.9132 5.2046 7.0997
19 .0556 .5771 .8771 1.1992 1.5742 2.0294 2.5999 3.3378 4.3259 5.7042
20 .0527 .5372 .8096 1.0972 1.4262 1.8178 2.2975 2.9016 3.6849 4.7352
30 .0345 .3166 .4551 .5880 .7260 .8740 1.0358 1.2151 1.4161 1.6437
40 .0256 .2241 .3156 .3998 .4838 .5703 .6608 .7567 .8591 .9692
60 .0170 .1413 .1953 .2432 .2892 .3349 .3811 .4283 .4767 .5268
80 .0127 .1032 .1413 .1746 .2060 .2368 .2673 .2980 .3290 .3606

100 .0101 .0812 .1107 .1361 .1600 .1830 .2058 .2284 .2510 .2738
120 .0084 .0670 .0910 .1116 .1307 .1491 .1672 .1851 .2029 .2207
∞ 0 0 0 0 0 0 0 0 0 0

4. Numerical Results and Discussion
To evaluate the potential outliers based on Hadi’s influence measure of the ith obser-

vation in a regression model in this section the authors showed the results of a numerical
study. For this, the authors fitted Step-wise linear regression models with a different set
of predictors in a Brand equity study. The study comprised of 18 different attributes
about a car brand. The Step-wise regression results reveal 4 nested models were ex-
tracted from the regression procedure. For each model, the Hadi’s (H2 ) were computed,
and a comparison of proposed approaches I and II with the Hadi’s traditional approach
of identifying the potential outliers are visualized in the following tables.

Table 4. Identification of Potential Outliers, Comparative results of
Hadi’s approach and proposed approach-I

Model p Hadi’s traditional approach Proposed approach-I
*Cut-off

(
H2
i

)
=
(
E
(
H2
i

)
+ c
√
V (H2

i )
)

**Cut-off
(
H2
i

)
=
(
E
(
H2
i

)
+
√
V (H2

i )
)

n>B
c = 1 n > A c = 2 n > A c = 3 n > A c = 4 n > A

1 1 0.04271 17 0.07393 14 0.10514 7 0.13636 5 0.021590 31
2 2 0.06726 15 0.11531 12 0.16337 7 0.21142 5 0.035821 29
3 3 0.09110 15 0.15518 12 0.21926 5 0.28334 4 0.048238 33
4 4 0.11565 13 0.19635 12 0.27706 5 0.35776 4 0.061802 31

p-no.of predictors n=275 *A-Cut-off
(
H2
i

)
=
(
E
(
H2
i

)
+ c
√
V (H2

i )
)

**B- Cut-off(
H2
i

)
=
(
E
(
H2
i

)
+
√
V (H2

i )
)

-refer(3.20)
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Table 5. Identification of Potential Outliers, Comparative results of
Hadi’s approach and proposed approach-II

Model p Hadi’s traditional approach Proposed approach-II
*Cut-off

(
H2
i

)
=
(
E
(
H2
i

)
+ c
√
V (H2

i )
)

**Critical
(
H2
i

)
at 5% level n>B **Critical

(
H2
i

)
at 1% level n>B

c = 1 n > A c = 2 n > A c = 3 n > A c = 4 n > A
1 1 0.04271 17 0.07393 14 0.10514 7 0.13636 5 0.003679 78 0.003651 78
2 2 0.06726 15 0.11531 12 0.16337 7 0.21142 5 0.017942 50 0 .028388 35
3 3 0.09110 15 0.15518 12 0.21926 5 0.28334 4 0. 026061 58 0 .038219 43
4 4 0.11565 13 0.19635 12 0.27706 5 0.35776 4 0.033031 57 0.046480 47

p-no.of predictors n=275 *A-Cut-off
(
H2
i

)
**B-Critical

(
H2
i

)

Table 6. Identification of Potential Outliers, Comparative results of
Proposed approach I and II

Model p Proposed approach-I Proposed approach-II
*Cut-off

(
H2
i

)
=
(
E
(
H2
i

)
+ c
√
V (H2

i )
)

n > A *Critical
(
H2
i

)
at 5% level n > B *Critical

(
H2
i

)
at 1% level n > B

1 1 0.021590 31 0.003679 78 0.003651 78
2 2 0.035821 29 0.017942 50 0 .028388 35
3 3 0.048238 33 0. 026061 58 0 .038219 43
4 4 0.061802 31 0.033031 57 0.046480 47

p-no.of predictors n=275 *A-Cut-off
(
H2
i

)
*B-Critical

(
H2
i

)
Table 4 and 5 visualizes the comparative results of Hadi’s traditional approach of

evaluating the potential outliers with the proposed approached 1 and 2. Under Hadi’s
traditional approach, 4 nested multiple regression models are evaluated and the cut-
offs’ for different c values are shown in the table. As far as the fitted model-1 is a
concern, the computed Hadi’s influence measure for 17, 14, 7 and 5 observations were
above the cut-off value and hence these observations are said to be potential outliers.
Similarly, model-2 is concern 15,12,7 and 5 observations are finalized as potential outliers,
in the same manner, in model-3, the calculated Hadi’s influence measure for 15,12,5
and 4 observations was above the cut-off and hence these observations are said to be
the potential outliers. Moreover, in model-4, 13, 12, 5 and 4 observations are treated
as potential outliers because these observations exceeding the Cut-off. Under Hadi’s
approach at what value of c, an analyst can identify the potential outliers in the fitted
models? For this question, the proposed approach-I has the answer. Under proposed
approach-I, the cut-off was scientifically determined and in model-1, the calculated value
of Hadi’s influential measure for 31 observations are above the cut-off and in model-2 29
observations, in model-3, 33 observations and in model-4, 31 observations are exceeding
the scientifically determined cut-off. Hence these observations are treated as potential
outliers. Under the proposed approach-II, the authors utilize the test of significance
approach to identify the potential outliers. As far as the model-1 is a concern, the
computed values of Hadi’s influential measure for 78 observations are greater than the
critical Hadi’s H2 value at 5% significance level. Similarly, model-2, model-3, and model-
4 are also evaluated and the authors identified 50, 58, 57 observations are potential
outliers at 5% significance level. Likewise, 78, 35, 43 and 47 observations are treated as
potential outliers at 1 % significance level for model-1, model-2, model-3 and model-4
respectively. Finally, among the three approaches to evaluate the outliers, the proposed
approach-II is systematic and scientific when compared to Hadi’s traditional approach
and proposed approach-I,because the proposed approach II identified more number of
outliers at different significance level and the cut-off critical Hadi’s

(
H2
i

)
value is also

scientifically determined from the distribution of Hadi’s influence measure. Hence the
authors observed, the proposed approach-2 outperforms the Hadi’s traditional approach



548

and it will be the better when you compared it with the proposed approach-I. Finally, the
comparative results emphasize the superiority of proposed approaches over the traditional
approach and it is visualized through the graphical display from the following control
charts.

Figure 1. Control chart for fitted Model-1 shows the Identification of
potential outliers based on Hadis approach

Figure 2. Control chart for fitted Model-2 shows the Identification of
potential outliers based on Hadis approach

Figure 3. Control chart for fitted Model-3 shows the Identification of
potential outliers based on Hadis approach
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Figure 4. Control chart for fitted Model-4 shows the Identification of
potential outliers based on Hadis approach

Figure 5. Control chart for each fitted model shows the Identification
of potential outliers based on Proposed approach-I

Figure 6. Control chart for each fitted model shows the Identification
of potential outliers at 5% level based on proposed approach-II
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Figure 7. Control chart for each fitted model shows the Identification
of potential outliers at 1% level based on proposed approach-II

5. Conclusion
From the previous sections, the authors proposed a scientific approach that is based

on the test of significance for Hadi’s influence measure to evaluate the potential outliers
in a multiple linear regression model. At first, the exact distribution of the Hadi’s

(
H2
i

)
was derived and the authors visualized the density function of H2 in terms of complicated
series expression form in terms of Gauss hypergeometric function and with two shape
parameters namely p and n. Moreover, the authors computed the critical percentage
points of

(
H2
i

)
at 5 %, 1% level of significance and it is utilized to evaluate the potential

outliers. Finally, the proposed approach II is more systematic and scientific because it
is based on the test of significance and the results were superior when compared it with
Hadi’s traditional approach and proposed approach-I. Hence, the authors conclude, the
proposed approach-II overrides the use of traditional approach, proposed approach-I and
also it outperforms the traditional Hadi’s approach in identifying more potential outliers
in multiple regression models. Though Hadi’s measure is used in the applied statistics for
many years but authors found the absence of this technique in statistical software, limits
the application of this efficient technique in the research. So the authors recommend
the software developers and computational data analyst to include this valuable and
pragmatic method in academic and commercial software in near future. Similarly, the
authors believe that the scientific approach introduced in this study made Hadi’s method
a more significant tool in outlier detection as well as to the frequent users of linear multiple
regression analysis.

References
[1] Alfons, A., Croux, C. & Gelper, S. Sparse least trimmed squares regression for analyzing

high-dimensional large data sets. The Annals of Applied Statistics, 7, 226-248, 2013.
[2] Andrews, D. F., & Pregibon, D. Finding the outliers that matter. Journal of the Royal

Statistical Society. Series B (Methodological), 85-93, 1978.
[3] Belsley, D. A., & Kuh, E. Welsch., RE. Regression Diagnostics: Identifying Influential Data

and Sources of Collinearity. Uiley Series in Probability and Mathematical Statistics, 1980.
[4] Beyaztas, U., & Alin, A. Sufficient jackknife-after-bootstrap method for detection of influ-

ential observations in linear regression models. Statistical Papers, 55(4), 1001-1018, 2014.
[5] Chatterjee, S., & Hadi, A. S. Influential observations, high leverage points, and outliers in

linear regression. Statistical Science, 379-393, 1986.
[6] Cook, R. D. Detection of influential observation in linear regression. Technometrics, 19(1),

15-18, 1977.



551

[7] Cook, R. D., & Weisberg, S. Criticism and influence analysis in regression. Sociological
methodology, 13(3), 313-361, 1982.

[8] Hadi, A. S. Identifying multiple outliers in multivariate data. Journal of the Royal Statistical
Society. Series B (Methodological), 761-771, 1992.

[9] Hoaglin, D. C., & Welsch, R. E. The hat matrix in regression and ANOVA. The American
Statistician, 32(1), 17-22, 1978.

[10] Johnson, B. W., & McCulloch, R. E. AddedVariable Plots in Linear Regression. Techno-
metrics, 29(4), 427-433, 1987.

[11] Mosteller, F., & Tukey, J. W. Data analysis and regression: a second course in statistics.
Addison-Wesley Series in Behavioral Science: Quantitative Methods, 1977.

[12] Nurunnabi, A. A. M., Hadi, A. S., & Imon, A. H. M. R. Procedures for the identification
of multiple influential observations in linear regression.Journal of Applied Statistics, 41(6),
1315-1331, 2014.

[13] Park, H., Sakaori, F. & Konishi, S. Robust sparse regression and tuning parameter selec-
tion via the efficient bootstrap information criteria. Journal of Statistical Computation and
Simulation, 84, 1596-1607, 2014.


	Exact distribution of Hadi's (H2) influence measure and identification of potential outliers. By  

