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Abstract: In the present work, we have introduced a new formulatiorterapproximate-analytical solution of the fractional -one
dimensional cable differential equation (FCE) by usingdbreformable fractional derivative. First of all, we havelened Adomian
decomposition method (CADM) and variational iteration haet (CVIM) in the conformable sense. Then, we have solveddiygu
the mentioned methods, which can analytically solve thetifsaal partial differential equations (FPDES). In orderrépresent the
efficiencies of these proposed methods, we have comparedutherical and exact solutions of the (FCE). Also, we havendou
out that the proposed models defined with the conformablizalie operator are very efficient and powerful technigirending
approximate- analytical solutions for the cable equatibfraxtional order. In addition, the classical derivativeld@ntegral properties
are recovered partially when the fractional term (alph&pjgal to one.

Keywords: Conformable derivative operator, approximate-analyscdution, Adomian decomposition method, variationataten
method, fractional cable equation.

1 Introduction

Fractional differential equations have been used to mod#lems in viscoelastic materials, fluid mechanics, biglog
physics, finance, bioengineering and other areas of apiplic#l,2,3,4,5,6]. There are many studies on Adomian
decomposition method (ADM) which can evaluate the solgiof FPDEs. The ADM has been applied to obtain
approximate solutions of linear or nonlinear fractiondfedential equations, fractional ordinary differentiajuations
(FODESs), FPDEs, integral and integro-differential equeasi [7,8,9,10,11,12,13,14,15. Meanwhile, there are many
applications of solution methods based on variationahiten method (VIM) to ordinary-partial differential eqits
and other research ared$[17,18,19,20]. In addition, Zhang 21] applied a finite difference method for the FPDEs.
Meerschaert and TadjeraBq used finite difference approximations for two-sided sphaetional PDEs. Shawagfeh
[23] explained analytical approximate solutions for nonlinractional differential equations. Recentl@4 25,26,27]
recommended a new fractional derivative called conformderivative operator (CDO) and by means of this operator,
some solution methods have been improved. Many resear¢h&129,30,31,32,33] have applied the CDO to the
problems in engineering, finance, biology, medicine, pts/and applied mathematics. In this study, we have solved the
fractional cable equation using the proposed methods itbesiy using the conformable fractional derivative.

The fractional cable equation can be given in its generahfas B4].

au(x,t _ d%u(x,t _
% _ D (K%) + HZoDi2u(x,t) + f(x,1), @)
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with the initial condition
u(x,0)=g(x), 0<x<L, @)

and the boundary conditions
u0,t) =¢(t), u(L,t) =g(t), 0<t<T, 3)

where 0< y1,y» < 1,K > Oandp? are constants, arth tu(x,t) is the conformable fractional derivative operator of
order 1— 1. In the literature, there are some processes of approxirnatgans of the FCE. Implicit numerical methods
(INM) [ 34], the implicit compact difference scheme (ICDS}], and explicit numerical methods (ENM3§] have been
applied to the FCE.

In this study, we consider the following non-homogeneoastfonal cable equation for the special case:

du(xt) 1q 0%u(xt) 1
T Dy ¢ ol — oD u(x,t) + f(x,t), 0< o <1, 4)
with the initial condition
u(x,0)=0, 0<x<1, (5)
and the boundary conditions
u(0,t)=0, u(L,t)=0,0<t<T, (6)

tl+ﬂ

wheref (x,t) = Zsinnx( + (2 + Drar

) . The exact solution of Eq1J-(3) is given byu(x,t) = t?sinmx [34].

The main purpose of this study is to redefine ADM and VIM for #wdution of the FCE by using the conformable
derivative. We have solved FCE of fractional order usingghggested methods and we have compared the numerical
and approximate-analytical solutions in term of figures tanles. Therefore, we have fulfilled the purpose. When
looking at the results, it is obvious that these methods ary effective and accurate for solving fractional cable
differential equation (FCDE).

2 Conformable derivative operator

Definition 1. Given a function f. [0,0) — R. Then the conformable derivative of f orderc (0,1] is defined by 24]:

DS () (t) = lim f “*ﬂlg") 10

forallt > 0.

Theorem 1.[24] Let a € (0,1] and f,g bea —differentiable at a point t> 0. Then;

(1) D% (af+bg)=abD% (f)+bD%(g) foralla,beR,
(2) DY (tX) =kt** forallk € R,

(3) D& (f (t)) = Ofor all constant functions ft) =
(4) Di(fg) = D% (9)+gD% (f),

5) DA(1/0) - w

(6) If f (t) is differentiable, then B (f (t)) =t¥ 1 (t).

Definition 2. [24,25] Let f be an n-times differentiable at tThen the conformable derivative of f ordeiis defined as:
f(la]-1 (Hgtw -a ) —fllal=1) )

‘e
D4 (f (1)) = y;no E ,

(© 2017 BISKA Bilisim Technology
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forallt >0, a € (nh,n+1 Here[a] is the smallest integer greater than or equakto

Lemma 1.[24,25] Let f be an n-times differentiable attThen
DS (f (1)) =tleT=o el ),

forallt >0, a € (n,n+1].

3 Adomian Decomposition Method in Conformable Sense

Consider the following nonlinear fractional partial diffatial equation:
La (U(X,1)) +R(U(x,1)) +N(u(xt)) =v(xt), (7)

wherelL, = DY is a linear operator with the conformable derivative of orde(n < a < n+ 1), Ris the another part of
the linear operatof\ is a non-linear operator andx,t) is a non-homogeneous term. In E@),(if we apply the linear
operator to Lemma, we obtain the following equation :

m—aM +RU(xt))+N(u(xt)) =v(xt).

atlal
Applying the inverse of linear operatby® = fg f3* - [ <2 (.) dyndyn_1---dyi, to both sides of Eq.7), we obtain
h
Lo'La (U(x 1) +Lg " R(U(X,1)) + Lg "N (u(xt)) = L 'v(xt). ®)

According to the conformable ADM, we can demonstrate thatgwi u (x,t) with the infinite series of components

u(xt) = iun (x,1). 9)

n

The nonlinear term dissociated in E@) (s given by B7):
N(U) = %Ana (UO,U]_,"' aun)a (10)
n=!

whereA,, is the so-called Adomian polynomials. These polynomiafstmaderived for all nonlinear term with respect to
the algorithms developed by Adomian.

Substituting 9) and (L0) into (8), we obtain

iun =u(x,0)+Llv—L,R ( iun> —L,t ( i%) : (11)

By using Eq. L1), the iteration terms are obtained by the following way:
Up = u(x,0)+Lgly,
U = —L;Rwp — Lz 1A,
h ‘ (12)

Uni1= —Lg'Ruh— L Ay, n>0.
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Then, the approximate-analytical solution of Ef).i§ obtained by

Un (X,t)

|
™M~

Finally, we obtain the exact solution of Eq)@s

u(x,t) :iigloﬁk(x,t).

4 Variational iteration method in conformable sense

In this section, it is given some basic solution steps anggnees of variational iteration method in conformablessen
(CVIM) definition. We introduce a solution algorithm in arfegftive way for the nonlinear FPDEs of fractional order.
Firstly, we consider the following nonlinear fractionaledjon:

DZu(x,t) +Lu(x,t) +Nux,t) =v(x,t), t>0, 13
t

wherelL is a linear operatol is a nonlinear operatov,is a known analytical function and%is conformable fractional
derivative of order with 0 < o < 1. In Eq. (13), if we apply the linear operator to Lemma 1, we get

t[a]—aa[‘ﬂu(xvt)

otlal + L (U, Ux, ) =+ N (U, Uy, Uxe) = V(X 1).

According to the variation technique, the correction fimal can be constructed &34

dun(x,{)

t
tnss%) = Ua(x0) + [ A(Q) [zl o 2ol

+L(un(x,4)) + N(ln(x,{)) —V(X,Z)] dd, (14)
whereA is the Lagrange multiplier, that in this method may be a cmtsir a function, Taking the variation of both sides
of Eq. (14) with respect to the independent variableve find

dun(x,{) Z)

1
6un+1(x,t)6un(x,t)+6</0/\(Z {zl o

L) N D) ~vix D) [ Z), (5)
anduj is a restricted value whedl, = 0. For a = 1 we obtain for Eq.15) the following stationary conditions
1+A(t)]; =0, A'({) =

Therefore the general Lagrange multipliers, can be spdc#f#geA ({) = —1. So, we get the iteration formula in the
following form

oun(x,{)

a7 +L(un(x,{)) + N((n(x,{)) —v(x,) | d{. (16)

Unp1(X,t) = Un(X,t) — /[Zl a

By using the determined Lagrange multiplier and any setkfttectionup, un1, which is the successive approximations
of u(x) for n > O, will be obtained readily. Hence, we get the solution as

u(x) = rllmo Un(X).

(© 2017 BISKA Bilisim Technology
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5 Solution of the fractional cable equation

5.1 Solution by CADM

Now let us solve the problem in Egd)(with the initial condition b) and the boundary condition6)(by using Adomian
decomposition method considering the conformable dévivaperator.

LetLqy =D% = ;—Z = tl*“l% be a linear operator, then if we apply the operator to Epwe have

_ 0%u(x,t)

D%u(x,t) = 52 U+ DAD1f(x,t). (17)
By using the Lemmd, we can write the Eq.1(/) as
_q0u(x,t)  d%u(x,t) a0
l1-a ) ) l1-a 1
t TN u(x,t) +t i D™ f(x,t). (18)

Now, we apply the inverse of operatiog which isLz* = |3 Zl%“ (.)dZ to both sides of Eq.1(g), we get

2%u(x,t
u(x,t) =u(x,0)+ Lt (" f(xt)) + Lt ( 05(27 ) U(XJ)) -
According to the iteration terms Eql?) and the initial condition Eq.5), we can write the decomposition series terms.
Therefore, the other components of the series are given by:

a+2
Uo = U(x,0) + Lyt (t- f(x,t)) = 2sinmx <§ + % 7

_-1(9% B . (rP41)io+2 (n2+l)2t2‘”2
up=Lg (deo - UO) = —2sinmx 2(a+2) + (20+2)r (3+a) | °

22042 3.30+2
Uy = Lal (azul — U]_) = 2sin7mX (2(ﬂ2+1) i + (7'12+1) i ) , (19)

A (@+2)2a+2) " a+2)Ba+2)T (3+a)

-1 ( 0%un _ . (n2+1)nt”‘7+2 (n2+1)”+1t(n+1)a+2
=L ( ﬂle_“”l)—2(‘””5'”")‘(2<a+2><2a+2>---<na+2> a2 EaT2) (a2 @) )

and such like, we can calculate the rest of components of ttiemdan series. Then the approximate solution of Bjjig

given by
k

Ok (x,t) = Z)un (%,t).

Using the last equation we obtain the approximate anahdation of the proposed problem

o]0 7+ 1)t S Gl
U(x,t>25'nm([_ <1a+2—(n2+1)t">+r(2+a)a+2—("2+1>t“ '

2

Then the exact solution of the Edf)(subject to the initial conditiond) and the boundary condition§)(for special case
of a =1, is obtained with CADM as
u(xt) = t?sinmx.

In the following Figurel, CADM solution results of the cable equation for variousrea of the distance tersand the
time variablet for special case aff = 0.30 (in left) anda = 0.70 (in right).

(© 2017 BISKA Bilisim Technology
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o=0.30 o=0.70

Ueanpel . T)

Fig. 1: CADM solutions of the cable equation with= 0.30 anda = 0.70.

5.2 Solution by CVIM

In order to solve the Eq1@) by way of conformable VIM, we have used the iteration foren(il4) and the iteration
formula of the solution is given by:

t a N\ 62 N\~ o
th1(x8) = (0~ [ [z” : 0(2 &) THL) | (0t 0( D, (x zﬂ az. (20)
In addition, by using the Eq2() we can obtain the following set of linear PDEs:
up =u(x,0) =0,
t 7} 62 7}
w=up- [ |¢ro PR TR | ug(xg) - {0 D H(x.0) | & 1)
t3 a t3
25'”’”(3 at m)
t o Ous( xZ 02w (x ¢ a
Uz—ul—/[zl 1 (;)((2 ) u(x,{) =+ Z 1f(X,Z)}dZ
= 4sinrx e n2+1 — 2sinmx v n2+1)t4 i
B 3-a 3I‘ 2+a 4—2a " a) (2+a)
sinmx (n2+1 t4-a n2+1 214
4 3-r2+a)
2
Uz = Up — Ot |:Zl adUZXZ d u;)(()z( Z)+U2(X ) Zl a 1f(X;Z):| dz
= 6sin e n2+1 —6sin v n2+1)t4 i
S| 374 3r 2+a 420 T @—arera
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4—0)3-a) 43r2ta) 5_3a | (5—2a) (2+0)
—2a 2.5 q —2a 2.5 ¢
+28innx< (P (R )>+25m<( (e (P’ )

65innx< (P + e + (n2+1)2t4 >+25innx<t530 (r?+1)t5-2a )
(

(5—-20)(3—a) 3B5-a)2+a 5-2a)(4—2a) (B-a)d—a)(2+a)
(2 +1)%t5@ (P+1)°°
G-a)4—a)3-a) 543r2+a))’

+ 2 sinrx (

and so on. When we considar= 1, the solution obtained by variational iteration method ia tonformable mean is
given by

_ 6 6 6 61 6t2
un(x,t)tzs.nnx<§+(n2+1)—§(n2+1)3r—z3)(n2+1)3;2(n2+1)m+...>,

By using the equations ir2(), the exact solution of the CVIM solution for special caserof 1 is given as follows:
u(x,t) = t?sin7x.

The following Figure2 shows the CVIM solutions results of the cable equation(for) = [0, 1] x [0, 1] considering the
fractional operatoor = 0.30 (in left) anda = 0.70 (in right).

o=0.30 0:=U.7[|

Ueymel %> £)
Ueymg % )

Fig. 2: CVIM solutions of the cable equation witlhh = 0.30 anda = 0.70.

According to Tablel we can observe that the absolute error values in terms oblbdan of the Eq. 4) are very small

for various valuesr, x andt. It is very important to characterize the behavior of the earal to make the error stability of
the method used for numerical solutions. Therefore, we asesstigated the error analysis of the recommended methods
and we have shown the absolute error values in Fi§ukéoreover, we have presented in Figdrthe comparison of the

numerical and exact solutions. FiguB@and Figure4 have declared that the solutions obtained using CVIM iserlts
the exact solutions with respect to CADM ones.
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Table 1: Absolute errorgl (x,t) — u(x,t)| obtained with CADM and CVIM for the cable equation.

o=

0.35

a=0.75

o =095

CADM

CVIM

CADM

CVIM

CADM

CVIM

10~

0.10
0.50
0.70

0.00046588
13.5023030
322.724387

0.00000281
13.7112263
323.473669

0.00000076
0.00847201
0.05919425

0.00000042
0.00038284
0.00774314

0.00000004
0.00206843
0.02011917

0.00000000
0.00143082
0.01250838

107

0.10
0.50
0.70

0.00000466
0.13502325
3.22724918

0.00000003
0.13711249
3.23474201

0.00000001
0.00008472
0.00059194

0.00000000
0.00000383
0.00007743

0.00000000
0.00002068
0.00020119

0.00000000
0.00001431
0.00012508

0.10
0.50
0.70

0.00000047
0.01350233
0.32272492

0.00000000
0.01371125
0.32347420

0.00000000
0.00000847
0.00005919

0.00000000
0.00000038
0.00000774

0.00000000
0.00000207
0.00002012

0.00000000
0.00000143
0.00001251

107°°

0.10
0.50
0.70

0.00000000
0.00013502
0.00322725

0.00000000
0.00013711
0.00323474

0.00000000
0.00000008

0.00000059

0.00000000
0.00000001
0.00000008

0.00000000
0.00000002
0.00000020

0.00000000
0.00000001
0.00000013

Absolute Error

2.5x10™ -

2.0x10™

1.5x10™ 4

1.0x10™ -

5.0x10° 1

T |
m—cAbm 0=0.75
—O—CVIM 0=0.75
—A— CADM 0=0.95

1 —&— cviM @=0.95

0.0 1

/ T,
N D/
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Fig. 3: Absolute error graph of CADM and CVIM at= 0.1 for various values ofr.
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2 || -m— —
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Fig. 4: Comparison the numerical solutions and the exact solutibins: 0.1 for various values ofr.

6 Conclusion

In the present paper, approximate-analytical solutionth wivo numerical methods for linear non-homogeneous
time-fractional cable differential equation have beeraot#d. These methods are based on conformable derivaie (C
which is extremely popular in the last years. We have verifiedefficiencies and accuracies of the suggested methods
by applying them to the biological cable equation with thigahcondition and the boundary conditions. The succdssfu
applications of the recommended models have indicated tttege models are in complete settlement with the
corresponding exact solutions. According to the soluticapps and tables, we can conclude that the solutions obtaine
using CVIM is closer to the exact solutions with respect toOBA ones. Meanwhile, in view of their usability, our
methods are applicable to many initial-boundary value fgmis and linear-nonlinear partial differential equatiarfis
fractional order.
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