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Abstract
In this paper, the author discusses the distribution of the jump-diffusion
CIR model (JCIR) and its applications in credit risk. Applying the
piecewise deterministic Markov process theory and martingale theory,
we first obtain the closed forms of the Laplace transforms for the dis-
tribution of the jump-diffusion CIR model and its integrated process.
Based on the obtained Laplace transforms, we derive the pricing of the
defaultable zero-coupon bond and the fair premium of a Credit Default
Swap (CDS) in a reduced form model of credit risk. Some numerical
calculations are also provided.
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1. Introduction
As we know, Cox et al. (1985) proposed the classical Cox-Ingersoll-Ross (CIR)

process which is defined by an equation of the form

dyt = λ(η − yt)dt+ θ
√
yt dWt, (1.1)

where λ is the rate of mean reversion, η is the long-run level, θ is the volatility coefficient
and Wt is a standard Brownian motion.

Compared with the Vasicek process (Vasicek, 1977), although the CIR equation (1.1)
does not have a closed-form solution, the CIR process is always positive. If yt reaches
zero, the diffusion term dWt disappears and the positive drift term pushes the process in
the positive territory. The precise behavior of the CIR process near zero depends on the
values of parameters. If θ2 ≤ 2λη, the positive drift term will always drive the process yt
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away from zero before it will come too close. If θ2 > 2λη, the process yt will occasionally
touch zero and reflect. On the other hand, the CIR process also has the character of
mean-reverting. Due to the characters of non-negativity and mean-reverting, the CIR
process is better for modelling the interest rate or default intensity in credit risk than
the Vasicek model.

Over the recent years, some authors put their attention to the CIR processes and their
applications in finance and insurance. We can refer the reader to Chen and Scott (1992),
Delbaen (1993), Heston (1993), Berardi (1995), Chou and Lin (2006), Guo (2008), Wu et
al. (2009), Ewald and Wang (2010), Trutnau (2011), Song et al. (2012), Bao and Yuan
(2013).

In practice, there are primary events such as the governments fiscal and monetary
policies, the release of corporate financial reports, some natural disasters and terrorist
attacks etc., that will possibly result in some positive jumps in a firm’s default intensity
process. As time passes, the default intensity process decreases as the firm tries its best
to avoid being in bankruptcy after the arrival of a primary event. This decrease will
continue until another event occurs, which will result in another positive jump in its
intensity processes. In order to describe the appearance of positive jumps in the default
intensity process, we consider the jump-diffusion CIR model which has the following
structure

dyt = λ(η − yt)dt+ θ
√
yt dWt + dJt, (1.2)

where λ, η, θ and Wt are as in the previous model (1.1). We assume that λ > 0, η ≥ 0
and θ ≥ 0. Jt is a compound Poisson process which is given by

Jt =

Mt∑
j=1

Xj , (1.3)

where Mt is a Poisson process with frequency ρ and stands for the total number of
jumps up to time t. {Xj , j ≥ 1} are the jump sizes and assumed to be independent and
identically distributed random variables with distribution function F (x) (x > 0).

Clearly (1.1) is a special case of (1.2) for ρ = 0. In addition, we can find that η = θ = 0
would lead to shot noise processes for yt. It is well known that shot noise models have
been applied to diverse areas such as finance, insurance and electronics. Therefore, from
an applied point of view, it is very significant to investigate the wider class of jump-
diffusion CIR models.

Let Yt =
∫ t
0
yudu be the integrated process of yt. In this work, we will first study the

Laplace transforms of the distributions of the processes yt and Yt. Then we will discuss
the applications of these Laplace transforms in credit risk.

The rest of this article is organized as follows. In Section 2, we obtain the Laplace
transforms for jump-diffusion CIR models and their integrated processes. In section 3,
based on the result of the previous section, we derive the pricing of the defaultable zero-
coupon bond and the fair premium of a Credit Default Swap (CDS) in a reduced form
model of credit risk. Some numerical calculations and concluding remarks are presented
in Section 4.

2. The Laplace transforms of the distribution of jump-diffusion
CIR model

In this section, by applying the piecewise deterministic Markov process theory and
martingale theory, we first derive the joint Laplace transform of the distribution of the
vector process (yt, Yt). Then we obtain the Laplace transforms of the distribution of



the jump-diffusion CIR model. The piecewise deterministic Markov process theory was
developed by Davis (1984) and has been proved to be a very powerful mathematical tool
for examining non-diffusion models. More details on this theory can be found in Davis
(1984).

The (infinitesimal) generator A of the unique solution to SDE (1.1), is given by

(2.1) Af(y) = λ(η − y)
∂f

∂y
+

1

2
θ2 y

∂2f

∂y2
,

where f is an arbitrary twice continuously differentiable function. We assume that yt is a
jump-diffusion CIR model which is a solution of the SDE (1.2). With the aid of piecewise
deterministic Markov process theory and using Theorem 5.5 in Davis (1984), one can see
that the (infinitesimal) generator of the process (Yt, yt, t) acting on a function f(Y, y, t)
is given by

Af(Y, y, t) =
∂f

∂t
+ y

∂f

∂Y
+ λ(η − y)

∂f

∂y
+

1

2
θ2 y

∂2f

∂y2

+ρ

{∫ ∞
0

f(Y, y + x, t)dF (x)− f(Y, y, t)

}
,(2.2)

where f : (0, ∞)× (0, ∞)× R+ → (0, ∞) satisfies:
(1) f(Y, y, t) is bounded on arbitrary finite time intervals;
(2) f(Y, y, t) is differentiable with respect to all t, y, Y ;
(3) ∣∣∣∣∫ ∞

0

f(Y, y + x, t)dF (x)− f(Y, y, t)

∣∣∣∣<∞.
For the sake of simplicity in the presentations throughout the rest of this article, we

will use the following functions which are given by

cothx =
ex + e−x

ex − e−x
, sinhx =

ex − e−x

2
, coshx =

ex + e−x

2
.

In order to obtain the joint Laplace transform for the distribution of the vector
process(yt, Yt), we first present the following lemma.
Lemma 2.1. Assume that m, k are two constants such that m > 0 and k ≥ 0. Then
for 0 ≤ t < m/

√
λ2 + 2kθ2,

(2.3) exp

{
−A(t)yt − kYt + ρ

∫ t

0

[
1− h(A(v))

]
dv + λη

∫ t

0

A(v)dv

}
is a martingale where

(2.4) h(ξ) =

∫ ∞
0

e−ξxdF (x),

(2.5) A(t) = − λ

θ2
−
√
λ2 + 2kθ2

θ2
coth

(√
λ2 + 2kθ2t−m

2

)
.

Proof. Let

(2.6) f(Y, y, t) = exp
{
−A(t)y − kY +R(t)

}
.

From Theorem 7.6.1 in Jacobsen (2006), f(Y, y, t) has to satisfy Af(Y, y, t) = 0 for it
to be a martingale. Hence by (2.2), it should hold

(2.7) −A
′
(t)y +R

′
(t)− ky − λ(η − y)A(t) +

1

2
θ2yA2(t) + ρ

[
h(A(t))− 1

]
= 0.



Solving the equation (2.7), we get

(2.8) A(t) =

(√
λ2 + 2kθ2 − λ

)
+
(√
λ2 + 2kθ2 + λ

)
exp
(√
λ2 + 2kθ2t−m

)
θ2
(
1− exp

(√
λ2 + 2kθ2t−m

))
and

(2.9) R(t) = ρ

∫ t

0

[
1− h(A(v))

]
dv + λη

∫ t

0

A(v)dv.

By the definition of cothx, it holds

(2.10) coth

(√
λ2 + 2kθ2t−m

2

)
=

exp
(√
λ2 + 2kθ2t−m

)
+ 1

exp
(√
λ2 + 2kθ2t−m

)
− 1

.

Combining (2.8) and (2.10), we get (2.5). Plugging (2.5) and (2.9) into (2.6), (2.3)
follows immediately. The proof is completed.

Let Gt = σ(ys, 0 ≤ s ≤ t). Now by means of Lemma 2.1, we give the joint Laplace
transform of the distribution of the vector process (yt, Yt).

Theorem 2.1. Assume that µ, k are two constants such that µ ≥ 0, k ≥ 0. Then the
joint Laplace transform of the distribution of (yt, Yt) is given by

E
{

e−µyte−k(Yt−Ys)
∣∣Gs}

= exp
(
−Bµ,k(s, t)ys

)
exp
(
λ2η(t− s)/θ2

)
(
Cµ,k(s, t)

)− 2λη

θ2 exp
(
−ρ
∫ t−s

0

[
1− h(Bµ,k(0, u))

]
du
)
,(2.11)

where

(2.12) Bµ,k(s, t) =
(2k − λµ) + µ

√
λ2 + 2kθ2 coth

(√
λ2 + 2kθ2 (t− s)/2

)
(θ2µ+ λ) +

√
λ2 + 2kθ2 coth

(√
λ2 + 2kθ2 (t− s)/2

) ,
Cµ,k(s, t) = cosh

(√
λ2 + 2kθ2 (t− s)/2

)
+(θ2µ+ λ)(λ2 + 2kθ2)−1/2sinh

(√
λ2 + 2kθ2 (t− s)/2

)
.(2.13)

Proof. By Lemma 2.1, for an arbitrary fixed time t∗ (0 ≤ s ≤ t∗ < m/
√
λ2 + 2kθ2), we

have

E

{
exp

{
−A(t∗)yt∗ − kYt∗ + ρ

∫ t∗

0

[
1− h(A(v))

]
dv + λη

∫ t∗

0

A(v)dv

}∣∣∣∣Gs}
= exp

{
−A(s)ys − kYs + ρ

∫ s

0

[
1− h(A(v))

]
dv + λη

∫ s

0

A(v)dv

}
.(2.14)

Then

E

{
exp
{
−A(t∗)yt∗ − k(Yt∗ − Ys)

} ∣∣∣Gs}
= exp

(
−A(s)ys

)
exp
(
−ρ
∫ t∗

s

[
1− h(A(v))

]
dv
)

exp
(
−λη

∫ t∗

s

A(v)dv
)
.(2.15)

Set A(t∗) = µ ≥ 0. By (2.8), we get

(2.16) m =
√
λ2 + 2kθ2t∗ − ln

µθ2 + λ−
√
λ2 + 2kθ2

µθ2 + λ+
√
λ2 + 2kθ2

.



Clearly m >
√
λ2 + 2kθ2t∗, i.e., t∗ < m/

√
λ2 + 2kθ2. Plugging (2.16) into A(s) and A(v)

respectively, by direct computation, we have

A(s) =
(
√
λ2 + 2kθ2 − λ) + (

√
λ2 + 2kθ2 + λ) exp(

√
λ2 + 2kθ2s−m)

θ2
(
1− exp(

√
λ2 + 2kθ2s−m)

)
=

(2k − λµ+ µ
√
λ2 + 2kθ2) + (µ

√
λ2 + 2kθ2 + λµ− 2k) exp

(√
λ2 + 2kθ2(s− t∗)

)
(θ2µ+ λ)

(
1− exp

(√
λ2 + 2kθ2(s− t∗)

))
+
√
λ2 + 2kθ2

(
1 + exp

(√
λ2 + 2kθ2(s− t∗)

))
=

(2k − λµ) + µ
√
λ2 + 2kθ2 coth(

√
λ2 + 2kθ2 (t∗ − s)/2)

(θ2µ+ λ) +
√
λ2 + 2kθ2 coth(

√
λ2 + 2kθ2 (t∗ − s)/2)

= Bµ,k(s, t∗)

(2.17)

and

A(v) =
(
√
λ2 + 2kθ2 − λ) + (

√
λ2 + 2kθ2 + λ) exp(

√
λ2 + 2kθ2v −m)

θ2
(
1− exp(

√
λ2 + 2kθ2v −m)

)
= Bµ,k(v, t∗).(2.18)

From (2.15), (2.17) and (2.18), we have

E

{
exp
{
−µyt∗ − k(Yt∗ − Ys)

} ∣∣∣Gs}
= exp

(
−Bµ,k(s, t∗)ys

)
exp
(
−ρ
∫ t∗

s

[
1− h(Bµ,k(v, t∗))

]
dv
)

exp
(
−λη

∫ t∗

s

Bµ,k(v, t∗)dv
)
.

(2.19)

Let u = t∗ − v in the integral of (2.19), then

E

{
exp
{
−µyt∗ − k(Yt∗ − Ys)

} ∣∣∣Gs}
= exp

(
−Bµ,k(s, t∗)ys

)
exp
(
−ρ
∫ t∗−s

0

[
1− h(Bµ,k(0, u))

]
du
)

exp
(
−λη

∫ t∗−s

0

Bµ,k(0, u)du
)
.

(2.20)

Since t∗ is arbitrary, (2.20) remains true for all 0 ≤ s ≤ t < m/
√
λ2 + 2kθ2, then

E

{
exp
{
−µyt − k(Yt − Ys)

} ∣∣∣Gs}
= exp

(
−Bµ,k(s, t)ys

)
exp
(
−ρ
∫ t−s

0

[
1− h(Bµ,k(0, u))

]
du
)

exp
(
−λη

∫ t−s

0

Bµ,k(0, u)du
)
.

(2.21)

By standard integral calculation, then

exp
(
−λη

∫ t−s

0

Bµ,k(0, u)du
)

= exp

(
−λη

∫ t−s

0

(2k − λµ) + µ
√
λ2 + 2kθ2 coth(

√
λ2 + 2kθ2 u/2)

(θ2µ+ λ) +
√
λ2 + 2kθ2 coth(

√
λ2 + 2kθ2 u/2)

du

)
= exp

(
λ2η(t− s)/θ2

)(
cosh

(√
λ2 + 2kθ2 (t− s)/2

)
+(θ2µ+ λ)(λ2 + 2kθ2)−1/2sinh

(√
λ2 + 2kθ2 (t− s)/2

))− 2λη

θ2 .(2.22)



Plugging (2.22) into (2.21), (2.11) follows immediately. The proof is completed.

Setting k = 0 and µ = 0 in (2.11) respectively, we obtain the following corollaries.

Corollary 2.1. Assume that µ, k are two constants such that µ ≥ 0, k ≥ 0. Then the
Laplace transforms of the distributions of yt and Yt are respectively given by

E
{

e−µyt
∣∣Gs}

= exp
(
−Bµ,0(s, t)ys

)
exp
(
λ2η(t− s)/θ2

)(
Cµ,0(s, t)

)− 2λη

θ2 exp
(
−ρ
∫ t−s

0

[
1− h(Bµ,0(0, u))

]
du
)

(2.23)

and

E
{

e−k(Yt−Ys)
∣∣Gs}

= exp
(
−B0,k(s, t)ys

)
exp
(
λ2η(t− s)/θ2

)(
C0,k(s, t)

)− 2λη

θ2 exp
(
−ρ
∫ t−s

0

[
1− h(B0,k(0, u))

]
du
)
.

(2.24)

To make later calculation somewhat easier, we assume that jumps size in (1.3) follows
exponential distribution, i.e., F (x) = 1− e−αx (x > 0, α > 0). Then from Corollary 2.1,
we get the following result.

Corollary 2.2. Assume that µ, k are two constants such that µ ≥ 0, k ≥ 0 and that
F (x) = 1− e−αx (x > 0, α > 0). Then the Laplace transforms of the distributions of yt
and Yt are respectively given by

E
{

e−µyt
∣∣Gs}

= exp
(
−Bµ,0(s, t)ys + λ2η(t− s)/θ2

)(
Cµ,0(s, t)

)− 2λη

θ2

(
2λ(α+ µ) exp(λ(t− s))

α(θ2µ+ 2λ) exp(λ(t− s)) + (2λµ− αθ2µ)

)− 2ρ

2λ−αθ2

(2.25)

and

E
{

e−k(Yt−Ys)
∣∣Gs}

= exp
(
−B0,k(s, t)ys

)
exp
{
M1(k) (t− s) +M2(k) lnDk(s, t)−M3 lnC0,k(s, t)

}
,

(2.26)

where

Dk(s, t) = cosh
(√

λ2 + 2kθ2 (t− s)/2
)

+
αλ+ 2k

α
√
λ2 + 2kθ2

sinh
(√

λ2 + 2kθ2 (t− s)/2
)
,

M1(k) =
λ2η

θ2
− 2kρ

α
(√
λ2 + 2kθ2 + λ

)
+ 2k

− αρ
√
λ2 + 2kθ2

2k + 2αλ− α2θ2
,

M2(k) =
2αρ

2k + 2αλ− α2θ2
, M3 =

2λη

θ2
.

3. Applications in credit risk
In this section, based on the results of previous section, we derive the pricing of the

defaultable zero-coupon bond and the fair premium of a Credit Default Swap (CDS) in a
reduced form model of credit risk. Reduced form models of credit risk were pioneered by
Artzner and Delbaen (1995). For the literature on the reduced form model, we can refer
to Jarrow and Turnbull (1995), Duffie and Singleton (1999), Bai, Hu, and Ye (2007),



Liang and Wang (2012), Su and Wang (2013). In some literature on the reduced form
model of credit risk, the default arrival time for the firm is defined as the first jump
time of the Cox process. Due to some primary events which will possibly result in some
positive jumps in a firm’s default intensity process, we employ the jump-diffusion CIR
model to describe the firm’s default intensity.

We first state the definition of Cox process. Many alternative definitions of a Cox
process can be found in the previous literature. We adopted the one used by Brémaud
(1981).

Definition 3.1. Let {Ω, F, P} be a probability space with information structure given
by {Gt, t ∈ [0, T ]}. Let Nt be a point process adapted to {Gt, t ∈ [0, T ]}. Let yt be a
nonnegative process adapted to {Gt, t ∈ [0, T ]} such that∫ t

0

yudu <∞ a. s. (no explosions).

If for all u ∈ R and 0 ≤ t1 ≤ t2,

(3.1) E
{

eiu(Nt2−Nt1 )
∣∣Gt2} = exp

{
(eiu − 1)

∫ t2

t1

yudu
}
,

where Gt = σ(yu, u ≤ t), then Nt is called a Cox process with intensity yt.
From this definition, we can consider a Cox process as a two-step randomisation

procedure. Nt is a Poisson process conditional to yt and yt is used to generate Nt by
acting as its intensity. Therefore, a Cox process is also called a doubly stochastic Poisson
process.

In the following we assume that yt is a jump-diffusion CIR model satisfying (1.2) and
y0 = 0. Denote τ = inf{t ≥ 0, Nt = 1

∣∣N0 = 0}, where Nt is a Cox process with intensity
yt defined as (1.2). Then from (3.1), we have

(3.2) P
(
Nt −Ns = k

∣∣Gt) =
1

k!

(∫ t

s

yudu
)k

exp
(
−
∫ t

s

yudu
)
.

Let Ht := σ({τ ≤ s}, s ≤ t), i.e. the σ-algebra generated by τ up to time t and
Ft = Gt ∨ Ht. By the definition of τ and (3.2), the conditional distributions of τ are
given by

(3.3) P
(
τ > t

∣∣Gt) = P
(
Nt −N0 = 0

∣∣Gt) = e−Yt .

Now we present the survival probability of a firm which has a default intensity process
yt.

Theorem 3.1. Let yt be a jump-diffusion CIR model satisfying y0 = 0, and Nt be a
Cox process with intensity yt. Then the survival probability is given by

P
(
τ > t

)
= exp

{(λ2η

θ2
− ρ
)
t− 2λη

θ2
ln
[
C0,1(0, t)

]
+ ρ

∫ t

0

h(B0,1(0, u))du

}
=: exp{Φ(t)}.(3.4)

Proof. By the definition of the default arrival time τ and (2.24), we have

P
(
τ > t

∣∣Gs)
= P

(
Nt −Ns = 0

∣∣Gs) = E
{

e−(Yt−Ys)
∣∣Gs}

= exp
(
−B0,1(s, t)ys

)
exp
(
λ2η(t− s)/θ2

)(
C0,1(s, t)

)− 2λη

θ2 exp
(
−ρ
∫ t−s

0

[
1− h(B0,1(0, u))

]
du
)
.

(3.5)



Note that y0 = 0 and P
(
τ > t

)
= P

(
τ > t

∣∣G0

)
, we can easily get (3.4). The proof is

completed.

Remark 3.1. Taking the derivative in (3.4), we can obtain the default probability
density as

(3.6) P
(
τ ∈ dt

)
= − exp{Φ(t)}∂tΦ(t) dt.

If we assume that F (x) = 1− e−αx (x > 0, α > 0), we can get the following corollary.

Corollary 3.1. Let yt be a jump-diffusion CIR model satisfying y0 = 0, and Nt be a
Cox process with intensity yt. Assume that F (x) = 1 − e−αx (x > 0, α > 0). Then the
survival probability is given by

P
(
τ > t

)
= exp

{
M1(1) t+M2(1) lnD1(0, t)−M3 lnC0,1(0, t)

}
=: exp{Ψ(t)}.(3.7)

By some similar arguments as in the proof of Theorem 3.1, we can prove this corollary.
Here we omit the details.

Next we will derive the pricing of the defaultable zero-coupon bond and the fair
premium of a CDS. In recent years, the rapid expansion of market for credit derivatives
has led to a growing interest in investigation of the pricing of the defaultable zero-coupon
bond and the fair premium of CDS. A CDS is in fact a contract agreement between
protection buyer and seller. Assume that firm A issues a defaultable zero-coupon bond
and investor B holds the bond. Then B faces the credit risk arising from default of firm A.
In order to protect from this credit risk, B buys a CDS contract which requires B to pay
periodic premium to party C (CDS protection seller). In exchange, C will compensate B
for his loss in the event of default of the bond.

The following definition of the price process of CDS can be found in Crépey et al.
(2009).

Definition 3.2. The model price process of a CDS is given by Pt = E
{
pT (t)

}
, where

pT (t) corresponds to the CDS cumulative discounted cash flows on the time interval (t, T ]
and satisfies

(3.8) β(t)pT (t) = (1−R)β(τ)I(t<τ<T ) − κ
∫ τ∧T

t

β(v)dv.

In equation (3.8), τ is the default arrival time of firm A, β(t) = e−
∫ t
0 rudu is the

discount factor. Here we assume that the market interest rate rt is a deterministic
function of the time and that the recovery rate is R. (3.8) describes the change trend
of cash flow for investor B. The first term on the right-hand side of (3.8) corresponds
to the present value of the investor B’s loss (1 − R) resulted by the default of firm A.
The second term on the right-hand side of (3.8) corresponds to the present value of the
premiums which B pays to C.

We first state the pricing of the defaultable zero-coupon bond and the fair premium
of CDS based on the conclusion of Theorem 3.1.

Theorem 3.2. Let B(0, T ) be the present value of the defaultable zero-coupon bond
at time 0 paying 1 at time T and κ be the fair premium of CDS. Then the following
statements hold:
(1) The formula for calculating the value of B(0, T ) is given by

(3.9) B(0, T ) = e−
∫ T
0 rudu exp{Φ(T )} −R

∫ T

0

e−
∫ t
0 rudu exp{Φ(t)} ∂tΦ(t) dt.



(2) The pricing of CDS at time t is given by

(3.10) Pt = I(τ>t)E

{∫ T

t

(
(1−R)yv − κ

)
e−

∫ v
t (ru+yu)dudv

∣∣∣Gt}.
(3) The fair premium of CDS is given by

(3.11) κ =
−(1−R)

∫ T
0

e−
∫ v
0 rudu exp{Φ(v)} ∂tΦ(v) dv∫ T

0
e−

∫ v
0 rudu exp{Φ(v)}dv

.

Proof. (1) By (3.4), (3.6) and the definition of the defaultable zero-coupon bond, we
obtain immediately

B(0, T ) = e−
∫ T
0 ruduP (τ > T ) +R

∫ T

0

e−
∫ t
0 rududP (τ ≤ t)

= e−
∫ T
0 rudu exp{Φ(T )} −R

∫ T

0

e−
∫ t
0 rudu exp{Φ(t)} ∂tΦ(t) dt.

(2) By Definition 3.2, we get

Pt = E
{
pT (t)

∣∣Ft}
= E

{
(1−R)β(τ)β−1(t)I(t<τ<T ) − κ

∫ T

t

β(v)β−1(t)I(τ>v)dv
∣∣∣Ft}

= (1−R)E

{
e−

∫ τ
t ruduI(t<τ<T )

∣∣∣Ft}− κ ∫ T

t

e−
∫ v
t ruduE

{
I(τ>v)

∣∣Ft}dv

=: P
′
t − P

′′
t .(3.12)

By Theorem 9.23 in McNeil et al. (2005), we have

(3.13) P
′
t = I(τ>t)(1−R)E

{∫ T

t

yve−
∫ v
t (ru+yu)dudv

∣∣∣Gt}.
By Lemma 7.4.1.1 in Jeanblanc et al. (2009) (taking X ≡ 1 and T = v) and (3.3), for

v ≥ t, we have

E
{
I(τ>v)

∣∣Ft} = I(τ>t)
E
{
I(τ>v)

∣∣Gt}
E
{
I(τ>t)

∣∣Gt} = I(τ>t)
E
{
I(τ>v)

∣∣Gt}
P
(
τ > t

∣∣Gt)
= I(τ>t)e

∫ t
0 yuduE

{
E
{
I(τ>v)

∣∣Gv}∣∣Gt}
= I(τ>t)e

∫ t
0 yuduE

{
P
(
τ > v

∣∣Gv)∣∣Gt}
= I(τ>t)e

∫ t
0 yuduE

{
e−

∫ v
0 yudu

∣∣Gt}
= I(τ>t)E

{
e−

∫ v
t yudu

∣∣Gt}.(3.14)

Plugging (3.14) into P
′′
t , we get

(3.15) P
′′
t = I(τ>t) κE

{∫ T

t

e−
∫ v
t (ru+yu)dudv

∣∣∣∣Gt}.
Then (3.10) follows by (3.12), (3.13) and (3.15).

(3) Note that

P (τ > v) = P (τ > v|G0) = E

{
e−

∫ v
0 yudu

∣∣∣∣G0

}
and

− ∂

∂v
P (τ > v) = E

{
yve−

∫ v
0 yudu

∣∣∣∣G0

}
.



Then (3.11) follows by setting P0 = 0 in (3.10). The proof is completed.

For the sake of the numerical calculations in next section, we present the following
corollary based on the conclusion of Corollary 3.1.

Corollary 3.2. Let B(0, T ) be the present value of the defaultable zero-coupon bond
at time 0 paying 1 at time T and κ be the fair premium of CDS. Then the following
statements hold:
(1) The formula for calculating the value of B(0, T ) is given by

(3.16) B(0, T ) = e−
∫ T
0 rudu exp{Ψ(T )} −R

∫ T

0

e−
∫ t
0 rudu exp{Ψ(t)} ∂tΨ(t) dt.

(2) The fair premium of CDS is given by

(3.17) κ =
−(1−R)

∫ T
0

e−
∫ v
0 rudu exp{Ψ(v)} ∂tΨ(v) dv∫ T

0
e−

∫ v
0 rudu exp{Ψ(v)}dv

.

4. Numerical results and conclusions
In this section, using the conclusions of Corollary 3.2, let us illustrate the price

calculations of the defaultable zero-coupon bond and the fair premium of CDS. We also
analyse the dynamic relationships between B(0, T ), κ and the maturity date T respec-
tively.

Example 4.1. The parameter values used to calculate the pricing of the defaultable
zero-coupon bond and the fair premium of CDS are

λ = 0.1, η = 0, θ = 0.2, α = 15, ρ = 1, R = 0.4, rt = 0.05.

Note that Corollary 3.2 is based on Corollary 3.1. The expressions of exp{Ψ(T )},
exp{Ψ(t)}, ∂tΨ(t), exp{Ψ(v)} and ∂tΨ(v) in Corollary 3.2 can be obtained from the
conclusion of Corollary 3.1. Therefore, after substituting the above parameter values
into exp{Ψ(T )}, exp{Ψ(t)}, ∂tΨ(t), exp{Ψ(v)} and ∂tΨ(v), one can obtain the numbers
showed in the following Table 4.1 and 4.2 by means of the conclusions of Corollary 3.2
and MATLAB software.

Table 4.1. The dynamic relationship between B(0, T ) and T
T 2 4 6 8 10

B(0, T ) 0.7613 0.5861 0.4733 0.4058 0.3669

Table 4.2. The dynamic relationship between κ and T
T 2 4 6 8 10

κ 0.0950 0.1040 0.1093 0.1123 0.1140

Table 4.1 shows that the dynamic relationship between the pricing of the default-
able zero-coupon bond and the maturity date T . Table 4.2 shows that the dynamic
relationship between the fair premium of CDS and the maturity date T .

We can find from Table 4.1 that the price of the defaultable zero-coupon bond is mono-
tonically decreasing function respect to the maturity date T . However, it is indicated
from Table 4.2 that the price of the fair premium of CDS is monotonically increasing
function respect to the maturity date T . The reason for this monotonically increasing
trend is that the ruin probability of firm A increases with prolonged maturity date T .

In this paper, for the sake of simplifying calculation, we assume that the jump sizes are
exponentially distributed. It is of interest and challenging to employ other heavy-tailed



distributions for the jump sizes, such as Pareto distribution, Gumbel distribution and
Fréchet distribution. However, since it is unlikely for us to obtain explicit expressions for
the joint Laplace transform of the distribution of the vector process (yt, Yt), numerical
methods need to be used to calculate the price of the defaultable zero-coupon and the
fair premium of CDS.
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