
Hacettepe Journal of Mathematics and Statistics
Volume 48 (2) (2019), 592 – 604
Research Article

Agreement and adjusted degree of
distinguishability for square contingency tables

Ayfer Ezgi Yilmaz∗† and Tulay Saracbasi‡

Abstract

In square contingency tables, analysis of agreement between the row
and column classifications is of interest. In such tables, kappa or
weighted kappa coefficients are used to summarize the degree of agree-
ment between two raters. In addition to investigate the agreement
between raters for square contingency tables, category distinguishabil-
ity should be considered. Because the kappa coefficient is insufficient to
measure the category distinguishability, the degree of distinguishabil-
ity is suggested to use. In practice, some problems have occurred with
regards to the use of the degree of distinguishability. The aim of this
study is to assess the agreement coefficient and degree of distinguisha-
bility in square contingency tables together. In this study, the adjusted
degree of distinguishability is suggested to solve the problem of calcu-
lating the degree of distinguishability falls outside the defined range.
A simulation study is performed to compare the proposed adjusted de-
gree of distinguishability and the classical degree of distinguishability.
Furthermore, interpretation levels for the degree of distinguishability
are determined based on a simulation study. The results are discussed
over numerical examples and simulation.
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1. Introduction
Square contingency tables are often used in medical, sociology, and behavioral sciences.
These tables may arise in different ways, such as: When a sample of individuals or sub-
jects is cross-classified according to two essentially similar categorical variables; when
samples of pairs of matched individuals or subjects are classified according to some cate-
gorical variable of interest; in panel studies where each individual or subject in a sample
is classified according to the same criterion at two different points in time; in rating
experiments in which a sample of individuals or subjects is rated independently by the
same two raters into one of the categories [12].

In square contingency tables, analysis of agreement between the row and column clas-
sifications is of interest. Interrater agreement represents the extent to which different
judges tend to assign exactly the same rating for each object [18]. The agreement be-
tween objects rated independently by two raters or in two different time points by the
same rater is investigated with the agreement coefficients. The degree of agreement is
assessed using Cohen’s kappa coefficient [4].

Even though the raters rate the items independently, there occurs correlation between
their decisions. There are two main components of agreement [6, 19]:

(1) Marginal homogeneity which corresponds to the differences in the marginal dis-
tributions of raters.

(2) The category distinguishability which is the ability for raters to distinguish the
categories.

In the agreement studies, it is necessary to determine if the categories of the table are
distinguishable from one to another [14]. If the categories are indistinguishable, then
there could occur some differences between raters’ perceptions. Different raters man un-
derstand the categories differently or the same rater may not distinguish the categories
correctly. It is discussed that these two problems can occur because the raters may not be
experts in their fields or it may be difficult to distinguish the categories. The measure to
calculate the distinguishability level of the categories is called degree of distinguishability
[6].

In practice, there occurs some problems to the use of the degree of distinguishability. The
value of the measure falls outside the defined range in some tables. Furthermore, there
is not any information about how to interpret the degree of distinguishability except the
general one. In this article, the adjusted degree of distinguishability is suggested to solve
the problem of calculating the degree of distinguishability falls outside the defined range.
It is aimed to assess the agreement coefficient and the adjusted degree of distinguishabil-
ity in square contingency tables together. A simulation study is performed to compare
the proposed adjusted degree of distinguishability with the classical one. Furthermore,
interpretation levels for the degree of distinguishability are determined based on a simu-
lation study. The results are discussed over three numerical examples and simulation.

Agreement coefficients and degree of distinguishability are reviewed in Section 2. Section
3 presents the suggested adjusted degree of distinguishability. The simulation study
results are summarized in Section 4. The illustrative examples are discussed in Section
5, followed by conclusion in Section 6.
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2. Agreement Coefficients
There is a large literature on agreement coefficients. There are numerous agreement
coefficients for each table structure or number of raters. The well-known agreement
coefficient for nominal categories is Cohen’s kappa coefficient [4]. When the categories
are ordinal, instead of kappa, Cohen’s weighted kappa coefficient is suggested for use [5].
Darroch and McCloud [6] recommend the degree of distinguishability to be used in place
of kappa.

2.1. Cohen’s Kappa and Weighted Kappa Coefficients. Consider two raters clas-
sify the objects from a population n on a R scale. Let nij denote the number of objects
(i, j = 1, 2, . . . , R). The cell probabilities are pij and pi. indicates the ith row total prob-
ability, p.j indicates the jth column total probability of an R×R contingency table. The
kappa coefficient κ is calculated as

(2.1) κ =

∑R
i=1 pii −

∑R
i=1 pi.p.i

1−
∑R

i=1 pi.p.i
.

For ordinal responses, instead of kappa, weighted kappa coefficient is suggested by Cohen
(1968). The coefficient allows each (i, j) cell to be weighted according to the degree of
agreement between ith and jth categories [16]. The weighted kappa coefficient κw is
calculated as

(2.2) κw =

∑R
i=1

∑R
j=1 wijpij −

∑R
i=1

∑R
j=1 wijpi.p.j

1−
∑R

i=1

∑R
j=1 wijpi.p.j

where wij is the weight ranges 0 ≤ wij ≤ 1. The popular weights for weighted kappa
are the linear and the quadratic weights shown in Equations (2.3) and (2.4), respectively
[3, 7].

• Linear weights:

(2.3) wij = 1− |i− j|/(R− 1)

• Quadratic weights:

(2.4) wij = 1− (i− j)2/(R− 1)2.

In the literature, there are several interpretations of κ coefficient. Landis and Koch
[10] define the agreement levels of kappa coefficient as: “<0.00" poor, “0.00-0.20" slight,
“0.21-0.40" fair, “0.41-0.60" moderate, “0.61-0.80" substantial, and “0.81-1.00" almost
perfect.

2.2. Degree of Distinguishability. Degree of distinguishability (DD) is suggested
to investigate the ability of the raters to distinguish between two categories [6]. The
category distinguishability is defined in terms of the following odds ratio.

(2.5) τij =
niinjj

nijnji
, i < j.

The degree of distinguishability (δij) of ith and jth categories is

(2.6) δij = 1− τ−1
ij ,
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where 0 ≤ δij ≤ 1. When δij ∼= 1, then there is a perfect distinguishability between
these two categories. When δij ∼= 0, then it is impossible to distinguish between these
two categories and this is not a preferred situation in the studies.

3. The Adjusted Degree of Distinguishability
Darroch and McCloud [6] defined the degree of distinguishability between two categories
ranges from 0 to 1. In the applications, the degree of distinguishability may be calculated
outside the defined range as negative.

Carcinoma in situ of uterine cervix data, one of the most common data in agreement
studies, is an illustrative example where this problem observed. The data is discussed
by Holmquist et al. [9], Landis and Koch [11], Becker and Agresti [2], and Saracbasi
[15]. In order to investigate the variability in the classification of carcinoma in situ of the
uterine cervix, seven pathologists classified 118 slides into the 5 categories: (1) Negative,
(2) Atypical squamous hyperplasia, (3) Carcinoma in situ, (4) Squamous carcinoma with
early stromal invasion, and (5) Invasive carcinoma. Two of the seven pathologists are
chosen and given in Table 1.

Table 1. Independent classifications by two pathologists of most in-
volved histological lesion

Pathologist 2
Pathologist 1 (1) (2) (3) (4) (5)
(1) 26 0 0 0 0
(2) 20 6 0 0 0
(3) 10 19 9 0 0
(4) 5 5 11 0 1
(5) 1 1 0 1 3

For Table 1, the degree of distinguishabilities are calculated and given in Table 2. The
results in Table 2 show that the degree of distinguishability of (3) Carcinoma in situ and
(4) Squamous carcinoma with early stromal invasion is δ34 = −0.21 and the degree of
distinguishability of (4) Squamous carcinoma with early stromal invasion and (5) Inva-
sive carcinoma is δ45 = −4.11 which fall outside of the defined range.

Table 2. The category distinguishabilities measures of carcinoma in
situ of uterine cervix data

δ12 δ13 δ14 δ15 δ23 δ24 δ25 δ34 δ35 δ45
Estimate 0.94 0.98 0.79 0.99 0.84 0.15 0.97 -0.21 0.99 -4.14

This well-known data illustrates the problem of the degree of distinguishability and shows
the necessity of a new formulation. In this study, we proposed the adjusted degree of dis-
tinguishability (ADD) to calculate the distinguishabilities between adjacent categories.

We proposed the adjusted degree of distinguishability under two arguments. Firstly,
when the category distinguishability is discussed, it should be considered that the dis-
tinguishability of ith and jth categories is equal to the distinguishability of jth and ith
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categories. Secondly, if categories (1) and (2) are distinguishable and categories (2) and
(3) are distinguishable, then it is reasonable if categories (1) and (3) are distinguishable
as well. For this reason, it is sufficient to calculate degree of distinguishability for only
adjacent categories instead of all the pairs.

The adjusted degree of distinguishability (ADD) for i and i+ 1 categories is calculated
as

(3.1) ADDi,i+1 =

{
1− τ−1

i,i+1 if τi,i+1 ≥ 1

1− τi,i+1 if τi,i+1 < 1

where 0 ≤ ADDi,i+1 ≤ 1, i = 1, 2, . . . , (R − 1). The odds ratio for square contingency
tables is

(3.2) τi,i+1 =
nii ni+1,i+1

ni,i+1 ni+1,i
.

For Table 1, the adjusted degree of distinguishabilities are calculated and given in
Table 3. The results in Table 3 show that the adjusted degree of distinguishability
of (3) Carcinoma in situ and (4) Squamous carcinoma with early stromal invasion is
ADD34 = 0.17, (4) Squamous carcinoma with early stromal invasion and (5) Invasive
carcinoma is ADD45 = 0.81.

Table 3. The adjusted degree of distinguishabilities of carcinoma in
situ of uterine cervix data

ADD12 ADD23 ADD34 ADD45

Estimate 0.94 0.84 0.17 0.81

If the table contains sampling zeros, then the odds ratio is

(3.3) τi,i+1 =
(nii + c)(ni+1,i+1 + c)

(ni,i+1 + c)(ni+1,i + c)
,

where c is a constant value that can be 0.20, 0.50, or a minimum value which is different
from zero [1].

4. Simulation Study
A simulation study is performed to compare the proposed adjusted degree of distinguisha-
bility with the classical one. It is also aimed to develop a table to interpret the adjusted
degree of distinguishability.

To generate 2× 2 contingency tables, we used the method presented by Goktas and Isci
[8]. Bivariate standard normal distribution is used. At the first step, two identically
independently distributed random variables (X1 and X2) are generated. Equations (4.1)
and (4.2) is used to generate two random variables (X and Y ) from bivariate normal
distribution with certain correlation (ρ).

(4.1) X = aX1 + bX2



597

(4.2) Y = bX1 + aX2

where

a =

√
1 + ρ+

√
1− ρ

2
,

and

b =

√
1 + ρ−

√
1− ρ

2
.

Then, X and Y variables are categorized into two equal intervals and crossed to have
2× 2 tables. The sample sizes (n) of the table are considered as 30, 50, 70, 100, and 300.
ρ values are taken as 0.20, 0.50, and 0.80. The kappa coefficient, classical and adjusted
degree of distinguishabilities are calculated for each table. All the results are based on
50,000 replications of each sample.

Table 4 shows the minimum, maximum values, median, mean, and standard errors of
the classical and adjusted degree of distinguishabilities for different sample sizes and the
different values of correlation. While some of the minimum values classical degrees of
distinguishability are negative, ADD lies between 0 and 1. In that case, ADD should be
used instead of DD.

Table 4. The descriptive statistics of the classical and adjusted degree
of distinguishabilities for different sample sizes and the different values
of correlation

DD ADD

ρ n Min Med Max Mean S.E. Min Med Max Mean S.E.

0.20

30 -29.18 0.4167 0.99 0.2043 0.0036 0.00 0.4857 0.99 0.4712 0.0011
50 -7.33 0.4000 0.96 0.2985 0.0021 0.00 0.4385 0.96 0.4268 0.0010
70 -3.55 0.4119 0.94 0.3336 0.0016 0.00 0.4271 0.94 0.4092 0.0010
100 -2.72 0.4023 0.92 0.3549 0.0012 0.00 0.4092 0.92 0.3937 0.0009
300 -0.63 0.4023 0.79 0.3885 0.0006 0.00 0.4023 0.79 0.3905 0.0006

0.50

30 -8.00 0.7576 1.00 0.6843 0.0014 0.00 0.7576 1.00 0.7064 0.0010
50 -1.72 0.7656 0.99 0.7159 0.0009 0.00 0.7656 0.99 0.7189 0.0008
70 -0.81 0.7586 0.99 0.7266 0.0007 0.00 0.7586 0.99 0.7272 0.0007
100 -0.28 0.7567 0.97 0.7338 0.0005 0.00 0.7567 0.97 0.7338 0.0005
300 0.34 0.7513 0.92 0.7453 0.0003 0.34 0.7513 0.92 0.7453 0.0003

0.90

30 -0.91 0.9441 1.00 0.9190 0.0004 0.00 0.9441 1.00 0.9191 0.0004
50 0.15 0.9394 1.00 0.9257 0.0003 0.15 0.9394 1.00 0.9257 0.0003
70 0.41 0.9385 1.00 0.9285 0.0002 0.41 0.9385 1.00 0.9285 0.0002
100 0.62 0.9372 1.00 0.9301 0.0002 0.62 0.9372 1.00 0.9301 0.0002
300 0.78 0.9350 0.98 0.9320 0.0001 0.78 0.9350 0.98 0.9320 0.0001

While there is a medium correlation between raters where n = 300 and while there
is high correlation between raters where n > 30, the classical and adjusted degrees of
distinguishabilities are equal. The results in Table 4 show that when the correlation
between raters increases, the classical and adjusted degrees of distinguishabilities also
increase. While there is a low correlation and the sample size increases, the classical and
adjusted degree of distinguishabilities decrease. However, while there is medium or high
correlation, the classical and adjusted degree of distinguishabilities are not affected by
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the sample sizes. As expected, when the sample size increases, standard error decreases.

The scatter plots of the classical and adjusted degree of distinguishabilities for different
sample sizes and the different values of correlation are given in Figure 1. Figure 1 shows
that the negative values of degree of distinguishabilities are relocated to [0,1] interval.
When the negative values of DD diverge from 0, the values of ADD converge to perfect
agreement.

Figure 1. The scatter plots of the classical and adjusted degrees of
distinguishabilities for different values of sample size and correlation

The kappa coefficients calculated for the tables generated randomly are classified into six
categories considering Landis and Koch [10] intervals. Then, the minimum, maximum
values, and medians of the adjusted degree of distinguishabilities are calculated for each
kappa interval. The results are summarized in Table 5 and Figure 2. The aim of this
study is to investigate the kappa coefficient and the adjusted category distinguishability
together. Besides, it is purposed to investigate the ADD intervals according to the kappa
intervals.
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Table 5. The minimum, maximum values, and medians of the ad-
justed degree of distinguishabilities for each kappa interval
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Table 5 shows that when there is a poor agreement and the correlation between raters
decreases, ADD increases. Except for the poor agreement, when the correlation between
raters increases, ADD also increases. When the agreement increases, the value of ADD
also increases and converges to 1.
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By means of the results in Table 5, it is possible to develop a mixed table of the kappa
coefficient and adjusted degree of distinguishability. As the minimum, maximum values,
and medians in Table 5 are considered, we suggested the interpretation levels for ADD.
The results for 2× 2 tables are summarized in Table 6.

Table 6. The interpretation levels of ADD

κ ADD Strength of ADD

0.81-1.00 >0.99 Perfect
0.61-0.80 0.94-0.99 Substantial
0.41-0.60 0.82-0.93 Moderate
0.21-0.40 0.57-0.81 Fair
<0.20 0.00-0.56 Poor

In order to test the validity of the defined intervals, a simulation study is performed
with 50,000 replications for different sample sizes and correlation levels. Then, the kappa
coefficient and the adjusted degree of distinguishability are calculated for each replication.
The percentages of correct classifications are calculated for each scenario and given in
Table 7. The percentages of correct classifications in Table 7 change between 0.73 and
0.97.

Table 7. The percentages of correct classifications for different sample
size and correlation

ρ

n 0.20 0.50 0.80
30 0.85 0.78 0.73
50 0.94 0.85 0.78
70 0.96 0.87 0.81
100 0.97 0.90 0.82
300 0.97 0.93 0.75

5. Illustrative Examples
In this section, we revisit three examples that will be used to illustrate the kappa coeffi-
cient, classical and adjusted degrees of distinguishabilities.

Example 1: To illustrate the calculation of kappa coefficient and adjusted degrees of
distinguishability, let us consider the 2×2 contingency tables in Table 8 and 9. The data
is taken from Shoukri [16] who examined 197 patients with prostate cancer. A modified
TNM (tumor, node, metastasis) staging system is used to categorized MRI (magnetic
resonance imaging), ultrasound, and pathological finding.
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Table 8. Ultrasonography vs. pathological analysis for prostate can-
cer differentiation

Stage in pathological study
Stage in ultrasound Advanced Localized Total
Advanced 45 50 95
Localized 60 90 150
Total 105 140 245

Table 9. MRI vs. pathological analysis for prostate cancer differentiation

Stage in pathological study
Stage in MRI Advanced Localized Total
Advanced 51 28 79
Localized 30 88 118
Total 81 116 197

For Table 8 and 9, kappa coefficients are calculated as 0.07 and 0.39, respectively. The
adjusted degree of distinguishabilities are calculated as 0.26 and 0.81.
While it is possible to infer a slight agreement between pathological and ultrasound re-
sults, it can be said that the distinguishability of the advance and localized categories is
also at a slight level. While it is possible to infer a fair agreement between pathological
and MRI results, it can be said that the distinguishability of the advance and localized
categories is also at a fair level. Furthermore, when the pathological analysis results
accept as reference, it can be said that MRI is more able to distinguish the categories
than ultrasound.

Example 2: The radiographs of each of 60 patients are shown to two groups of doctors
(two trauma surgeons and two radiologists). The data is taken from Oh [13]. To illus-
trate the calculation of linearly weighted kappa coefficient, classical and adjusted degrees
of distinguishabilities, we consider the 4×4 ordered square contingency table in Table 10.

Table 10. The ratings given by Trauma surgeons and radiologists

Radiologists
Trauma surgeons 0 1 2 3 Total
0 3 15 1 2 21
1 1 11 13 1 26
2 1 5 4 2 12
3 0 0 1 0 1
Total 5 31 9 5 60

For Table 10, linearly weighted kappa coefficient is calculated as 0.11. The classical and
adjusted degrees of distinguishabilities are:
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0-1 1-2 2-3
DD 0.42 -0.43 -0.67
ADD 0.42 0.30 0.40

While it is possible to infer a slight agreement between doctors’ decisions, it is possible
to infer poor distinguishabilities of all the pairs of categories. Furthermore, the distin-
guishabilities of the adjacent categories are homogenous.

Example 3 : 190 patients’ slides with advanced and nonadvanced adenomas is identi-
fied in a case-control study of adenomatous polyps conducted in NYC colonoscopy-based
practices. The slides were classified into 5 categories in 1988 and 1998 by a pathologist.
The data taken from Terry et al [17] is given in Table 11.

Table 11. The ratings of case-control study

1998
1988 1 2 3 4 5 Total
1 8 13 4 1 1 27
2 9 16 12 2 0 39
3 1 13 8 1 1 24
4 2 19 12 9 6 48
5 2 6 11 6 27 52
Total 22 67 47 19 35 190

For Table 11, linearly weighted kappa coefficient is calculated as 0.38. The adjusted
degrees of distinguishabilities are:

1-2 2-3 3-4 4-5
ADD 0.09 0.17 0.77 0.84

While it is possible to infer a fair agreement between doctors’ decisions, it is possible to
infer poor category distinguishability of categories (1) and (2), and categories (2) and
(3). While categories (3) and (4) are fairly distinguishable, categories (4) and (5) are
moderately distinguishable. Furthermore, the distinguishabilities of the adjacent cate-
gories are non-homogenous.

Because there are poor distinguishabilities of categories (1) and (2), and categories (2)
and (3), it is suggested to be reclassified the categories. We can reclassify the categories
as 3 alternatives. Linearly weighted kappa coefficients and the adjusted degrees of dis-
tinguishabilities are calculated for the reclassified tables.
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Alternative 1: (1+2), (3), (4), (5)

ADD1+2,3 ADD3,4 ADD4,5 κw

Estimate 0.39 0.83 0.85 0.40
Level Poor Moderate Moderate Fair

Alternative 2: (1), (2+3), (4), (5)

ADD1,2+3 ADD2+3,4 ADD4,5 κw

Estimate 0.57 0.79 0.85 0.40
Level Fair Fair Moderate Fair

The linearly weighted kappas increase to 0.40 after the reclassifications 1 and 2.

Alternative 3: (1+2+3), (4), (5)

ADD1+2+3,4 ADD4,5 κw

Estimate 0.83 0.85 0.49
Level Moderate Moderate Moderate

For the third alternative, the adjusted degree of distinguishabilities and linearly weighted
kappa coefficient increase to moderate levels.

6. Conclusions
When working on square contingency tables, firstly the agreement between the row and
column variables is investigated. The variables of a square contingency table can be pos-
sibly two different raters who rate the same subjects or two different time points which
is rated by the same rater. In the agreement studies, it is expected that the decisions
of the raters are correspond to each other. If the agreement between raters is not high
enough, there could be many reasons. One of these reasons is that the raters cannot
distinguish the categories and because of this cannot classify the subjects correctly. In-
correct classification may affect the level of the agreement. In that case, it will be useful
to use the degree of distinguishability to detect if the categories are distinguishable or not.

In practice, there occurs some problems to the use of the degree of distinguishability. In
this article, we purposed to solve the problem of calculating the degree of distinguisha-
bility falls outside the defined range and to discuss the terms agreement and category
distinguishability together. We proposed to use adjusted degree of distinguishability in-
stead of the classical one.

The simulation results show that the adjusted degrees of distinguishability increases
when the the correlation between raters increases. Besides, when there is medium or
high correlation, it is not affected by the sampling size changes. While there is a low cor-
relation and the sample size increases, the adjusted degree of distinguishability decreases.

It is easy to interpret ADD by use of the classification in Table 6. If the distinguishability
between the categories is less than “moderate" level, then it is proposed to combine the
categories. However, because of the definition of the categories, sometimes it is not logical
to combine the categories. In that case, it is reasonable to reclassify the categories and
repeat the study.
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