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Abstract
In this study, a semi-Markovian inventory model of type (s, S) is con-
sidered and the model is expressed by means of renewal-reward pro-
cess (X(t)) with an asymmetric triangular distributed interference of
chance and delay. The ergodicity of the process X(t) is proved and
the exact expression for the ergodic distribution is obtained. Then,
two-term asymptotic expansion for the ergodic distribution is found
for standardized process W (t) ≡ (2X(t))/(S − s). Finally, using this
asymptotic expansion, the weak convergence theorem for the ergodic
distribution of the process W (t) is proved and the explicit form of the
limit distribution is found.
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1. Introduction
A number of very interesting problems arising in the theories of inventory, stock

control, queuing theory, reliability, mathematical insurance, stochastic finance etc., can
be expressed by means of renewal processes, renewal-reward processes, random walk
processes and their modifications. There are many important theoretical results about
these subjects in literature (Borovkov (1984), Brown and Solomon (1975), Feller (1971),
Gihman and Skorohod (1975), Janssen and Leuwaarden (2007), Khaniyev et al. (2008,
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2013), Lotov (1996), Rogozin (1964), etc.). The results of these studies have complex
mathematical structures and they are not useful for applied problems.

To avoid this difficulty, in recent years, the asymptotic methods have started to be
applied to these problems. There are several valuable studies about using asymptotic
methods, as well (e.g., Janssen and Leuwaarden (2007), Lotov (1996), Khaniyev (2005),
Khaniyev and Atalay (2010), Khaniyev and Mammadova (2006), Khaniyev et al. (2008,
2013)).

Lately, the inventory models of type (s,S) have been extensively considered and some
of their characteristics have been investigated in the literature (see, e.g., Khaniyev and
Atalay (2010), Khaniyev and Mammadova (2006), Khaniyev et al. (2013)). Especially, in
the studies Khaniyev and Atalay (2010) and Khaniyev et al. (2013), an inventory model
of type (s,S) with triangular distributed interference of chance is tackled. In Khaniyev
and Atalay (2010), the weak convergence theorem for the considered process is proved and
in Khaniyev et al. (2013), three-term asymptotic expansions for the moments of ergodic
distribution are obtained. These results are not only remarkable from the theoretical
point of view but are also very useful in the application. Unfortunately, in these both
studies, discrete interference has a symmetric triangular distribution and it is assumed
that the lead time is zero. Note that, the processes having this restricted properties
cannot adequately express real world problems arising in applied sciences. It can be
observed in the following example which is given by Khaniyev et al. (2013).

1.1. The Real-World Model. A company operating in the energy sector produces,
stores, fills, and distributes liquefied petroleum gas (LPG). Domestic LPG distribution
is carried out via pipelines and transported from the LPG production center (a city in
Turkey) to the 30 dealers by tankers with the capacities of 22m3 (approximately 10-11
tons) and 35m3 (approximately 17-18 tons). The tankers are kept under surveillance
with the GPS (Global Positioning Systems) 24 hours a day and 7 days a week. After
delivering the needed amount of gas to the dealer, if more than 10% of the capacity of
the tanker is left over, the tanker waits in its position until the next order of any dealer.
Each dealer has a storage capacity of S = 30 m3. Random amounts of LPG (ηn) are
sold from these storage tanks at random times Tn =

∑n
i=1 ξi. When at random moments

τn, n ≥ 1 the level of LPG in the tank of the dealer falls below the control level s = S/5,
a demand signal is automatically sent online to the production center. As a response
to this demand, the nearest tanker to the dealer is directed to the demanding dealer. If
there is no tanker near to the dealer, a full tanker is sent from the production center.
For safety concerns (in order not to allow the gas pressure to reach its maximum value),
the dealers, most of the time, fill about 85% of the capacity (S) of their tanks. However,
with a low probability, by taking a risk the dealers fill their tanks to the full capacity
when the need arises. On the other hand, even if the amount of gas in the tanker does
not meet 85% of the dealer’s tank, the existing amount of gas in the tanker is loaded into
the dealer’s tank.

The concept of filling the depot approximately 85% indicates the necessity of using
an asymmetric triangular distributed interference of chance for modeling this problem.
Therefore, in our opinion, the process that expresses the working principle of the depot
can best be modelled as a stochastic process with an asymmetric triangular distributed
interference of chance.

Moreover, the existing studies in literature, assumes that the lead time is equal to zero.
However, in real world problems, it is not possible to refill a depot immediately everytime.
This delay time may be due to transportation, trying to provide demands from suppliers,
etc. Therefore, to solve certain real world problems, the following assumptions should be
satisfied.
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1. The random variable which represents the discrete interference of chance has an
asymmetric triangular distribution.

2. Lead time takes positive values.
The studies existing in literature, unfortunately do not satisfy these assumptions. To

fill this gap, in this study, a semi-Markovian inventory model of type (s, S) is considered
under these two assumptions. In Section 2, the stochastic process X(t) which expresses
this model is constructed mathematically. Next, under some weak conditions, the ergod-
icity of the process is proved and the exact form of the ergodic distribution is found in
Section 3. Finally, in Section 4, the standardized process W (t) is defined and two-term
asymptotic expansion for the ergodic distribution of W (t) is obtained. Then, weak con-
vergence theorem which is the main aim of the study is proved. Additionally, the explicit
form of the limit distribution is found. Before stating these results, let us first define the
process mathematically.

2. Mathematical Construction of the Process X(t)

Let {ξn}, {ηn}, {ζn}, {θn}, n = 1, 2, ... be four sequences of random variables
defined on the same probability space (Ω,F, P ) such that variables in each sequences
are independent and identically distributed. Additionally, ξn, ηn, ζn and θn are also
mutually independent and can take only non-negative values. Denote the distribution
functions of ξ1, η1, ζ1, θ1 by

Φ(t) = P{ξ1 ≤ t}; F (x) = P{η1 ≤ x}; π(z) = P{ζ1 ≤ z}; H(t) = P{θ1 ≤ t},
respectively. Define the renewal sequences {Tn} and {Yn} using {ξn} and {ηn} as follows:

T0 = Y0 = 0; Tn =

n∑
i=1

ξi; Yn =

n∑
i=1

ηi; n = 1, 2, ...

and a sequence of integer-valued random variables {Nn}; n = 0, 1, 2, ... as:
N0 = 0; N1 = N1(z) = inf {k ≥ 1 : z − Yk < s} ; z ∈ [s, S];

Nn+1 = Nn+1(ζn) = inf{k ≥ Nn + 1 : ζn − (Yk − YNn) < s}; n = 1, 2..

Define

τ0 = 0; ζ0 = z ∈ [s, S]; τn = τn(ζn−1) =

Nn∑
i=0

ξi;

γn = τn + θn, n = 1, 2, ...

ν(t) = max{n ≥ 0 : Tn ≤ t}, t > 0.

Now let us construct the stochastic process X(t):

X(t) =

∞∑
n=0

max
{
s, ζn −

(
Yν(t) − YNn

)}
I[γn;γn+1](t).

Here, indicator function IA(t) of the set A is defined as

IA(t) =

{
1, t ∈ A

0, t /∈ A

Considered process X(t) is known as “Renewal-reward process with a discrete inter-
ference of chance” in literature. In this study, it is assumed that the random variable ζ1
has asymmetric triangular distribution with parameters (s,m, S). For this reason, this
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process can be called “Renewal-reward process with an asymmetric triangular distributed
interference of chance”. A sample trajectory of this process is shown in Figure 1.

Figure 1. A trajectory of the process X(t)

3. The Ergodicity of the Process X(t)

In order to study the stationary characteristics of the process, it is required to show
that the process is ergodic under some weak conditions. For this aim, first of all, we are
going to prove the ergodicity of the process.

3.1. Proposition. Let the initial sequences of the random variables {ξn}, {ηn}, {ζn},
{θn}, n = 1, 2, ... satisfy the following supplementary conditions:

(i) 0 < E(ξ1) < +∞;
(ii) 0 ≤ E(θ1) < +∞;

(iii) E(η1) > 0;
(iv) η1 is a non-arithmetic random variable;
(v) random variable ζ1 has asymmetric triangular distribution with parameters (s,m, S), 0 ≤

s < m < S < +∞.
Then, the process X(t) is ergodic and the following relation holds with probability 1, for
each bounded and measurable function f(x) (f : [0,+∞) → R):

lim
t→∞

1

t

∫ t

0

f (X(u)) du

=
1

E(γ1)

∫ S

z=s

∫ S

v=s

∫ +∞

t=0

f(v)Pz {γ1 > t;X(t) ∈ dv} dtdπ(z).(3.1)

Proof. The process X(t) belongs to a wide class of processes is called “stochastic processes
with a discrete interference of chance”. This notion is first introduced to literature by A.
N. Kolmogorov. For this class, the general ergodic theorem of type Smith’s “key renewal
theorem” exists in the literature (Gihman and Skorohod (1975), p.243). According to this
theorem, to prove the ergodicity of the processes with a discrete interference of chance,
it is sufficient to show that the following two assumptions hold.

Assumption 1. Choosing a sequence of ascending random times is required such
that the values of the process X(t) at these times form an embedded Markov chain
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which is ergodic. For this purpose, it is sufficient to choose the sequence of random times
{γn, n ≥ 0}, defined in Section 2. The values of the process X(t) at these times are
equal to ζn = X(γn), n ≥ 1 which form an embedded Markov chain. In our case, the
embedded Markov chain {ζn}, n ≥ 1 is ergodic with a stationary distribution π(z) =
limn→∞ P{ζn ≤ z} = P{ζ1 ≤ z}, because the random variables {ζn}, n = 1, 2, ... are
independent and identically distributed random variables in the interval [s, S]. Therefore,
the first assumption of the general ergodic theorem (Gihman and Skorohod (1975)) is
satisfied.

Assumption 2. The expected value of the times between successive stopping times
{γn}, n = 1, 2, ... should be finite, that is E(γn − γn−1) < ∞, n = 1, 2, ... For this aim,
it is sufficient to show that

E (γ1(z)) = E ((τ1(z) + θ1)) = E (τ1(z)) + E(θ1) < ∞;

E (γn − γn−1) = E (γ1(ζ1)) = E (τ1(ζ1)) + E (θ1) < ∞; n = 2, 3, ...

By the conditions of Proposition 3.1, E(ξ1) < ∞ and E(θ1) < ∞. From Wald identity
(Feller (1971)), it is hold that E (τ1(z)) = E

(∑N1(z)
i=1 ξi

)
= E(ξ1)E (N1(z)). Note that,

E (N1(z)) ≡ Uη(z − s) < ∞ for each finite z (Feller (1971), p.185). Here, Uη(x) is
a renewal function generated by the sequence of the random variables {ηn}, n ≥ 1.
Therefore, E (γ1(z)) < ∞. At the same time, the renewal function Uη(x) is a non-
decreasing function. Therefore, for each z ∈ [s, S], Uη(z − s) < ∞ is provided. Hence,
we have the following relation:

E (τ1 (ζ1)) = E(ξ1)

∫ S

s

Uη(z − s)dπ(z) ≤ E(ξ1)Uη(S − s) < ∞

Thus, for each n = 2, 3, ...; E (γn − γn−1) < ∞. This shows that Assumption 2 is also
satisfied. Thereby, the process X(t) is ergodic and the relation in Eq. (3.1) holds. This
concludes the proof of Proposition 3.1. �

From this theorem, many valuable results can be obtained. Some of them can be given
as follows.

3.2. Corollary. Under the conditions Proposition 3.1, for each x ∈ [s, S], the exact
expression of the ergodic distribution function of X(t) is given as follows:

(3.2) QX(x) = 1− E (Uη (ζ1 − x))

K + E (Uη (ζ1 − s))

Here, QX(x) ≡ limt→∞ P{X(t) ≤ x} is the ergodic distribution of process X(t). More-
over, K = E(θ1)/E(ξ1); π(z) = P{ζ1 ≤ z} and

π′(z) ≡ p(z) =

{
2(x−s)

(m−s)(S−s)
, s < x ≤ m

2(S−x)
(S−m)(S−s)

, m < x ≤ S

Let us denote X̃(t) ≡ X(t)− s and ζ̃1 = ζ1 − s. Then, state the following corollary.

3.3. Corollary. Under the conditions of Proposition 3.1, the process X̃(t) is ergodic and
the exact expression of its ergodic distribution (QX̃(x)) can be shown as follows:

QX̃(x) ≡ lim
t→∞

P
{
X̃(t) ≤ x

}
= 1−

E
(
Uη

(
ζ̃1 − x

))
K + E

(
Uη

(
ζ̃1 − s

)) ; x ∈ [0, S − s]
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4. Weak Convergence Theorem for the Ergodic Distribution of
the Process X(t)

The aim of this section is to prove the weak convergence theorem for the ergodic
distribution of standardized process W (t) ≡ X̃(t)/β where X̃(t) ≡ X(t) − s and β =
(S − s)/2, when β → ∞. Denote the ergodic distribution of W (t) with QW (x). Then,
the exact expression of QW (x) can be written as follows (x ∈ [0, 2]):

(4.1) QW (x) ≡ lim
t→∞

P {W (t) ≤ x} = QX̃(βx) = 1−
E
(
Uη

(
ζ̃1 − βx

))
K + E

(
Uη

(
ζ̃1 − s

)) .
Here, K = E(θ)/E(ξ1) is delay coefficient and random variable ζ̃1 has the asymmet-
ric triangular distribution with parameters (0,m − s, S − s) and its probability density
function (p̃(z)) is written as follows:

(4.2) p̃(z) ≡ π̃′(z) = π′(s+ z) =

{
z

2αβ2 , 0 < z ≤ 2αβ
2β−z

2(α−1)β2 , 2αβ < x ≤ 2β

where α = (m− s)/(S − s) and β = (S − s)/2.
Before proving the weak convergence theorem, define the following functions A(z) =∫ z

0
Uη(y)dy and V (z) =

∫ z

0
yUη(y)dy, then give the following propositions.

4.1. Proposition. The Laplace transforms Ã(λ) and Ṽ (λ) of the function A(z) and
V (z) can be represented as follows:

(4.3) Ã(λ) =
1

λ2 (1− φ(λ))
; Ṽ (λ) =

1− φ(λ)− λφ′(λ)

λ3 (1− φ(λ))2
.

Here, φ(λ) = E (exp (−λη1)) ; λ > 0.

Proof. Proof of the Proposition 4.1 can be derived from both definitions of A(z), V (z)
and properties of Laplace transform. �

4.2. Proposition. Assume that m3 ≡ E
(
η3
1

)
< ∞. Then, the following asymptotic

expansions can be written, when z → ∞:

A(z) =
1

2m1
z2 +

m2

2m2
1

z +
A1

m1
+ o(1);

V (z) =
1

3m1
z3 +

m2

4m2
1

z2 + o(z)(4.4)

Here, A1 = m2
21 −m31/2; mk1 = mk/ (km1) ; mk = E(ηk

1 ), k = 1, 2, ...

Proof. Since m3 < +∞ is satisfied, then the following asymptotic expansions for φ(λ)
and φ′(λ) can be written, when λ → 0 (Feller (1971)):

(4.5) φ(λ) = E
(
e−λη1

)
= 1− λm1 +

λ2

2
m2 −

λ3

6
m3 + o

(
λ3) ;

(4.6) φ′(λ) = E(−η1e
−λη1) = −m1 + λm2 −

λ2

2
m3 + o

(
λ2) .

Substituting Eq. (4.5) and Eq. (4.6) in Eq. (4.3) and applying Tauber-Abel Theorem to
Eq. (4.3), the asymptotic expansions in Eq.(4.4) are obtained. This concludes the proof
of Proposition 4.2. �
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4.3. Lemma. In addition to the conditions of Proposition 3.1, let m3 < ∞ be also
satisfied. Then, the asymptotic expansion of E

(
Uη

(
ζ̃1
))

can be written as follows,
when β → ∞:

(4.7) E
(
Uη

(
ζ̃1
))

=
2 + 2α

3m1
β +

m2

2m2
1

+ o

(
1

β

)
Here, mk = E(ηk

1 ); k = 1, 2, 3.

Proof. Present E
(
Uη

(
ζ̃1
))

as follows:

(4.8) E
(
Uη

(
ζ̃1
))

=

∫ 2β

0

Uη(z)p̃(z)dz =

∫ 2αβ

0

Uη(z)p̃(z)dz +

∫ 2β

2αβ

Uη(z)p̃(z)dz

Using Proposition 4.2, calculate the first integral in Eq.(4.8) as follows:

(4.9) I1 ≡
∫ 2αβ

0

Uη(z)p̃(z)dz =
1

2αβ2
V (2αβ) =

(2α)2

3m1
β +

αm2

2m2
1

+ o(1)

Now, with the help of Proposition 4.2, calculate the second integral in Eq.(4.8) as follows:

(4.10) I2 ≡
∫ 2β

2αβ

Uη(z)p̃(z)dz =
1

2(1− α)β2
[D(2β)−D(2αβ)]

Here, D(x) ≡
∫ x

0
Uη(z)(2β−z)dz. From Proposition 4.2, D(2β) can be written as follows:

(4.11) D(2β) = 2βA(2β)− V (2β) =
(2β)3

6m1
+

m2 (2β)
2

4m2
1

+
2βA1

m1
+ o(β)

Here, A1 = m2
21 −m31/2; mk1 = mk/(km1); mk = E(ηk

1 ), k = 1, 2, ...
In a similar way, D(2αβ) can be presented as follows:

(4.12) D(2αβ) = 2βA(2αβ)− V (2αβ) = 8α2(3−2α)
6m1

+ 4αm2(2−α)

4m2
1

β2 + 2A1
m1

β + o(β)

Considering Eq.(4.11) and Eq.(4.12) into Eq.(4.10), the following asymptotic expansion
can be obtained, when β → ∞:

(4.13) I2 =
1

2(1− α)β2
[D(2β)−D(2αβ)] =

2(1 + α− 2α2)

3m1
β +

m2(1− α)

2m2
1

+ o(1)

Substituting Eq.(4.9) and Eq.(4.13) in Eq. (4.8), the following asymptotic expansion is
obtained, when β → ∞:

(4.14) E
(
Uη

(
ζ̃1
))

= I1 + I2 =
2 + 2α

3m1
β +

m2

2m2
1

+ o(1)

Therefore, Lemma 4.3 is proved. �

4.4. Lemma. Suppose that m3 < +∞ is also satisfied in addition to the conditions
of Proposition 3.1 Then, two-term asymptotic expansion for E

(
Uη

(
ζ̃1 − βx

))
can be

written as follows, when β → ∞:

(4.15) E
(
Uη

(
ζ̃1 − βx

))
=


8α2+8α−12αx+x3

12m1α
β + m2(4α−x2)

8m1α
+ o(1), x ∈ (0, 2α)

(2−x)3

12(1−α)
β + m2(2−x)2

8(1−α)m2
1
+ o(1), x ∈ (2α, 2)

Here α = (m− s)/(S − s).
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Proof. For each x ∈ (0, 2α), write E
(
Uη

(
ζ̃1 − βx

))
as follows:

(4.16) E
(
Uη

(
ζ̃1 − βx

))
= J11(x) + J12(x)

Here,

J11(x) ≡
∫ 2αβ

βx

Uη(z − βx)p̃(z)dz; J12(x) ≡
∫ 2β

2αβ

Uη(z − βx)p̃(z)dz;

First of all, using Proposition 4.2, calculate J11(x):

J11(x) =
1

2αβ2

∫ 2αβ

βx

Uη(z − βx)zdz

=
1

2αβ2
{βx [A ((2α− x)β) + V ((2α− x)β)]}

=
16α3 − 12α2x+ x3

12αm1
β +

m2(4α
2 − x2)

8α2
+ o(1)(4.17)

Here, A(z) =
∫ z

0
Uη(y)dy and V (z) =

∫ z

0
yUη(y)dy.

Now, with the similar method, calculate J12(x):

J12(x) =

∫ 2β

2αβ

Uη (z − βx) p̃(z)dz =
1

2(1− α)β2

∫ 2β

2αβ

Uη (z − βx) (2β − z)dz

=
1

2(1− α)β2

∫ (2−x)β

(2α−x)β

Uη (y) (2β − βx− y)dy

=
1

2(1− α)β2
{
∫ (2−x)β

0

Uη(y)(2β − βx− y)dy

−
∫ (2α−x)β

0

Uη(y)(2β − βx− y)dy}

=
1

2(1− α)β2
[B ((2− x)β)−B ((2α− x)β)](4.18)

Here, B(t) ≡
∫ t

0
Uη(y)(2β − βx− y)dy for simplicity.

With the help of Proposition 4.2, compute B((2− x)β) and B((2α− x)β), as follows:

B((2− x)β) = (2β − βx)A((2− x)β)− V ((2− x)β)

=
(2− x)3

6m1
β3 +

m2(2− x)2

4m2
1

β2 +
A1

m1
β + o(β)(4.19)

and

B((2α− x)β) = (2− x)βA((2α− x)β)− V ((2α− x)β)

=
(2α− x)2(6− x− 4α)

6m1
β3 +

m2(2− x)2(4− x− 2α)

4m2
1

β2

+
A1(2− x)

m1
β + o(β).(4.20)

Here, A1 = m2
21 −m31/2; mk1 = mk/(km1); mk = E(ηk

1 ), k = 1, 2, ...
By considering Eq.(4.19) and Eq.(4.20) in Eq.(4.18), J12(x) can be written as follows:

J12(x) =
1

2(1− α)β2
[B((2− x)β)−B((2α− x)β)]

=
16α3 − 24α2 − 12α2x+ 24αx− 12x+ 8

12(1− α)m1
β +

m2(4α− x2)

8αm2
1

+ o(1)(4.21)
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Hence, the first part of Eq.(4.15) holds. Now, we can obtain the second part of the
Eq.(4.15) in a similar way.
For each x ∈ (2α; 2), βx ∈ (2αβ; 2β) holds. Then, using Proposition 4.2,
E
(
Uη

(
ζ̃1 − βx

))
is calculated, as follows:

E
(
Uη

(
ζ̃1 − βx

))
=

∫ 2β

βx

Uη(z − βx)p̃(z)dz

=
1

2(1− α)β2

∫ 2β

βx

Uη(z − βx)(2β − z)dz

=
1

2(1− α)β2
[(2− x)βA((2− x)β)− V ((2− x)β)]

=
(2− x)3

12(1− α)m1
β +

m2(2− x)2

8(1− α)m2
1

+ o(1).

Here, mk = E(ηk
1 ), k = 1, 2. Thus, the second part of the Eq.(4.15) is obtained. �

With the help of the given propositions above, weak convergence theorem can be stated
as follows.

4.5. Theorem. In addition to the conditions of Proposition 3.1, let m3 < ∞ be also
satisfied. Then, the following two-term asymptotic expansion for the ergodic distribution
of W (t) can be written, when β → ∞, i.e.,

(4.22) QW (x) =

R1(x) +
D1(x)

β
+ o

(
1
β

)
, x ∈ (0; 2α)

R2(x) +
D2(x)

β
+ o

(
1
β

)
, x ∈ (2α; 2)

Here,

R1(x) =
12αx− x3

8α(1 + α)
; R2(x) = 1− (2− x)3

8(1− α)2
;

D1(x) =
3m21(4α− x2)

8α(1 + α)
− 3(8α2 − 8α− 12αx+ x3)(Km1 +m21)

16α(1 + α)2
;

D2(x) =
3m21(2− x)2 − 3(2− x)3(Km1 +m21)

8(1− α2)
; K = E(θ1)/E(ξ1).

Proof. As in shown in Eq. (4.3), the exact expression for the ergodic distribution of the
process W (t) is as follows:

(4.23) QW (x) = 1−
E
(
Uη

(
ζ̃1 − βx

))
K + E

(
Uη

(
ζ̃1
))

Using the asymptotic expansion of E
(
Uη

(
ζ̃1
))

in Eq.(4.14), the following asymptotic
expansion can be written:

(4.24) 1

K + E
(
Uη

(
ζ̃1
)) =

3m1

2(1 + α)β

[
1− 3(2Km2

1 +m2)

4(1 + α)m1

1

β
+

(
1

β

)]
With the help of the Eq.(4.15) and Eq.(4.24), asymptotic expansion for QW (x) in Eq.(4.22)
is found. Thus, the Theorem 4.5 is proved. �

Now, let us give the following proposition.
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4.6. Proposition. Suppose that m2 < ∞ and K < ∞ holds. Then, for each x ∈ (0; 2α),
the inequality |D1(x)| ≤ 5m21 + 4Km1 < ∞ and for each x ∈ (2α; 2), the inequality
|D2(x)| ≤ 3m21 +Km1 < ∞ are satisfied. Here, K = E(θ1)/E(ξ1) is delay coefficient.

Proof. Using the inequality |a−b| ≤ |a|+|b|, since m2 < ∞; E(θ1) < ∞ and 0 < E(ξ1) <
+∞ are satisfied, then the following inequalities can be written:

|D1(x)| ≤ 12αm21

8α(1 + α)
+

3(8α2 + 8α+ 24α2 + 8α3)(Km1 +m21)

16α(1 + α)

≤ 5m21 + 4Km1 < ∞;

|D2(x)| ≤ 3m21(2− x)2

8(1− α2)
+

3(2− x)3(Km1 +m21)

8(1− α2)
≤ 3m21 +Km1 < ∞.

�

Finally, let us give the following theorem which is the main goal of this study.

4.7. Theorem. (Weak Convergence Theorem) Assume that the conditions of Theorem
4.5 are satisfied. Then, the ergodic distribution (QW (x)) of W (t) weakly converges to
limit distribution R(x), for each x ∈ (0; 2), when β → ∞, i.e.,

(4.25) lim
β→∞

QW (x) = R(x) =

{
R1(x) x ∈ (0, 2α)

R2(x) x ∈ (2α, 2)

Here,

R1(x) =
12αx− x3

8α(1 + α)
; R2(x) = 1− (2− x)3

8(1− α2)
; α =

m− s

S − s
; β =

S − s

2
.

Proof. According to Lemma 4.3, |D1(x)| < ∞ and |D2(x)| < ∞ are satisfied. Then, from
Theorem 4.5, the following inequalities can be obtained, when β → ∞:

a) For each x ∈ (0; 2α)

(4.26) |QW (x)−R1(x)| ≤
|D1(x)|

β
+

∣∣∣∣o( 1

β

)∣∣∣∣ ≤ 2

(
5m21 + 4Km1

β

)
.

b) For each x ∈ (2α; 2)

(4.27) |QW (x)−R2(x)| ≤ 2
|D2(x)|

β
≤ 2

(
3m21 +Km1

β

)
.

According to the conditions of Theorem 4.7, K < ∞ and m3 < ∞. Therefore, the right
hand sides of the inequalities in Eq.(4.26) and Eq.(4.27) are finite. Then, as β → ∞, the
right hand sides of the inequalities in Eq.(4.26) and Eq.(4.27) converge to zero. Hence,
the following relation holds:

lim
β→∞

QW (x) = R(x) ≡

{
R1(x) x ∈ (0, 2α)

R2(x) x ∈ (2α, 2)

That is, as β → ∞, the ergodic distribution of the process W (t) weakly converges to the
limit distribution R(x), for each x ∈ (0; 2). Thus, Theorem 4.7 is proved. �
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5. Conclusion
In this study, a semi - Markovian inventory model of type (s, S) is considered. This

model is expressed by means of the renewal - reward process (X(t)) with an asymmetric
triangular distributed interference of chance. Ergodicity of this model is proved and the
exact expression for the ergodic distribution function is found. Using the exact expression
for the ergodic distribution of the process, two-term asymptotic expansion for the ergodic
distribution is obtained and the weak convergence theorem is proved. As a result, the
explicit form for the limit distribution function is found in Eq.(4.25). In the case when
the interference has a symmetric triangular distribution, the parameter α = 0.5. Then,
from Eq.(4.25), limit distribution R(x) can be extracted as follows:

(5.1) R(x) =

{
x− x3

6
; x ∈ (0, 1]

1− (2−x)3

6
; x ∈ (1, 2)

The result in Eq.(5.1) coincides with the limit distribution given in Khaniyev and
Atalay (2010). It means that our result includes the results of Khaniyev and Atalay
(2010) as a special case. On the other hand, in the real-world problem introduced in
Section 1, the parameter α which characterizes degree of asymmetry of the triangular
distribution, is equal to 0.85. Hence, the limit distribution for real-world model in Section
1 can be written as follows:

(5.2) R(x) =

{
10.2x−x3

12.58
; x ∈ (0; 1.7]

1− (2−x)3

2.22
; x ∈ (1.7; 2)
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