Complete lift of a tensor field of type $(1,2)$ to semi-cotangent bundle

Furkan Yildirim

Narman Vocational Training School, Ataturk University, Erzurum, Turkey
Received: 16 October 2017, Accepted: 9 November 2017
Published online: 25 December 2017.

Abstract

The main purpose of this paper is to define the complete lift of a projectable tensor field of type (1,2) to semi-cotangent bundle t *M. Using projectable geometric objects on M , we examine lifting problem of projectable tensor field of type $(1,2)$ to the semi-cotangent bundle. We also present the good square in the semi-cotangent bundle $\mathrm{t} * \mathrm{M}$.

Keywords: Complete lift, pull-back bundle, semi-cotangent bundle, vector field.

1 Introduction

Let M_{n} be a differentiable manifold of class C^{∞} and finite dimension n, and let $\left(M_{n}, \pi_{1}, B_{m}\right)$ be a differentiable bundle over B_{m}. We use the notation $\left(x^{i}\right)=\left(x^{a}, x^{\alpha}\right)$, where the indices i, j, \ldots run from 1 to n, the indices a, b, \ldots from 1 to $n-m$ and the indices α, β, \ldots from $n-m+1$ to n, x^{α} are coordinates in B_{m}, x^{a} are fibre coordinates of the bundle

$$
\pi_{1}: M_{n} \rightarrow B_{m}
$$

Let now $\left(T^{*}\left(B_{m}\right), \widetilde{\pi}, B_{m}\right)$ be a cotangent bundle [1] over base space B_{m}, and let M_{n} be differentiable bundle determined by a natural projection (submersion) $\pi_{1}: M_{n} \rightarrow B_{m}$. The semi-cotangent bundle (pull-back [2], [3], [4], [5], [6]) of the cotangent bundle $\left(T^{*}\left(B_{m}\right), \widetilde{\pi}, B_{m}\right)$ is the bundle $\left(t^{*}\left(B_{m}\right), \pi_{2}, M_{n}\right)$ over differentiable bundle M_{n} with a total space

$$
t^{*}\left(B_{m}\right)=\left\{\left(\left(x^{a}, x^{\alpha}\right), x^{\bar{\alpha}}\right) \in M_{n} \times T_{x}^{*}\left(B_{m}\right): \pi_{1}\left(x^{a}, x^{\alpha}\right)=\widetilde{\pi}\left(x^{\alpha}, x^{\bar{\alpha}}\right)=\left(x^{\alpha}\right)\right\} \subset M_{n} \times T_{x}^{*}\left(B_{m}\right)
$$

and with the projection map $\pi_{2}: t^{*}\left(B_{m}\right) \rightarrow M_{n}$ defined by $\pi_{2}\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)=\left(x^{a}, x^{\alpha}\right)$, where $T_{x}^{*}\left(B_{m}\right)\left(x=\pi_{1}(\widetilde{x}), \widetilde{x}=\left(x^{a}, x^{\alpha}\right) \in M_{n}\right) \quad$ is the cotangent space \quad at a point x of B_{m}, where $x^{\bar{\alpha}}=p_{\alpha}$ $(\bar{\alpha}, \bar{\beta}, \ldots,=n+1, \ldots, 2 n)$ are fibre coordinates of the cotangent bundle $T^{*}\left(B_{m}\right)$.

Where the pull-back (Pontryagin [7]) bundle $t^{*}\left(B_{m}\right)$ of the differentiable bundle M_{n} also has the natural bundle structure over B_{m}, its bundle projection $\pi: t^{*}\left(B_{m}\right) \rightarrow B_{m}$ being defined by $\pi:\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right) \rightarrow\left(x^{\alpha}\right)$, and hence $\pi=\pi_{1} \circ \pi_{2}$. Thus $\left(t^{*}\left(B_{m}\right), \pi_{1} \circ \pi_{2}\right)$ is the composite bundle [[8], p.9] or step-like bundle [9]. Consequently, we notice the semi-cotangent bundle $\left(t^{*}\left(B_{m}\right), \pi_{2}\right)$ is a pull-back bundle of the cotangent bundle over B_{m} by π_{1} [6].

If $\left(x^{i^{\prime}}\right)=\left(x^{a^{\prime}}, x^{\alpha^{\prime}}\right)$ is another local adapted coordinates in differentiable bundle M_{n}, then we have

$$
\left\{\begin{array}{l}
x^{a^{\prime}}=x^{a^{\prime}}\left(x^{b}, x^{\beta}\right), \tag{1}\\
x^{\alpha^{\prime}}=x^{\alpha^{\prime}}\left(x^{\beta}\right)
\end{array}\right.
$$

[^0]The Jacobian of (1) has components

$$
\left(A_{j}^{i^{\prime}}\right)=\left(\frac{\partial x^{i^{\prime}}}{\partial x^{j}}\right)=\left(\begin{array}{cc}
A_{b}^{a^{\prime}} & A_{\beta}^{a^{\prime}} \\
0 & A_{\beta}^{\alpha^{\prime}}
\end{array}\right)
$$

where $A_{b}^{a^{\prime}}=\frac{\partial x^{a^{\prime}}}{\partial x^{b}}, A_{\beta}^{a^{\prime}}=\frac{\partial x^{a^{\prime}}}{\partial x^{\beta}}, A_{\beta}^{\alpha^{\prime}}=\frac{\partial x^{\alpha^{\prime}}}{\partial x^{\beta}}[6]$.
To a transformation (1) of local coordinates of M_{n}, there corresponds on $t^{*}\left(B_{m}\right)$ the change of coordinate

$$
\left\{\begin{array}{l}
x^{\alpha^{\prime}}=x^{a^{\prime}}\left(x^{b}, x^{\beta}\right), \tag{2}\\
x^{\alpha^{\prime}}=x^{\alpha^{\prime}}\left(x^{\beta}\right), \\
x^{\bar{\alpha}^{\prime}}=\frac{\partial x^{\beta}}{\partial x^{\alpha^{\prime}}} x^{\bar{\beta}} .
\end{array}\right.
$$

The Jacobian of coordinate system transformation (2) is:

$$
\bar{A}=\left(A_{J}^{I^{\prime}}\right)=\left(\begin{array}{ccc}
A_{b}^{a^{\prime}} & A_{\beta}^{a^{\prime}} & 0 \tag{3}\\
0 & A_{\beta}^{\alpha^{\prime}} & 0 \\
0 & p_{\sigma} A_{\beta}^{\beta^{\prime}} A_{\beta^{\prime} \alpha^{\prime}}^{\sigma} & A_{\alpha^{\prime}}^{\beta}
\end{array}\right)
$$

where $I=(a, \alpha, \bar{\alpha}), J=(b, \beta, \bar{\beta}), I, J, \ldots=1, \ldots, 2 n ; A_{\beta^{\prime} \alpha^{\prime}}^{\sigma}=\frac{\partial^{2} x^{\sigma}}{\partial x^{\beta^{\prime}} \partial x^{\alpha}}[6]$.
Now, consider a diagram as

$$
\begin{array}{ccc}
A & \xrightarrow{\gamma} & B \\
\alpha \\
\downarrow & \downarrow^{\beta} \\
C & \rightarrow & D
\end{array}
$$

A good square of vector bundles is a diagram as above verifying
(i) α and β are fibre bundles, but not necessarily vector bundles;
(ii) γ and π are vector bundles;
(iii) the square is commutative, i.e., $\pi \circ \alpha=\beta \circ \gamma$;
(iv) the local expression

where G is a manifold and superindices denote the dimension of the manifolds [11].
By means of above definition, we have
Theorem 1.Let now $\pi: t^{*}\left(B_{m}\right) \rightarrow B_{m}$ be a semi-cotangent bundle and $\pi_{1}: M_{n} \rightarrow B_{m}$ be a fibre bundle. Then, the following is a good square:

$$
\begin{array}{cccc}
t^{*}\left(B_{m}\right) \xrightarrow{\pi_{2}} & M_{n} M_{n} \times T_{x}^{*}\left(B_{m}\right) \xrightarrow{\pi_{2}} M_{n}\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right) \xrightarrow{\pi_{2}}\left(x^{a}, x^{\alpha}\right) \\
i d d & \downarrow \lambda_{1} \quad i d \downarrow & \downarrow \pi_{1} \quad i d \downarrow & \downarrow \\
t^{*}\left(B_{m}\right) \xrightarrow[\pi]{\pi_{1}} & B_{m} M_{n} \times T_{x}^{*}\left(B_{m}\right) \xrightarrow[\pi]{\pi_{1}} & B_{m}\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right) \xrightarrow[\pi]{\rightarrow} & \left(x^{\alpha}\right)
\end{array}
$$

In this study, we continue to study the complete lifts of projectable tensor field of type (1,2) to semi-cotangent (pull-back) bundle $\left(t^{*}\left(B_{m}\right), \pi_{2}\right)$ initiated by F. Yildirim and A. Salimov [6].

We denote by $\mathfrak{J}_{q}^{p}\left(M_{n}\right)$ the set of all tensor fields of class C^{∞} and of type (p, q) on M_{n}, i.e., contravariant degree p and
covariant degree q. We now put $\mathfrak{I}\left(M_{n}\right)=\sum_{p, q=0}^{\infty} \mathfrak{I}_{q}^{p}\left(M_{n}\right)$, which is the set of all tensor fields on M_{n}. Smilarly, we denote by $\mathfrak{J}_{q}^{p}\left(B_{m}\right)$ and $\mathfrak{I}\left(B_{m}\right)$ respectively the corresponding sets of tensor fields in the base space B_{m}.

Let ω be a 1 -form with local components ω_{α} on B_{m}, so that ω is a 1 -form with local expression $\omega=\omega_{\alpha} d x^{\alpha}$. On putting [6]

$$
{ }^{v v} \omega=\left(\begin{array}{l}
0 \tag{4}\\
0 \\
\omega_{\alpha}
\end{array}\right)
$$

we have a vector field ${ }^{v v} \omega$ on $t^{*}\left(B_{m}\right)$. In fact, from (3) we easily see that $\left({ }^{v v} \omega\right)^{\prime}=\bar{A}\left({ }^{v v} \omega\right)$. We call the vector field ${ }^{v v} \omega$ the vertical lift of the 1 -form ω to $t^{*}\left(B_{m}\right)$.

Let $\widetilde{X} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$ be a projectable vector field [10] with projection $X=X^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha}$ i.e. $\widetilde{X}=\widetilde{X}^{a}\left(x^{a}, x^{\alpha}\right) \partial_{a}+X^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha}$. Now, consider $\widetilde{X} \in \mathfrak{J}_{0}^{1}\left(M_{n}\right)$, then ${ }^{c c} \widetilde{X}$ (complete lift) has components on the semi-cotangent bundle $t^{*}\left(B_{m}\right)$ [6]

$$
{ }^{c c} \widetilde{X}=\left({ }^{c c} \widetilde{X}^{\alpha}\right)=\left(\begin{array}{l}
\widetilde{X}^{a} \tag{5}\\
X^{\alpha} \\
-p_{\varepsilon}\left(\partial_{\alpha} X^{\varepsilon}\right)
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$.

2γ-operators

For any $F \in \mathfrak{I}_{1}^{1}\left(B_{m}\right)$, if we take account of (3), we can prove that $(\gamma F)^{\prime}=\bar{A}(\gamma F)$, where γF is a vector field defined by [6]:

$$
\gamma F=\left(\gamma F^{I}\right)=\left(\begin{array}{l}
0 \tag{6}\\
0 \\
p_{\beta} F_{\alpha}^{\beta}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$ on $t^{*}\left(B_{m}\right)$.
For any $R \in \mathfrak{J}_{3}^{1}\left(B_{m}\right)$, if we take account of (3), we can prove that $\gamma R_{I^{\prime} J^{\prime}}^{K^{\prime}}=A_{K}^{K^{\prime}} A_{I^{I}}^{I} A_{J^{\prime}}^{J} \gamma R_{I J}^{K}$, where γR has components $\bar{R}_{I J}^{K}$ such that

$$
\begin{equation*}
\bar{R}_{\alpha}{ }_{\beta}^{\bar{\gamma}}=P_{\varepsilon} R_{\alpha \beta}{ }_{\gamma}^{\varepsilon} \tag{7}
\end{equation*}
$$

all the others being zero, with respect to the induced coordinates on $t^{*}\left(B_{m}\right)$. Where $R_{\alpha \beta}{ }_{\sigma}^{\gamma}$ are local components of R on B_{m} and also $I=(a, \alpha, \bar{\alpha}), J=(b, \beta, \bar{\beta}), K=(c, \gamma, \bar{\gamma})$.

Theorem 2. If \widetilde{X} and \widetilde{Y} be a projectable vector fields on M_{n} with projection $X \in \mathfrak{I}_{0}^{1}\left(B_{m}\right)$ and $Y \in \mathfrak{I}_{0}^{1}\left(B_{m}\right)$. We have
(i) $(\gamma R)\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)=\gamma(R(X, Y))$,
(ii) $(\gamma R)\left({ }^{\nu v} \omega,{ }^{v v} \theta\right)=0$,
(iii) $(\gamma R)\left({ }^{\nu v} \omega,{ }^{c c} Y\right)=0$,
(iv) $(\gamma R)\left({ }^{v v} \omega, \gamma G\right)=0$,
(v) $(\gamma R)\left({ }^{c c} \widetilde{X}, \gamma G\right)=0$,
(vi) $(\gamma R)(\gamma F, \gamma G)=0$
for any $\omega, \theta \in \mathfrak{I}_{1}^{0}\left(B_{m}\right), F, G \in \mathfrak{I}_{1}^{1}\left(B_{m}\right)$ and $R \in \mathfrak{I}_{3}^{1}\left(B_{m}\right)$.

Proof. (i) If $R \in \mathfrak{I}_{3}^{1}\left(B_{m}\right), \widetilde{X}$ and \widetilde{Y} be a projectable vector fields on M_{n} with projection $X, Y \in \mathfrak{I}_{0}^{1}\left(B_{m}\right)$ and

$$
\left(\begin{array}{l}
{\left[(\gamma R)\left({ }^{(c c} \widetilde{X}{ }^{c}{ }^{c c} \widetilde{Y}\right)\right]^{c}} \\
\left.\left.[(\gamma R)){ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)\right]^{\gamma} \\
{\left[(\gamma R)\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)\right]^{\bar{\gamma}}}
\end{array}\right)
$$

are components of $\left[(\gamma R)\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)\right]^{K}$ with respect to the coordinates $\left(x^{c}, x^{\gamma}, x^{\bar{\gamma}}\right)$ on $t^{*}\left(B_{m}\right)$, then for $K=c$, we have

$$
\left[(\gamma R)\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)\right]^{c}=\underbrace{\left(\bar{R}_{\alpha}^{c}\right)}_{0}{ }^{c}{ }^{c c} \widetilde{X}^{\alpha c c} \widetilde{Y}^{\beta}=0
$$

because of (5) and (7). For $K=\gamma$, we have

$$
\left[(\gamma R)\left({ }^{c c} \widetilde{X}^{c c}{ }^{c} \widetilde{Y}\right)\right]^{\gamma}=\underbrace{\left(\bar{R}_{\alpha}{ }_{\beta}^{\gamma}\right)}_{0}{ }^{c c} \widetilde{X}^{\alpha c c} \widetilde{Y}^{\beta}=0
$$

because of (5) and (7). For $K=\bar{\gamma}$, we have

$$
\left[(\gamma R)\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)\right]^{\bar{\gamma}}=\left(\bar{R}_{\alpha}{ }_{\beta}^{\bar{\gamma}}\right)_{X^{\alpha}}^{c c} \underbrace{\widetilde{X}^{\alpha}}_{Y^{\beta}} \underbrace{c c} \tilde{Y}^{\beta} P_{\alpha}{ }_{\alpha \beta}{ }_{\gamma}^{\varepsilon} X^{\alpha} Y^{\beta}=P_{\varepsilon}(R(X, Y))_{\gamma}^{\varepsilon}
$$

because of (5) and (7). It is well known that $\gamma(R(X, Y))$ have components

$$
\gamma(R(X, Y))=\left(\begin{array}{l}
0 \\
0 \\
P_{\varepsilon}(R(X, Y))_{\gamma}^{\varepsilon}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{c}, x^{\gamma}, x^{\bar{\gamma}}\right)$ on $t^{*}\left(B_{m}\right)$. Thus, we have $(\gamma R)\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)=\gamma(R(X, Y))$. Similarly, we can easily compute another equations of Theorem 2 .

3 Complete lift of a tensor field of type (1,2) to semi-cotangent bundle

Let $\widetilde{S} \in \mathfrak{I}_{2}^{1}\left(M_{n}\right)$ be a projectable tensor field of type (1,2) with projection $S=S_{i j}^{k}\left(x^{a}, x^{\alpha}\right) \partial_{k} \otimes d x^{i} \otimes d x^{j}$, i.e. \widetilde{S} has componets such that

$$
{ }^{c c} \widetilde{S}_{\alpha \beta}^{c}=S_{\alpha \beta}^{c}
$$

with respect to the coordinates on M_{n}. Where $i=(a, \alpha), j=(b, \beta), k=(c, \gamma)$.
If we take account of (3), we can prove that ${ }^{c c} \widetilde{S}_{I^{\prime} J^{\prime}}^{K^{\prime}}=A_{K}^{K^{\prime}} A_{I^{\prime}}^{I} A_{J^{\prime}}^{J}{ }^{c c} \widetilde{S}_{I}^{K}$, where ${ }^{c c} \widetilde{S}$ has components ${ }^{c c} \widetilde{S}_{I}{ }_{J}^{K}$ such that

$$
\left\{\begin{array}{l}
{ }^{c c} \widetilde{S}_{\alpha \alpha \beta}^{c}=S_{\alpha \beta}^{c} \tag{8}\\
{ }^{c c} \widetilde{S}_{\alpha}^{\gamma}=S_{\alpha}^{\gamma} \\
{ }^{c c} \widetilde{S}_{\alpha}{ }_{\beta}^{\gamma}=-p_{\varepsilon}\left(\partial_{\alpha} S_{\beta \gamma}^{\varepsilon}+\partial_{\beta} S_{\gamma \alpha}^{\varepsilon}+\partial_{\gamma} S_{\alpha \beta}^{\varepsilon}\right) \\
{ }^{c c} \widetilde{S}_{\alpha} \frac{\gamma}{\gamma}=S_{\alpha}^{\beta}{ }_{\gamma} \\
{ }^{c c} \widetilde{S}_{\alpha}^{\bar{\beta}}{ }_{\beta}^{\gamma}=S_{\gamma}^{\alpha}
\end{array}\right.
$$

all the others being zero, with respect to the induced coordinates on $t^{*}\left(B_{m}\right)$. Where $S_{I J}^{K}$ are local components of S on M_{n} and also $I=(a, \alpha, \bar{\alpha}), J=(b, \beta, \bar{\beta}), K=(c, \gamma, \bar{\gamma})$.

Proof. For convenience sake we only consider ${ }^{c c} \widetilde{S}_{\bar{\alpha}} \bar{\gamma}_{\beta^{\prime}}^{\prime}$. In fact,

$$
{ }^{c c} \widetilde{S}_{\bar{\alpha}^{\prime} \beta^{\prime}}^{\bar{\gamma}^{\prime}}=A_{\bar{\gamma}}^{\bar{\gamma}} A_{\bar{\alpha}^{\prime}}^{\bar{\alpha}} A_{\beta^{\prime}}^{\beta}{ }^{c c} \widetilde{S}_{\bar{\alpha}_{\beta}}^{\bar{\gamma}}=A_{\gamma^{\prime}}^{\gamma} A_{\alpha}^{\alpha^{\prime}} A_{\beta^{\prime}}^{\beta} S_{\gamma \beta}^{\alpha}=S_{\gamma^{\prime} \beta^{\prime}}^{\alpha^{\prime}}
$$

Thus, we have ${ }^{c c} \widetilde{S}_{\alpha} \bar{\gamma}{ }_{\beta}=S_{\gamma}{ }_{\beta}^{\alpha}$. Similarly, from (3) and (8), we can easily find all other components of ${ }^{c c} \widetilde{S}_{l J}^{K}$ equal to zero, where $I=(a, \alpha, \bar{\alpha}), J=(b, \beta, \bar{\beta}), K=(c, \gamma, \bar{\gamma})$.

Theorem 3. Let $\widetilde{S} \in \mathfrak{I}_{2}^{1}\left(M_{n}\right)$ be a projectable tensor field of type $(1,2)$. If $\widetilde{X}, \widetilde{Y} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right), \omega, \theta \in \mathfrak{I}_{1}^{0}\left(B_{m}\right)$, $F, G \in \mathfrak{I}_{1}^{1}\left(B_{m}\right)$ then
(i) ${ }^{c c} \widetilde{S}\left({ }^{\nu v} \omega,{ }^{v v} \theta\right)=0$,
(ii) ${ }^{c c} \widetilde{S}\left({ }^{v \nu} \omega, \gamma G\right)=0$,
(iii) ${ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{c c} \widetilde{Y}\right)=-{ }^{v v}\left(\omega \circ S_{Y}\right)$,
(iv) ${ }^{c c} \widetilde{S}(\gamma F, \gamma G)=0$,
(v) ${ }^{c c} \widetilde{S}\left(\gamma F,{ }^{c c} \widetilde{Y}\right)=-\gamma\left(F \circ S_{Y}\right)$,
(vi) ${ }^{c c} \widetilde{S}\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)={ }^{c c}(S(X, Y))-\gamma\left(\left(L_{X} S\right)_{Y}-\left(L_{Y} S\right)_{X}+S_{[X, Y]}\right)$,
where $L_{X} S$ denotes the Lie derivative of S with respect to X.
Proof. (i) If $\omega, \theta \in \mathfrak{I}_{1}^{0}\left(B_{m}\right)$ and \widetilde{S} is projectable tensor field of type $(1,2)$ on M_{n} with projection $S \in \mathfrak{I}_{2}^{1}\left(B_{m}\right)$ and

$$
\left(\begin{array}{l}
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{v v} \theta\right)\right)^{c} \\
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{v v} \theta\right)\right)^{\gamma} \\
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{v v} \theta\right)\right)^{\bar{\gamma}}
\end{array}\right)
$$

are components of $\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{v v} \theta\right)\right)^{K}$ with respect to the coordinates $\left(x^{c}, x^{\gamma}, x^{\bar{\gamma}}\right)$ on $t^{*}\left(B_{m}\right)$, then we have

$$
\left.\left({ }^{c c} \widetilde{S}^{v v} \omega{ }^{v v} \theta\right)\right)^{K}={ }^{c c} \widetilde{S}_{I J}^{K v v} \omega^{I v v} \theta^{J}={ }^{c c} \widetilde{S}_{\bar{\alpha}} \bar{K}^{K v v} \omega^{\bar{\alpha} v v} \theta^{\bar{\beta}}={ }^{c c} \widetilde{S}_{\bar{\alpha}} \bar{\beta} \omega_{\alpha} \theta_{\beta}
$$

Firstly, if $K=c$, we have

$$
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{v v} \theta\right)\right)^{c}=\underbrace{{ }^{c c} \widetilde{S}_{\alpha} \frac{c}{\beta}}_{0} \omega_{\alpha} \theta_{\beta}=0
$$

by virtue of (4) and (8). Secondly, if $K=\gamma$, we have

$$
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{v v} \theta\right)\right)^{\gamma}=\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}} \frac{\gamma}{\beta}}_{0} \omega_{\alpha} \theta_{\beta}=0
$$

by virtue of (4) and (8). Thirdly, if $J=\bar{\beta}$, then we have

$$
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{v v} \theta\right)\right)^{\bar{\gamma}}=\underbrace{{ }^{c c} \widetilde{S_{\alpha}} \frac{\bar{\gamma}}{\bar{\beta}}}_{0} \omega_{\alpha} \theta_{\beta}=0
$$

by virtue of (4) and (8). Thus (i) of Theorem 3 is proved.
(ii) If $G \in \mathfrak{I}_{1}^{1}\left(B_{m}\right)$ and \widetilde{S} is projectable tensor field of type (1,2) on M_{n} with projection $S \in \mathfrak{I}_{2}^{1}\left(B_{m}\right)$ and

$$
\left(\begin{array}{l}
\left(\begin{array}{l}
\\
c c \\
\left.c^{(}\left({ }^{v v} \omega, \gamma G\right)\right)^{c} \\
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega, \gamma G\right)\right)^{\gamma} \\
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega, \gamma G\right)\right)^{\bar{\gamma}}
\end{array}\right) .
\end{array}\right.
$$

are components of $\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega, \gamma G\right)\right)^{K}$ with respect to the coordinates $\left(x^{c}, x^{\gamma}, x^{\bar{\gamma}}\right)$ on $t^{*}\left(B_{m}\right)$, then we have

$$
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega, \gamma G\right)\right)^{K}={ }^{c c} \widetilde{S}_{I J}^{K v v} \omega^{I} \gamma G^{J}={ }^{c c} \widetilde{S}_{\bar{\alpha}} \frac{K}{\beta}{ }^{v v} \omega^{\bar{\alpha}} \gamma G^{\bar{\beta}}={ }^{c c} \widetilde{S}_{\bar{\alpha}} \frac{K}{\beta} \omega_{\alpha} p_{\varepsilon} G_{\beta}^{\varepsilon}
$$

Firstly, if $K=c$, we have

$$
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega, \gamma G\right)\right)^{c}=\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}} \frac{c}{\beta}}_{0} \omega_{\alpha} p_{\varepsilon} G_{\beta}^{\varepsilon}=0
$$

by virtue of (4), (6) and (8). Secondly, if $K=\gamma$, we have

$$
\left.\left({ }^{c c} \widetilde{S}^{v v} \omega, \gamma G\right)\right)^{\gamma}=\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}} \frac{\gamma}{\beta}}_{0} \omega_{\alpha} p_{\varepsilon} G_{\beta}^{\varepsilon}=0
$$

by virtue of (4), (6) and (8). Thirdly, if $J=\bar{\beta}$, then we have

$$
\left({ }^{c c} \widetilde{S}\left({ }^{(v v} \omega, \gamma G\right)\right)^{\bar{\gamma}}=\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\bar{\gamma}}}_{0}{ }^{\bar{\gamma}}, \omega_{\alpha} p_{\varepsilon} G_{\beta}^{\varepsilon}=0
$$

by virtue of (4), (6) and (8). Thus (ii) of Theorem 3 is proved.
(iii) If $\widetilde{Y} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$ and \widetilde{S} is projectable tensor field of type $(1,2)$ on M_{n} with projection $S \in \mathfrak{I}_{2}^{1}\left(B_{m}\right)$ and

$$
\left(\begin{array}{l}
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{c c} \widetilde{Y}\right)\right)^{c} \\
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{c c} \widetilde{Y}\right)\right)^{\gamma} \\
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{c c} \widetilde{Y}\right)\right)^{\gamma}
\end{array}\right)
$$

are components of $\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{c c} \widetilde{Y}\right)\right)^{K}$ with respect to the coordinates $\left(x^{c}, x^{\gamma}, x^{\bar{\gamma}}\right)$ on $t^{*}\left(B_{m}\right)$, then we have

$$
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{c c} \widetilde{Y}\right)\right)^{K}={ }^{c c} \widetilde{S}_{I J}^{K}\left({ }^{v v} \omega\right)^{I}\left({ }^{c c} \widetilde{Y}\right)^{J}={ }^{c c} \widetilde{S}_{\bar{\alpha}}{ }_{b}^{K}\left({ }^{v v} \omega\right)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{b}+{ }^{c c} \widetilde{S}_{\bar{\alpha}}{ }_{\beta}^{K}\left({ }^{v v} \omega\right)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\beta}+{ }^{c c} \widetilde{S}_{\bar{\alpha}} \bar{\beta}^{K}\left({ }^{v v} \omega\right)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}
$$

Firstly, if $K=c$, we have
by virtue of (4), (5) and (8). Secondly, if $K=\gamma$, we have

$$
\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{c c} \widetilde{Y}\right)\right)^{\gamma}=\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\bar{\gamma}}}_{0}{ }^{\gamma}\left({ }^{\left({ }^{v v}\right.} \omega\right)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{b}+\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\gamma}}_{0}{ }^{\gamma}\left({ }^{v v} \omega\right)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\beta}+\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\bar{\alpha}}}_{0}{ }^{\gamma}\left({ }^{v v} \omega\right)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}=0
$$

by virtue of (4), (5) and (8). Thirdly, if $K=\bar{\gamma}$, then we have

$$
\begin{aligned}
&\left({ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{c c} \widetilde{Y}\right)\right)^{\bar{\gamma}}=\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\bar{\gamma}}}_{0}\left({ }^{v v} \omega\right)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{b}+\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\bar{\gamma}}}_{S_{\gamma}^{\alpha}=-S_{\beta} \alpha}{ }_{\beta}^{\bar{\gamma}} \\
&\left.{ }^{v v} \omega\right)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\beta}+\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\bar{\gamma}} \overline{\bar{\gamma}}}_{0}{ }^{v v} \omega)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}} \\
&=-S_{\beta}^{\alpha} \omega_{\alpha} Y^{\beta}=-S_{\beta}^{\alpha} \omega_{\alpha} Y^{\beta}=-\left(\omega \circ S_{Y}\right)_{\gamma}
\end{aligned}
$$

by virtue of (4), (5) and (8). On the other hand, we know that ${ }^{\nu v}\left(\omega \circ S_{Y}\right)$ have components

$$
{ }^{v v}\left(\omega \circ S_{Y}\right)=\left(\begin{array}{l}
0 \\
0 \\
\left(\omega \circ S_{Y}\right)_{\gamma}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{c}, x^{\gamma}, x^{\bar{\gamma}}\right)$ on $t^{*}\left(B_{m}\right)$. Thus, we have ${ }^{c c} \widetilde{S}\left({ }^{v v} \omega,{ }^{c c} \widetilde{Y}\right)=-{ }^{v v}\left(\omega \circ S_{Y}\right)$.
(iv) If $F, G \in \mathfrak{I}_{1}^{1}\left(B_{m}\right)$ and \widetilde{S} is projectable tensor field of type (1,2) on M_{n} with projection $S \in \mathfrak{I}_{2}^{1}\left(B_{m}\right)$ and

$$
\left(\begin{array}{c}
\left({ }^{c c} \widetilde{S}(\gamma F, \gamma G)\right)^{c} \\
\left({ }^{c c} \widetilde{S}(\gamma F, \gamma G)\right)^{\gamma} \\
\left({ }^{c c} \widetilde{S}(\gamma F, \gamma G)\right)^{\gamma}
\end{array}\right)
$$

are components of $\left({ }^{c c} \widetilde{S}(\gamma F, \gamma G)\right)^{K}$ with respect to the coordinates $\left(x^{c}, x^{\gamma}, x^{\bar{\gamma}}\right)$ on $t^{*}\left(B_{m}\right)$, then we have

$$
\left({ }^{c c} \widetilde{S}(\gamma F, \gamma G)\right)^{K}=\quad \quad{ }^{c c} \widetilde{S}_{I J}^{K} \gamma F^{I} \gamma G^{J}={ }^{c c} \widetilde{S}_{\bar{\alpha} \bar{\beta}}(\gamma F)^{\bar{\alpha}}(\gamma G)^{\bar{\beta}}={ }^{c c} \widetilde{S}_{\alpha} \frac{K}{\beta}\left(p_{\varepsilon} F_{\alpha}^{\varepsilon}\right)\left(p_{\varepsilon} G_{\beta}^{\varepsilon}\right)
$$

Firstly, if $K=c$, we have

$$
\left({ }^{c c} \widetilde{S}(\gamma F, \gamma G)\right)^{c}=\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}} \frac{c}{\bar{\beta}}}_{0}\left(p_{\varepsilon} F_{\alpha}^{\varepsilon}\right)\left(p_{\varepsilon} G_{\beta}^{\varepsilon}\right)=0
$$

by virtue of (6) and (8). Secondly, if $K=\gamma$, we have

$$
\left({ }^{c c} \widetilde{S}(\gamma F, \gamma G)\right)^{\gamma}=\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\frac{\gamma}{\beta}}}_{0}\left(p_{\varepsilon} F_{\alpha}^{\varepsilon}\right)\left(p_{\varepsilon} G_{\beta}^{\varepsilon}\right)=0
$$

by virtue of (6) and (8). Thirdly, if $J=\bar{\beta}$, then we have

$$
\left({ }^{c c} \widetilde{S}(\gamma F, \gamma G)\right)^{\bar{\gamma}}=\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\bar{\gamma}} \bar{\beta}}_{0}\left(p_{\varepsilon} F_{\alpha}^{\varepsilon}\right)\left(p_{\varepsilon} G_{\beta}^{\varepsilon}\right)=0
$$

by virtue of (6) and (8). Thus (iv) of Theorem 3 is proved.
(v) If $\widetilde{Y} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$ and \widetilde{S} is projectable tensor field of type (1,2) on M_{n} with projection $S \in \mathfrak{I}_{2}^{1}\left(B_{m}\right)$ and

$$
\left(\begin{array}{l}
\left({ }^{c c} \widetilde{S}\left(\gamma F,{ }^{c c} \widetilde{Y}\right)\right)^{c} \\
\left({ }^{c c} \widetilde{S}\left(\gamma F,{ }^{c c} \widetilde{Y}\right)\right)^{\gamma} \\
\left({ }^{c c} \widetilde{S}\left(\gamma F,{ }^{c c} \widetilde{Y}\right)\right)^{\bar{\gamma}}
\end{array}\right)
$$

are components of $\left({ }^{c c} \widetilde{S}\left(\gamma F,{ }^{c c} \widetilde{Y}\right)\right)^{K}$ with respect to the coordinates $\left(x^{c}, x^{\gamma}, x^{\bar{\gamma}}\right)$ on $t^{*}\left(B_{m}\right)$, then we have

$$
\left({ }^{c c} \widetilde{S}\left(\gamma F,{ }^{c c} \widetilde{Y}\right)\right)^{K}={ }^{c c} \widetilde{S}_{I J}^{K}(\gamma F)^{I}\left({ }^{c c} \widetilde{Y}\right)^{J}={ }^{c c} \widetilde{S}_{\bar{\alpha} b}^{K}(\gamma F)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{b}+{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\beta}{ }_{\beta}^{K}(\gamma F)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\beta}+{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{K}(\gamma F)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}
$$

Firstly, if $K=c$, we have

$$
\left({ }^{c c} \widetilde{S}\left(\gamma F,{ }^{c c} \widetilde{Y}\right)\right)^{c}=\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{c}}_{0}(\gamma F)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{b}+\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}{ }^{c}}_{0}(\gamma F)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\beta}+\underbrace{{ }^{c c} \widetilde{S}_{\alpha_{\alpha}}^{c}}_{0}(\gamma F)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}=0
$$

by virtue of (5), (6) and (8). Secondly, if $K=\gamma$, we have

$$
\left({ }^{c c} \widetilde{S}\left(\gamma F,{ }^{c c} \widetilde{Y}\right)\right)^{\gamma}=\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\gamma}}_{0}{ }^{\gamma}(\gamma F)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{b}+\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\gamma}}_{0}{ }^{\gamma}(\gamma F)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\beta}+\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\gamma}}_{0}(\gamma F)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}=0
$$

by virtue of (5), (6) and (8). Thirdly, if $K=\bar{\gamma}$, then we have

$$
\begin{aligned}
\left({ }^{c c} \widetilde{S}\left(\gamma F,{ }^{c c} \widetilde{Y}\right)\right)^{\bar{\gamma}} & =\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\bar{\gamma}}}_{0}(\gamma F)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{b}+\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\bar{\gamma}}}_{S_{\gamma \beta}^{\alpha}=-S_{\beta}} \\
& (\gamma F)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\beta}+\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\bar{\gamma}} \bar{\beta}}_{0}(\gamma F)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}} \\
& =-S_{\beta}{ }^{\alpha} p_{\varepsilon} F_{\alpha}^{\varepsilon} Y^{\beta}=-p_{\varepsilon}\left(S_{\beta}{ }_{\gamma}^{\alpha} F_{\alpha}^{\varepsilon} Y^{\beta}\right)=-p_{\varepsilon}\left(F \circ S_{Y}\right)_{\gamma}^{\varepsilon}
\end{aligned}
$$

by virtue of (5), (6) and (8). On the other hand, we know that $\gamma\left(F \circ S_{Y}\right)$ have components

$$
\gamma\left(F \circ S_{Y}\right)=\left(\begin{array}{l}
0 \\
0 \\
p_{\varepsilon}\left(F \circ S_{Y}\right)_{\gamma}^{\varepsilon}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{c}, x^{\gamma}, x^{\bar{\gamma}}\right)$ on $t^{*}\left(B_{m}\right)$. Thus, we have ${ }^{c c} \widetilde{S}\left(\gamma F,{ }^{c c} \widetilde{Y}\right)=-\gamma\left(F \circ S_{Y}\right)$.
(vi) If $\widetilde{X}, \widetilde{Y} \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$ and \widetilde{S} is projectable tensor field of type $(1,2)$ on M_{n} with projection $S \in \mathfrak{I}_{2}^{1}\left(B_{m}\right)$ and

$$
\left(\begin{array}{l}
\left({ }^{c c} \widetilde{S}\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)\right)^{c} \\
\left({ }^{c c} \widetilde{S}\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)\right)^{\gamma} \\
\left({ }^{c c} \widetilde{S}\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)\right)^{\gamma}
\end{array}\right)
$$

are components of $\left({ }^{c c} \widetilde{S}\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)\right)^{K}$ with respect to the coordinates $\left(x^{c}, x^{\gamma}, x^{\gamma}\right)$ on $t^{*}\left(B_{m}\right)$, then we have

$$
\left({ }^{c c} \widetilde{S}\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)\right)^{K}={ }^{c c} \widetilde{S}_{I J}^{K}\left({ }^{c c} \widetilde{X}\right)^{I}\left({ }^{c c} \widetilde{Y}\right)^{J}={ }^{c c} \widetilde{S}_{\alpha}{ }_{\beta}^{K}\left({ }^{c c} \widetilde{X}\right)^{\alpha}\left({ }^{c c} \widetilde{Y}\right)^{\beta}+{ }^{c c} \widetilde{S}_{\alpha} \frac{K}{\beta}\left({ }^{c c} \widetilde{X}\right)^{\alpha}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}+{ }^{c c} \widetilde{S}_{\bar{\alpha}}{ }_{\beta}^{K}\left({ }^{c c} \widetilde{X}\right)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\beta} .
$$

Firstly, if $K=c$, we have

$$
\begin{aligned}
\left({ }^{c c} \widetilde{S}\left({ }^{c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)\right)^{c} & =\underbrace{\widetilde{S}_{\beta}^{c}}_{S_{\alpha}{ }^{c} \widetilde{S}_{\beta}} \underbrace{\left({ }^{c c} \widetilde{X}\right)^{\alpha}}_{X^{\alpha}} \underbrace{\left({ }^{c c} \widetilde{Y}\right)^{\beta}}_{Y \beta}+\underbrace{{ }^{c c} \widetilde{S}_{\alpha} \frac{c}{\beta}}_{0}\left({ }^{c c} \widetilde{X}\right)^{\alpha}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}+\underbrace{{ }^{c c} \widetilde{S}_{S_{\alpha}^{\beta}}^{c}}_{0}\left({ }^{\left.c c^{c} \widetilde{X}\right)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\beta}}\right. \\
& =S_{\alpha}{ }_{\beta}^{c} X^{\alpha} Y^{\beta}=(S(X, Y))^{c}
\end{aligned}
$$

by virtue of (5) and (8). Secondly, if $K=\gamma$, we have

$$
\begin{aligned}
&\left({ }^{c c} \widetilde{S}\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)\right)^{\gamma}=\underbrace{{ }^{c c} \widetilde{S}_{\alpha}^{\gamma}}_{S_{\alpha}^{\gamma}} \underbrace{\left({ }^{c c} \widetilde{X}\right)^{\alpha}}_{X^{\alpha}} \underbrace{\left({ }^{c c} \widetilde{Y}\right)^{\beta}}_{Y \beta}+\underbrace{{ }^{c c} \widetilde{S}_{\alpha} \frac{\gamma}{\beta}}_{0}\left({ }^{c c} \widetilde{X}\right)^{\alpha}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}+\underbrace{{ }^{c c} \widetilde{S}_{\bar{\alpha}}^{\bar{\alpha}}}_{0}{ }^{\gamma} \\
&\left.{ }^{c c} \widetilde{X}\right)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\beta} \\
&=S_{\alpha}^{\gamma}{ }_{\beta}^{\gamma} X^{\alpha} Y^{\beta}=(S(X, Y))^{\gamma}
\end{aligned}
$$

by virtue of (5) and (8). Thirdly, if $K=\bar{\gamma}$, then we have

$$
\begin{aligned}
\left({ }^{c c} \widetilde{S}\left({ }^{c} \widetilde{X},^{c c} \widetilde{Y}\right)\right)^{\bar{\gamma}} & ={ }^{c c} \widetilde{S}_{\alpha}{ }_{\beta}^{\gamma}\left({ }^{c c} \widetilde{X}\right)^{\alpha}\left({ }^{c c} \widetilde{Y}\right)^{\beta}+{ }^{c c} \widetilde{S}_{\alpha} \frac{\bar{\gamma}}{\beta}\left({ }^{c c} \widetilde{X}\right)^{\alpha}\left({ }^{c c} \widetilde{Y}\right)^{\bar{\beta}}+{ }^{c c} \widetilde{S}_{S_{\alpha}}^{\bar{\gamma}}\left({ }^{c c} \widetilde{X}\right)^{\bar{\alpha}}\left({ }^{c c} \widetilde{Y}\right)^{\beta} \\
& =-p_{\varepsilon}\left(\partial_{\alpha} S_{\beta}{ }_{\gamma}^{\varepsilon}+\partial_{\beta} S_{\gamma}{ }^{\varepsilon}+\partial_{\gamma} S_{\alpha}{ }_{\beta}^{\varepsilon}\right) X^{\alpha} Y^{\beta}-p_{\varepsilon} S_{\alpha}^{\beta} X^{\alpha} \partial_{\beta} Y^{\varepsilon}-p_{\varepsilon} S_{\gamma}^{\alpha} \partial_{\alpha} X^{\varepsilon} Y^{\beta} \\
& =-p_{\varepsilon} \partial_{\alpha} S_{\beta}{ }_{\gamma} X^{\alpha} Y^{\beta}-p_{\varepsilon} \partial_{\beta} S_{\gamma \alpha}^{\varepsilon} X^{\alpha} Y^{\beta}-p_{\varepsilon} \partial_{\gamma} S_{\alpha}{ }_{\beta}^{\varepsilon} X^{\alpha} Y^{\beta}-p_{\varepsilon} S_{\alpha}^{\beta}{ }_{\gamma}^{\beta}{ }^{\alpha} \partial_{\beta} Y^{\varepsilon}-p_{\varepsilon} S_{\gamma}^{\alpha} \partial_{\alpha} X^{\varepsilon} Y^{\beta} \\
& =-\underbrace{p_{\alpha} \partial_{\beta} S_{\varepsilon}{ }_{\gamma}^{\alpha} X^{\beta} Y^{\varepsilon}}_{A 1}-\underbrace{p_{\alpha} \partial_{\varepsilon} S_{\gamma \beta}^{\alpha} X^{\beta} Y^{\varepsilon}}_{A 2}-\underbrace{p_{\alpha} \partial_{\gamma} S_{\beta}{ }_{\varepsilon}^{\alpha} X^{\beta} Y^{\varepsilon}}_{A 3}-\underbrace{p_{\varepsilon} S_{\alpha}^{\beta} X^{\alpha} \partial_{\beta} Y^{\varepsilon}}_{A 4}+\underbrace{p_{\varepsilon} S_{\beta}{ }_{\gamma}^{\alpha} \partial_{\alpha} X^{\varepsilon} Y^{\beta}}_{A 5}
\end{aligned}
$$

by virtue of (5) and (8). We know that ${ }^{c c}(S(X, Y))^{\bar{\gamma}}, p_{\alpha}\left(\left(L_{X} S\right)_{Y}\right)_{\gamma}^{\alpha},-p_{\alpha}\left(\left(L_{Y} S\right)_{X}\right)_{\gamma}^{\alpha}$ and $p_{\alpha}\left(S_{[X, Y]}\right)_{\gamma}^{\alpha}$ have respectively, components on $t^{*}\left(B_{m}\right)$

$$
\begin{aligned}
& { }^{c c}(S(X, Y))^{\bar{\gamma}}=-p_{\alpha} \partial_{\gamma}\left(S_{\beta}{ }_{\varepsilon}^{\alpha} X^{\beta} Y^{\varepsilon}\right)=-p_{\alpha}\left(\partial_{\gamma} S_{\beta}{ }_{\varepsilon}^{\alpha}\right) X^{\beta} Y^{\varepsilon}-p_{\alpha}\left(\partial_{\gamma} X^{\beta}\right) S_{\beta}{ }_{\varepsilon}^{\alpha} Y^{\varepsilon}-p_{\alpha}\left(\partial_{\gamma} Y^{\varepsilon}\right) S_{\beta}{ }_{\varepsilon}^{\alpha} X^{\beta} \\
& { }^{c c}(S(X, Y))^{\bar{\gamma}}=-p_{\alpha}\left(\partial_{\gamma} S_{\beta}{ }_{\varepsilon}^{\alpha}\right) X^{\beta} Y^{\varepsilon}+p_{\alpha}\left(\partial_{\gamma} X^{\beta}\right) S_{\varepsilon}^{\alpha} Y^{\varepsilon}-p_{\alpha}\left(\partial_{\gamma} Y^{\varepsilon}\right) S_{\beta}{ }_{\varepsilon}^{\alpha} X^{\beta} \\
& { }^{c c}(S(X, Y))^{\bar{\gamma}}=\underbrace{-p_{\alpha}\left(\partial_{\gamma} S_{\beta \varepsilon}^{\alpha}\right) X^{\beta} Y^{\varepsilon}}_{A 3}+\underbrace{p_{\alpha}\left(\partial_{\gamma} X^{\beta}\right) S_{\varepsilon}^{\alpha} Y^{\varepsilon}}_{A 6}-\underbrace{p_{\alpha}\left(\partial_{\gamma} Y^{\varepsilon}\right) S_{\beta \varepsilon}^{\alpha} X^{\beta}}_{A 7} \\
& p_{\alpha}\left(\left(L_{X} S\right)_{Y}\right)_{\gamma}^{\alpha}=\underbrace{p_{\alpha} X^{\beta} \partial_{\beta} S_{\varepsilon}^{\alpha} Y^{\varepsilon}}_{A 1}+\underbrace{p_{\alpha} \partial_{\varepsilon} X^{\beta} S_{\beta}^{\alpha} Y^{\varepsilon}}_{A 8}+\underbrace{p_{\alpha} \partial_{\gamma} X^{\beta} S_{\varepsilon}{ }_{\beta}^{\alpha} Y^{\varepsilon}}_{A 6}-\underbrace{p_{\alpha} \partial_{\beta} X^{\alpha} S_{\varepsilon \gamma}^{\beta} Y^{\varepsilon}}_{A 5}, \\
& -p_{\alpha}\left(\left(L_{Y} S\right)_{X}\right)_{\gamma}^{\alpha}=-\underbrace{p_{\alpha} Y^{\beta} \partial_{\beta} S_{\varepsilon}{ }_{\gamma}^{\alpha} X^{\varepsilon}}_{A 2}-\underbrace{p_{\alpha} \partial_{\varepsilon} Y^{\beta} S_{\beta}^{\alpha}{ }_{\gamma}^{\varepsilon} X^{\varepsilon}}_{A 9}-\underbrace{p_{\alpha} \partial_{\gamma} Y^{\beta} S_{\varepsilon}{ }_{\beta}^{\alpha} X^{\varepsilon}}_{A 7}+\underbrace{p_{\alpha} \partial_{\beta} Y^{\alpha} S_{\varepsilon \gamma}^{\beta} X^{\varepsilon}}_{A 4}, \\
& \left.p_{\alpha}\left(S_{[X, Y]}\right)_{\gamma}^{\alpha}=p_{\alpha} S_{\beta}^{\alpha}{ }_{\gamma}^{\alpha} X^{\varepsilon} \partial_{\varepsilon} Y^{\beta}-Y^{\varepsilon} \partial_{\varepsilon} X^{\beta}\right)=\underbrace{p_{\alpha} S_{\beta}^{\alpha} X^{\varepsilon} \partial_{\varepsilon} Y^{\beta}}_{A 9}-\underbrace{p_{\alpha} S_{\beta}{ }_{\gamma}^{\alpha} Y^{\varepsilon} \partial_{\varepsilon} X^{\beta}}_{A 8}
\end{aligned}
$$

with respect to the coordinates $\left(x^{c}, x^{\gamma}, x^{\bar{\gamma}}\right)$. Where the same equations are denoted by $A 1, A 2, \ldots, A 9$. On the other hand, we know that ${ }^{c c}(S(X, Y))$ and $\gamma\left(\left(L_{X} S\right)_{Y}-\left(L_{Y} S\right)_{X}+S_{[X, Y]}\right)$ have respectively, components

$$
\begin{aligned}
{ }^{c c}(S(X, Y)) & =\left(\begin{array}{l}
(S(X, Y))^{c} \\
(S(X, Y))^{\gamma} \\
-p_{\varepsilon} \partial_{\gamma}(S(X, Y))^{\varepsilon}
\end{array}\right) \\
\gamma\left(\left(L_{X} S\right)_{Y}-\left(L_{Y} S\right)_{X}+S_{[X, Y]}\right)= & \left(\begin{array}{l}
0 \\
0 \\
p_{\alpha}\left(\left(L_{X} S\right)_{Y}-\left(L_{Y} S\right)_{X}+S_{[X, Y]}\right)_{\gamma}^{\alpha}
\end{array}\right)
\end{aligned}
$$

with respect to the coordinates $\left(x^{c}, x^{\gamma}, x^{\bar{\gamma}}\right)$ on $t^{*}\left(B_{m}\right)$. Thus, we have

$$
{ }^{c c} \widetilde{S}\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)={ }^{c c}(S(X, Y))-\gamma\left(\left(L_{X} S\right)_{Y}-\left(L_{Y} S\right)_{X}+S_{[X, Y]}\right)
$$

by the necessary simplifications made in equalities.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

[1] K. Yano and S. Ishihara, Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York, 1973.
[2] D. Husemoller, Fibre Bundles. Springer, New York, 1994.
[3] H.B. Lawson and M.L. Michelsohn, Spin Geometry. Princeton University Press., Princeton, 1989.
[4] N. Steenrod, The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
[5] F. Yıldırım, On a special class of semi-cotangent bundle, Proceedings of the Institute of Mathematics and Mechanics, (ANAS) 41 (2015), no. 1, 25-38.
[6] F. Yıldırım and A. Salimov, Semi-cotangent bundle and problems of lifts, Turk J. Math, (2014), 38, 325-339.
[7] L.S. Pontryagin, Characteristic cycles on differentiable manifolds. Rec. Math. (Mat. Sbornik) N.S., 21 (63):2, (1947), $233-284$.
[8] W.A. Poor, Differential Geometric Structures, New York, McGraw-Hill (1981).
[9] N.M. Ostianu, Step-fibred spaces, Tr. Geom. Sem. 5, Moscow. (VINITI), 259-309 (1974).
[10] V. V. Vishnevskii, Integrable affinor structures and their plural interpretations. Geometry, 7.J. Math. Sci. (New York) 108 (2002), no. 2, 151-187.
[11] F. Etayo, The geometry of good squares of vector bundles, Riv. Mat. Univ. Parma 17 (1991) 131-147.

[^0]: * Corresponding author e-mail: furkan.yildirim@atauni.edu.tr

