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A General Korovkin Result Under Generalized Convergence

PEDRO GARRANCHO

ABSTRACT. In this paper, the classic result of Korovkin about the convergence of sequences of functions defined
from sequences of linear operators is reformulated in terms of generalized convergence. This convergence extends
some others given in the literature. The operator of the sequence fulfill a shape preserving property more general than
the positivity. This property is related with certain extension of the notion of derivative. This extended derivative is
precisely the object of the approximation process. The study is completed by analysing the conditions for the existence
of an asymptotic formula, from which some interesting consequences are derived as a local version of the shape pre-
serving property. Finally, as applications of the previous results, the author use the following notion of generalized
convergence, an extension of Nörlund-Cesáro summability given by V. Loku and N. L. Braha in 2017. A way to transfer
a notion of generalized convergence to approximation theory by means of linear operators is showed.
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1. INTRODUCTION

The following sequence of positive linear operators is studied in [2]:

Bτnf(t) =

n∑
k=0

(
n

k

)
τ(t)k(1− τ(t))n−k(f ◦ τ−1)(k/n), f ∈ C[0, 1], t ∈ [0, 1],

where τ is a function defined on [0, 1] infinitely differentiable, such that τ(0) = 0, τ(1) = 1 and
τ ′(t) > 0, t ∈ (0, 1). The convergence of Bτnf towards f can be analyzed by using the classical
result of Korovkin [11], according to which it suffices to check it for these three test functions
1, t, t2, or other three, say ψ0, ψ1, ψ2 that form a Tchebychev System. In particular, the choice
1, τ, τ2 is the more convenient for Bτn.
Now, let Ln be a slight modification of the previous sequence of positive linear operators,
Lnf(t) = (1+an)B

τ
nf(t), where an does not converge to 0 in the classical sense. The aforemen-

tioned result of Korovkin allows to conclude that the approximation process defined by Ln is
not convergent. That said, if an is convergent in some other sense, a question arises whether
the sequence would be convergent under this other notion. This is a motivation for a long list
of papers where the so called Korovkin theory has been extended by considering new notions
of convergence. We mention a few, restricting our attention to sequences of linear operator
defined on spaces of real continuous functions on a compact interval.
In 1970, J. P. King and J. J. Swetits [10] studied the almost convergence, introduced by Lorentz
in 1948 [14]. In 2002, A. D. Gadjiev and C. Orhan[6] proceeded analogously with statistical
convergence, a now classic concept that was conceived by H. Fast in 1957 [5]. More recently,
we may mention some papers by V. Karakaya and A. Karaisa in 2015 [9], where they consid-
ered weighted αβ-statistical convergence, T. Acar and S. A. Mohiuddine in 2016 [1] dealt with
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statistical (C, 1)(E, 1) summability, or finally, in 2016, D. Ali Karaisa, [8] worked with statistical
(Nγ , αβ) summability.
All the quoted papers dealt with positive linear operators and more importantly, for the proofs
of their main results the same arguments of continuity and boundness were strongly used. Our
main purpose with this work is to bring a sort of unification by proving a general qualitative
Korovkin result, in such a way that this result can be applied whenever a concept of conver-
gence is moved from mathematical analysis to Korovkin-type approximation theory. Moreover,
we shall deal with a shape preserving property more general than the mere positivity, related
to the preservation of the sign of certain generalized derivative.
This paper is organized as follows. In section 2, we will show some required notions and the
notation will be set. In section 3, the qualitative Korovkin type result will be shown. Besides
this, in the section 4, we will add the analysis of existence of the asymptotic condition by
means of another Korovkin type result. In section 5, some consequences of the existence of
an asymptotic condition will be given. In the last section, we show an example that shows the
applicability of our result, by recovering the paper by V. Loku and N. L. Braha [12].

2. GENERAL SETTINGS

In this section, we will establish the framework, and present the required tools. Some notation
will be set as well.
Let S be the usual linear space of all real sequences, and let S0 be a subspace of S closed under
the usual sum and scalar multiplication.
Let L be a linear functional defined on S0 fulfilling the following properties:

(I) if xn is convergent in the classical sense, then L(xn) = limxn, where lim refers to the
classic limit (as a consequence L(xn) = ` ⇔ L(xn − `) = 0);

(II) if xn ≤ yn for every n ∈ N, then L(xn) ≤ L(yn) for every n ∈ N. In short, xn ≤ yn implies
L(xn) ≤ L(yn);

(III) if an is non negative, lim an = 0 and L(xn) = `, then L(an · xn) = 0;
(IV) if xn ≤ zn ≤ yn and L(xn) = L(yn) = `, then zn ∈ S0 and L(zn) = `.

We have assumed, and will assume from now onwards that xn ∈ S0 whenever we write L(xn).
On the other hand, to fix ideas, notice that under the classical setting S0 is formed by all con-
vergent sequences, and, under statistical convergence, our functional L coincides with the so
noted st− lim.
Recall the following properties for a Tschebyshev System, T = {ψ0, ψ1, ψ2}, on an interval [a, b]:

P1: Given three points x1, x2, x3 ∈ [a, b] and three real numbers a1, a2, a3, there exists only
one T -polynomial (i.e. a function that belongs to the space spanned by ψ0, ψ1, ψ2), such
that pT (xi) = ai, i = 1, 2, 3.

P2: For all α ∈ (a, b), we can find a T -polynomial, pT,α, such that, α is a double root of
pT,α.

As it is usualCm[0, 1] is the set of the all functionsm-times differentiable with continuousm−th
derivative. Notice that C[0, 1] is simply the set of continuous function on [0, 1] and C∞[0, 1] =
∩i∈NCi[0, 1]. Now let τ ∈ C∞[0, 1], with τ(0) = 0, τ(1) = 1 and τ ′(t) > 0, t ∈ (0, 1). In relation
with the function τ , it is considered eτ,i(t) = τ(t)i, exτ,i(t) = (τ(t) − τ(x))i. Associated with
the function τ the following differential operator is defined, see [13]

(2.1) Di
τf(t) := Di

(
f ◦ τ−1

)
(τ(t)).
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We notice that D0
τ = I. The previous definition is equivalent to this other:

D0,τ ′
= I, D1,τ ′

=
1

τ ′
D1, Di+1,τ ′

= D1,τ ′
◦Di,τ ′

, i ∈ N.

This differential operator has been dealt by the author inside approximation theory in [7] and
[3].
It it easy to observe that for x ∈ (0, 1),

(2.2) Di
τeτ,j =


j!

(j−i)!eτ,j−i, if j ≥ i;

0, if j < i,

and Di
τe
x
τ,j =


j!

(j−i)!e
x
τ,j−i, if j ≥ i;

0, if j < i.

3. QUALITATIVE KOROVKIN TYPE RESULT

Here is one of the main result of the paper, extension of the classical result of Korovkin.

Theorem 3.1. Let Ln : Cm[0, 1] → Cm[0, 1] be a sequence of linear operators fulfilling the following
shape preserving property:

(3.3) if Dm
τ f ≥ 0 then Dm

τ Lnf ≥ 0

Suppose we have three functions, F0, F1, F2 ∈ Cm[0, 1] such that T = {Dm
τ F0, D

m
τ F1, D

m
τ F2} is a

Tschebyshev System on C[0, 1], then the following sentences are equivalent:
(i) L(Dm

τ LnFi(x)) = Dm
τ Fi(x), i = 0, 1, 2,

(ii) L(Dm
τ Lnf(x)) = Dm

τ f(x) for all function f ∈ Cm[0, 1].

Proof.
(ii)⇒ (i) is trivial. We are going to prove the converse. First of all, we consider that x ∈ (0, 1).
We define the function φ ∈ Cm[0, 1] as φ(t) = f(t)− Dmτ f(x)

Dmτ G(x)G(t), whereDm
τ G is a T -polynomial

of T = {Dm
τ F0, D

m
τ F1, D

m
τ F2}, a Tchebychev System on [0, 1], with Dm

τ G(x) 6= 0.
Dm
τ φ, is continuous and it vanishes at x, then for all positive real number ε there exists δ > 0

such that if |t− x| < δ, then
−ε ≤ Dm

τ φ(t) ≤ ε.
On the other hand Dm

τ φ is bounded on [0, 1], then there exists M > 0 such that

−M ≤ Dm
τ φ(t) ≤M.

By property P2 , for x, we can find two non negative T−polynomials, fx, h, where the first
function has a double root at x and the second function is greater than or equal to 1 on [0, 1].
Let k = min|t−x|≥δ fx(t) > 0 and Fx, H ∈ Cm[0, 1] such that Dm

τ Fx = fx, D
m
τ H = h, then the

following inequality is satisfied for t ∈ [0, 1]

−εDm
τ H(t)− M

k
Dm
τ Fx(t) ≤ Dm

τ φ(t) ≤ εDm
τ H(t) +

M

k
Dm
τ Fx(t),

or equivalently on [0, 1],

Dm
τ

(
−εH − M

k
Fx

)
≤ Dm

τ φ ≤ Dm
τ

(
εH +

M

k
Fx

)
.

Applying the shape preserving property (3.3), linearity and then evaluating at x we have,

(3.4) − εDm
τ LnH(x)− M

k
Dm
τ LnFx(x) ≤ Dm

τ Lnφ(x) ≤ εDm
τ LnH(x) +

M

k
Dm
τ LnFx(x).



84 P. Garrancho

Since ε is arbitrary, we can choose ε = 1
n . As Fx, H belong to space spanned by F0, F1, F2,

then we use the hypothesis (i) to get L(Dm
τ LnFx(x)) = Dm

τ Fx(x) = 0 and L (Dm
τ LnH(x)) =

Dm
τ H(x) = h(x).

From (3.4) and property (III), we have that L(εDm
τ LnH(x) + M

k D
m
τ LnFx(x)) = 0. Then

from property (IV), we deduce that L(Dm
τ Lnφ(x)) = 0 or equivalently L(Dm

τ Lnf(x) −
Dmτ f(x)
Dmτ G(x)D

m
τ LnG(x)) = 0, so L(Dm

τ Lnf(x)) = Dm
τ f(x).

Now, we will prove the result for the end points of the interval x = 0 and x = 1. In this
case, we define φ as φ(t) = f(t) − G(t), where Dm

τ G is a T -polynomial, with Dm
τ G(0) =

Dm
τ f(0), D

m
τ G(1) = Dm

τ f(1).
Again we use the continuity, in this case in 0 and 1, and the bound M of Dm

τ φ, as well as the
fact that Dm

τ φ vanishes at the endpoints of the interval. Then for all ε > 0, there exist δ > 0
such that for 0 ≤ t ≤ δ, 1− δ ≤ t ≤ 1

−ε ≤ Dm
τ φ(t) ≤ ε and −M ≤ Dm

τ φ(t) ≤M.

Now, we choose F01 ∈ Cm[0, 1], where Dm
τ F01 is a T -polynomial, Dm

τ F01(0) = Dm
τ F01(1) =

0 and Dm
τ F01 ≥ 0. Now, we take k = min

δ≤x≤1−δ
Dm
τ F01(t) > 0. Then we have the following

inequalities on [0, 1]

−M
k
Dm
τ F01 − ε ≤ Dm

τ φ ≤ ε+
M

k
Dm
τ F01.

Finally, we can end the proof with similar arguments to the other case. �

4. ASYMPTOTIC CONDITION

Once guaranteed the generalized convergence of the process, we are going to analyze the se-
quence Dm

τ Lnf(x) − Dm
τ f(x) comparing it with another sequence of real numbers λn with

L(λn) = 0. The purpose is to obtain an asymptotic condition. Here it is the corresponding
result. Again it is a Korovkin type result.

Theorem 4.2. Let Ln be the sequence of linear operators as that of Section 3. Let x ∈ (0, 1) and let
us assume that there exist a sequence λn of positive real numbers, with L(λn) = 0 and three strictly
positive functions w0, w1 and w2 defined on (0, 1) with wi ∈ C2−i(0, 1) such that, for s ∈ {m,m +
1,m+ 2,m+ 4},

(4.5) L
(
Dm
τ Lne

x
τ,s(x)−Dm

τ e
x
τ,s(x)

λn

)
= w−12 D1(w−11 D1(w−10 Dm

τ e
x
τ,s))(x)

Then, for f ∈ Cm(0, 1), m+ 2 times differentiable in some neighborhood of x,

(4.6) L
(
Dm
τ Lnf(x)−Dm

τ f(x)

λn

)
= w−12 D1(w−11 D1(w−10 Dm

τ f))(x).

Proof.
The proof similar to the one we can find in [3], with the proper changes. First of all, we apply
the Taylors’s formula to the function Dm

τ f ◦ τ−1 centered at a point τ(x) and evaluated at
τ(t), t ∈ (0, 1), i.e.:

Dm
τ f ◦ τ−1(τ(t)) =

2∑
s=0

1

s!
Ds(Dm

τ f ◦ τ−1)(τ(x))(τ(t)− τ(x))s + h(τ(t)− τ(x))(τ(t)− τ(x))2,

where h is a continuous function that vanishes at zero. Now using the definition of the
differential operator (2.1) and the notation of Section 2, we have:
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Dm
τ f(t) = D0

τ (D
m
τ f)(x)e

x
τ,0(t) +D1

τ (D
m
τ f)(x)e

x
τ,1(t)

+
1

2
D2
τ (D

m
τ f)(x)e

x
τ,2(t) + h(τ(t)− τ(x))exτ,2(t).

Using (2.2), we can write

Dm
τ f(t) = Dm

τ

(
2∑
s=0

1

(m+ s)!
Ds
τ (D

m
τ f)(x)e

x
τ,m+s +Hx

)
(t)

with Hx ∈ Cm(J) and Dm
τ Hx(t) = h(τ(t) − τ(x))exτ,2(t). Then, we apply the linear operator

and evaluate at x to obtain

Dm
τ Lnf(x) = Dm

τ Ln

(
2∑
s=0

1

(m+ s)!
Ds
τ (D

m
τ f)(x)e

x
τ,m+s +Hx

)
(x).

By linearity,

Dm
τ Lnf(x) =

2∑
s=0

1

(m+ s)!
Ds
τ (D

m
τ f)(x)D

m
τ Lne

x
τ,m+s(x) +Dm

τ LnHx(x).

Introducing this term, Dm
τ f(x) =

2∑
s=0

1

(m+ s)!
Ds
τ (D

m
τ f)(x)D

m
τ e

x
τ,m+s(x), to both sides of the

equality and dividing by λn

Dm
τ Lnf(x)−Dm

τ f(x)

λn
=

2∑
s=0

1

(m+ s)!
Ds
τ (D

m
τ f)(x)

Dm
τ Lne

x
τ,m+s(x)−Dm

τ e
x
τ,m+s(x)

λn
+

Dm
τ LnHx(x)

λn
.

Now, we consider the hypothesis (4.5) for m = 0,m = 1,m = 2. After some calculations,

L

(
2∑
s=0

1

(m+ s)!
Ds
τ (D

m
τ f)(x)

Dm
τ Lne

x
τ,m+s(x)−Dm

τ e
x
τ,m+s(x)

λn

)
=

w−12 D1(w−11 D1(w−10 Dm
τ f))(x).

Finally, the proof of 4.6 will be finished if we prove that L
(
Dmτ LnHx(x)

λn

)
= 0 and the proof will

be finished.
To do this, we use continuity arguments on the function h to guarantee the existence of a neigh-
borhood of x, say θx, for a given ε > 0, such that for t ∈ θx,

|h(τ(t)− τ(x))| < ε.

Then, for all t ∈ [0, 1],

|Dm
τ Hx(t)| = |h(τ(t)− τ(x))|exτ,2(t) ≤ εexτ,2(t) + max{0, |h(τ(t)− τ(x))| − ε}exτ,2(t).

Let us consider a functionW ∈ Cm[0, 1] such thatDm
τ W (t) = max{0, |h(τ(t)−τ(x))|−ε}exτ,2(t).

As Dm
τ W vanishes in θx, then, for a sufficiently large constant M , one has |Dm

τ W (t)| ≤
MDm

τ e
x
τ,m+4(t). So, gathering the last inequalities we get,

|Dm
τ Hx(t)| ≤

2ε

(m+ 2)!
Dm
τ e

x
τ,m+2(t) +MDm

τ e
x
τ,m+4(t).
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We use the shape preserving property (3.3), and divide by λn > 0, to obtain, after evaluating at
the point x, ∣∣∣∣Dm

τ LnHx(x)

λn

∣∣∣∣ ≤ 2ε

(m+ 2)!

Dm
τ Lne

x
τ,m+2(x)

λn
+M

Dm
τ Lne

x
τ,m+4(x)

λn
.

As regards the hypothesis of the result for s = m + 2 and s = m + 4, after some calculations
using (2.2), we can write respectively,

L
(
Dm
τ Lne

x
τ,m+2(x)

λn

)
=

2τ ′(x)2

w2(x)w1(x)w0(x)
> 0

and

L
(
Dm
τ Lne

x
τ,m+4(x)

λn

)
= 0.

Finally, properties (III) and (IV) and the fact that ε > 0 was arbitrary, allow us to finish the
proof. �

5. FURTHER RESULTS

From now on, we will assume that the sequence of linear operators is endowed with an as-
ymptotic condition of the type (4.6). We are going to deduce some consequences of the latter
fact. First of all, the existence of an asymptotic condition allows us to establish a local version
of the shape preserving property. We use the notation an = oL(bn) to refer to two sequences
such that an, bn ∈ S0, L(an) = L(bn) = L

(
an
bn

)
= 0.

Lemma 5.1. Let h ∈ Cm[0, 1] and x ∈ (0, 1). We assume that there exists a neighborhood Nx of x
where Dm

τ h ≥ 0. Then,
Dm
τ Lnh(x) ≥ 0 + oL(λn).

Proof. Let x1, x2 ∈ Nx with x1 < x < x2 and let τ1, τ2 belong to the space spanned
by 1, τ1, . . . , τm such that for j = 1, 2 and 0 ≤ i ≤ m, Di

ττj(xj) = Di
τh(xj) (notice that

{1, τ1, . . . , τm} is a Tchebychev system). Let h̃ ∈ Cm[0, 1] be defined as:

h̃(t) =

 τ1(t) t < x1
h(t) x1 ≤ t ≤ x2
τ2(t) x2 < t.

Then, on [0, 1], Dm
τ h̃ ≥ 0 and on (x1, x2), Dm

τ (h̃− h) = 0. Indeed, it is enough to recall that for
i = 0, 1, . . . ,m − 1, Dm

τ τ
i = 0 and observe that Dm

τ τ
m = m!. Finally, using the existence of an

asymptotic condition (4.6), yields Dm
τ Lnh̃(x)−Dm

τ Lnh(x) = oL(λn), and from (3.3)

0 ≤ Dm
τ Lnh̃(x) = Dm

τ Lnh(x) + oL(λn).

�
If g ∈ Cm[0, 1] is a solution on (a, b) ⊂ [0, 1] of the ordinary differential equation

(5.7) w−12 D1(w−11 D1(w−10 Dm
τ y) ≡ 0,

by asymptotic condition (4.6) it is obvious that if x ∈ (a, b), Dm
τ Lnf(x)−Dm

τ f(x) = oL(λn), but
the converse is also true, as we can see in the next result.

Theorem 5.3. Let a, b ∈ (0, 1) with a < b. If f ∈ Cm[0, 1] satisfies Dm
τ Lnf(x)−Dm

τ f(x) = oL(λn)
at each point x ∈ (a, b), then f is a solution of (5.7).
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Before the proof, we write some remarks. The ordinary differential equation (5.7) is of order
m + 2, with fundamental set of solutions {1, τ, . . . , τm−1, y1, y2}. The change of variable z =
Dm
τ v makes equation (5.7) become the following one of second order:

(5.8)
1

w2
D1

(
1

w1
D1

(
z

w0

))
≡ 0.

The following lemma, whose proof can be found in, [7, Lemma 1] it is necessary for the proof
of the theorem.

Lemma 5.2. Let J be a bounded open subinterval of [0, 1]. Let g, h ∈ C(J) and t0, t1, t2 ∈ J such
that t0 ∈ (t1, t2), g(t1) = g(t2) = 0 and g(t0) > 0. Then there exist a real number α < 0, a solution
of the differential equation (5.8) on J , say z, and a point x ∈ (t1, t2) such that for all t ∈ [t1, t2],
αh(t) + z(t) ≥ g, and at the point x, αh(x) + z(x) = g(x).

Let us proceed to the proof of Theorem 5.3. Let f ∈ Cm[0, 1] and let z0 be the unique solution
of (5.8) such that zf (a) = Dm

τ f(a) and z0(b) = Dm
τ f(b) and suppose that there exists x0 ∈

(a, b), zf (x0) > Dm
τ f(x0)(by linearity, one may proceed analogously if the other inequality is

assumed). We apply Lemma 5.2 with g = zf −Dm
τ f, h = Dm

τ e
x
τ,m+2, t1 = a, t2 = b, t0 = x0. In

this case, there exist α < 0, z solution of (5.8) and x ∈ (a, b) such that,

(5.9)
αDm

τ e
x
τ,m+2(t) + z(t) ≥ zf (t)−Dm

τ f(t), t ∈ (a, b),

αDm
τ e

x
τ,m+2(x) + z(x) = zf (x)−Dm

τ f(x).

Now if we consider Zf ∈ Cm[0, 1], Dm
τ Zf = zf and Z ∈ Cm[0, 1], Dm

τ Z = z, applying the
localization Lemma 5.1 and dividing by λn, from (5.9) we obtain,

α
Dm
τ Lne

x
τ,m+2(x)−Dm

τ e
x
τ,m+2(x)

λn
+
Dm
τ LnZ(x)−Dm

τ Z(x)

λn
≥

Dm
τ LnZf (x)−Dm

τ Zf (x)

λn
+
oL(λn)

λn
.

We use property (II) to get

αL
(
Dm
τ Lne

x
τ,m+2(x)−Dm

τ e
x
τ,m+2(x)

λn

)
+ L

(
Dm
τ LnZ(x)−Dm

τ Z(x)

λn

)
≥

L
(
Dm
τ LnZf (x)−Dm

τ Zf (x)

λn

)
,

and finally we apply asymptotic condition (4.6) to obtain the following expression in contra-
diction with the hypothesis,

α
2τ ′(x)2

w2(x)w1(x)w0(x)
> 0,

to conclude that Dm
τ f is a solution of (5.8), so f is a solution of (5.7). �

6. AN EXAMPLE

As it was pointed out in the introductory section, in this section we apply the results of the
paper to the notion of generalized convergence considered by V. Loku and N. L. Braha [12].
Let pn be a non negative, non increasing real sequence. Let Np

nC
1
n(·) be the linear transforma-

tion that assigns to each real sequence xn this other

Np
nC

1
n(xn) =

1∑n
k=1 pk

n∑
k=1

pk
1

k

k∑
v=1

xv, n ∈ N.
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The sequence xn is said to be Nörlund-Cesáro summable by the weighted mean determined
by pn, or briefly (N, pn)(C, 1)-summable if

limNp
nC

1
n(xn) = `.

In that case, the following notation is used: Np
nC

1
n − limxn = `. Moreover, the set of all

(N, pn)(C, 1)-summable sequences is denoted by Np
nC

1
n.

Let us now recover the sequence of operators Lnf(t) = (1 + an)B
τ
nf(t) with an ∈ Np

nC
1
n and

an ≥ 1. In order to prove the following statement, no Korovkin-type proof is needed.

Theorem 6.4. Let F0, F1, F2 ∈ Cm[0, 1] such that {Dm
τ F0, D

m
τ F1, D

m
τ F2} is a Tschebyshev System

on C[0, 1]. Then the followings sentences are equivalent:
(i) Np

nC
1
n − limDm

τ LnFi(x) = Dm
τ Fi(x), i = 0, 1, 2

(ii) Np
nC

1
n − limDm

τ Lnf(x) = Dm
τ f(x), i = 0, 1, 2, for all function f ∈ Cm[0, 1].

Following the results of the paper, for the proof of the theorem we only have to check that
the shape preserving property (3.3) is fulfilled, and that the linear functional L(xn) = Np

nC
1
n −

limxn, defined on S0 = Np
nC

1
n satisfies properties (I)-(VI). Moreover, all the results of the paper

apply to this situation accordingly.
Finally, for the sake of completeness, I write a remark about a recent paper. In [15], the authors
defined a new sequence of linear operators and proved a result under statistical convergence.
The main theorem of the current paper shows an alternative approach to the problem.
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