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On some variants of compactness
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Abstract
Three weak variants of compactness were introduced and studied by
Kohli and Singh [ Acta Math. Hungar. 106 (2005), 317-329 ]. These
three properties are reconsidered from the change of topology perspec-
tive. In particular, it is shown that each of these properties is equivalent
to compactness with respect to another topology on the underlying set.
Some consequences of this situation are investigated.
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1. Introduction

The notion of compactness is one of the most significant topological properties, and
its importance reaches well beyond topology to several other branches of mathematics.
Weaker variants of compactness have been considered in the topological literature for at
least nine decades. For example, Hausdorff almost compact spaces (now known as H-
closed spaces) were introduced by Alexandroff and Urysohn [1], and have subsequently
been investigated by many researchers. The book [12] is a comprehensive source of refer-
ences. Almost compactness is considered in the book [3]. Frolik [5] introduced quasicom-
pact spaces. One reason for their significance is that functionally Hausdorff quasicompact
spaces are the natural setting for the Stone-Weierstrass theorem, see Stephenson [17].

In 2005 Kohli and Singh [10] introduced three weak variants of compactness which lie
between compactness and quasicompactness. They studied the basic properties of the
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classes of spaces defined by these three weak variants of compactness, which have been
named d-compactness, d∗-compactness and Dδ-compactness.

In this paper, we reconsider these three notions from the perspective of change of
topology. In each case, we observe that there is an appropriate change of topology which
reveals that the new concept is equivalent to the classical notion of compactness. The last
two results of Kohli and Singh [10, Theorems 5.17 and 5.18] make this observation almost
as a post script. They do not use it anywhere in their paper [10]. In our view, this is the
fundamental defining characteristic of these three notions of weak compactness. For us,
it is the starting point of the discussion. Each of these three new notions is compactness
with respect to another topology on the underlying set. This observation provides the
natural setting for the subsequent discussion of each of these three notions.

We are able to exploit this observation to produce more elegant alternative proofs of
some of the results of Kohli and Singh [10], and to suggest other results.

Our notation and terminology are standard, see for example Dugundji [4]. In par-
ticular, we do not assume any separation properties for the spaces we consider, unless
explicitly stated. We denote the interior of a subset B of the topological space (X, τ) by
τintB, or just intB, and the closure of B by τclB or clB.

2. Preliminaries and definitions

In a topological space (X, τ) a set B is defined to be regular open if B = τint(τclB).
Since the intersection of two regular open sets is regular open, the collection of all τ
regular open sets forms the base for a topology τs on X, smaller than τ , called the
semi-regularization of (X, τ). Note that (X, τ) is semi-regular if and only if τ = τs.

In 1968 Veličko [18] made the following definition.

Let (X, τ) be a topological space and let A ⊂ X. A point x ∈ X is called a θ-limit
point of A ⊂ X if every closed neighbourhood of X intersects A. Let θclA denote the
set of all θ-limit points of A. The set A is θ-closed if A = θclA. The complement of
a θ-closed set is called a θ-open set. The collection of all θ-open sets in (X, τ) forms a
topology on X, denoted by τθ.

A subset B of (X, τ) is called a zero-set if there is a continuous real-valued function f
defined on X such that B = {x ∈ X : f(x) = 0}. The complement of a zero-set is called
a co-zero set. The collection of all co-zero sets of (X, τ) is the base for a topology τz on
X, and τz ⊂ τ . Moreover, (X, τ) is completely regular if and only if τz = τ .

2.1. Definition A space (X, τ) is said to be
(1) almost compact [3] if every open cover of X has a finite subcollection the closures

of whose members cover X;
(2) quasicompact [5] if every cover of X by co-zero sets has a finite subcover;
(3) nearly compact [14] if every open cover of X admits a finite subcollection the

interiors of the closures of whose members cover X;
(4) θ-compact [13, Definition 3.19] if every cover of X by θ-open sets has a finite

subcover.

The following result was proved by Carnahan [2, Theorem 4.1].

2.2. Theorem (X, τ) is nearly compact if and only if (X, τs) is compact.



Definition 2.1 (2) immediately implies that

2.3. Theorem
(1) (X, τ) is quasicompact if and only if (X, τz) is compact.
(2) (X, τ) is θ-compact if and only if (X, τθ) is compact [13, Remark 4.27].

Following Heldermann [6] we have two definitions.

2.4. Definition A collection β of subsets of a space (X, τ) is called an open com-
plementary system if β consists of open sets such that for every B ∈ β, there exist
B1, B2, ... ∈ β with B = ∪{X/Bi : i ∈ N}.

2.5. Definition A subset U of a space (X, τ) is called a strongly open Fσ-set if there
exists a countable open complementary system β(U) with U ∈ β(U). The complement
of a strongly open Fσ-set is called a strongly closed Gδ-set.

Mack [11] made the next definition in 1970.

2.6. Definition A subset H of a space (X, τ) is called a regular Gδ-set if H is the

intersection of a sequence of closed sets whose interiors contain H, i.e., if H =
∞⋂
n=1

Fn =

∞⋂
n=1

intFn, where each Fn is a closed subset of X. The complement of a regular Gδ-set is

called a regular Fσ-set.

Kohli and Singh [10] introduced three weak variants of compactness which we now
consider from the perspective of change of topology.

2.7. Definition A space (X, τ) is said to be d-compact (d∗-compact, Dδ-compact)
if every cover of X by open Fσ-sets (strongly open Fσ-sets, regular Fσ-sets) has a finite
subcover.

3. Three topologies

Let (X, τ) be a topological space, and denote by β the collection of all open Fσ-subsets
of (X, τ). Now the intersection of two open Fσ-subsets is an open Fσ-subset. Therefore
the collection β is a base for a topology on X, which we denote by τd. This topology τd
is called the D-regularization of τ by Kohli and Singh [10].

Similarly, if we replace " open Fσ-subsets " in the paragraph immediately above by
" strongly open Fσ-subsets ", we obtain a second topology on X, denoted by τ∗, and
called the D-complete regularization of τ in [10].

Yet again, if we replace " open Fσ-subsets " by " regular Fσ-subsets " we obtain a
third topology on X, denoted by τ#, and called the Dδ-complete regularization of τ by
Kohli and Singh [10].

There is an alternative way of defining these three topologies given by the next defi-
nition.

3.1. Definition A set G in a topological space (X, τ) is said to be τd-open [8]
(τ∗-open, τ#-open) if for each x ∈ G, there exists an open Fσ-set (strongly open Fσ-
set, regular Fσ-set) H such that x ∈ H ⊂ G. The complement of a τd-open (τ∗-open,
τ#-open) set will be referred to as a τd-closed (τ∗-closed, τ#-closed) set.



We note that the members of these topologies are denoted by d-open, d∗-open and
d#-open sets in [8], [15] and [9] respectively.

4. Change of topology

The fundamental defining characteristic of each of the three weak variants of compact-
ness that we are considering is given by the following result, which is proved immediately
from the definitions. Kohli and Singh [10, Theorems 5.17 and 5.18] have made this
observation.

4.1. Theorem Let (X, τ) be a topological space. Then

(1) (X, τ) is d-compact if and only if (X, τd) is compact,

(2) (X, τ) is d∗-compact if and only if (X, τ∗) is compact,

(3) (X, τ) is Dδ-compact if and only if (X, τ#) is compact.

Kohli and Singh [10] have provided an impressive list of Examples (2.8 to 2.13) to show
all the weak variants shown in their diagram of relationships are distinct. We reproduce
their diagram of relationships here as Figure 1.

compact −→ nearly compact −→ almost compact
↓ ↓

d-compact −→ Dδ-compact ←− θ-compact
↓ ↓

d∗-compact −→ quasicompact −→ pseudocompact

Figure 1.

We take this diagram to mean that one can find a topological space (X, τ) having one
of these properties but not one of the stronger properties. For this interpretation of Figure
1 one must regard the topology on X as fixed. Theorems 2.2, 2.3 and 4.1 indicate that
six of the concepts in Figure 1 are each separately equivalent to compactness provided
an appropriate change of the topology on the underlying set X is made in each case. It
seems that the two exceptions are almost compactness and pseudocompactness.

Claims of the kind that "d-compactness is independent of compactness" are confusing.
In fact, d-compactness is a disguised form of compactness. It is compactness with respect
to another topology on the underlying set. So d-compactness is not a new concept. It is
equivalent to the classical notion of compactness, only with respect to a different topology
(than the original topology) on the underlying set. The same comments apply to the
notions of d∗-compactness and Dδ-compactness.

5. Some Basic Properties

The following definition is due to Kohli and Singh [10, Definition 3.2]

5.1. Definition A topological space (X, τ) said to be D-Hausdorff (D∗-Hausdorff,
Dδ-Hausdorff) if each pair of distinct points is contained in disjoint open Fσ-sets (strongly
open Fσ-sets, regular Fσ-sets).

The proof of the next result is immediate from Definitions 5.1 and 3.1.



5.2. Proposition Let (X, τ) be a topological space. Then

(1) (X, τ) is D-Hausdorff if and only if (X, τd) is Hausdorff.

(2) (X, τ) is D∗-Hausdorff if and only if (X, τ∗) is Hausdorff.

(3) (X, τ) is Dδ-Hausdorff if and only if (X, τ#) is Hausdorff.

One of the well-known standard results of a first course in topology, for example see
Dugundji [4, page 224 Theorem 1.4 (2)], is the following proposition.

5.3. Proposition If (X, τ) is a Hausdorff space and A is a compact subset (X, τ),
then A is closed in (X, τ).

Applying Theorem 4.1 and Propositions 5.2 and 5.3 we obtain the next result.

5.4. Proposition If A is a d-compact subset of the D-Hausdorff space (X, τ), then
A is d-closed in X.

Proof. Observe that A is a compact subset of the Hausdorff space (X, τd), so that
Proposition 5.3 implies that A is closed in (X, τd), or that A is d-closed in (X, τ).

Exactly parallel results can be obtained by analogous proofs for a d∗-compact (Dδ-
compact) subset of a D∗-Hausdorff (Dδ-Hausdorff) space. These three results have been
proved from first principles by Kohli and Singh [10, Theorem 3.3].

Another standard result concerning compact spaces is that a closed subset of a com-
pact space is compact, for example see Dugundji [4, page 224 Theorem 1.4 (3)]. From
this result we obtain the following result which generalizes Theorem 3.10 of [10].

5.5. Proposition Let (X, τ) be a d-compact topological space, and A be τd-closed
in X. Then A is d-compact.

Again, we can provide exactly parallel results for the other two variants of compact-
ness.

5.6. Proposition Let (X, τ) be a d∗-compact (Dδ-compact) topological space, and
A be τ∗-closed (τ#-closed) in X. Then A is d∗-compact (Dδ-compact).

It is well-known that compactness can be characterized in terms of the finite intersec-
tion property and adherence properties of filters and filterbases, see Dugundji [4, page
223 Theorem 1.3] for example. Kohli and Singh [10, Theorem 4.4] provide a version
of these characterizations for d-compactness, d∗-compactness and Dδ-compactness. We
note that their definitions of d-adherence and d-convergence of a filterbase T [10, Def-
initions 4.2 and 4.3] are equivalent to adherence and convergence of T with respect to
the topology τd. A change of topology approach to this topic is an alternative to the
discussion presented in Section 4 of [10].

In order to consider mapping properties we must define appropriate classes of functions
between topological spaces.

5.7. Definition A function f : (X, τ) −→ (Y, σ) is defined to be D-continuous
[7] (D∗-continuous [16], Dδ-continuous) if for each point x ∈ X and each open Fσ-set
(strongly open Fσ-set, regular Fσ-set) V containing f(x) there is an open subset U of X
such that x ∈ U and f(U) ⊂ V .



5.8. Definition A function f : (X, τ) −→ (Y, σ) is defined to be D-supercontinuous
[8] (D∗-supercontinuous [15], Dδ-supercontinuous [9]) if for each point x ∈ X and each
open V of X containing f(x) there is an open Fσ-set (strongly open Fσ-set, regular
Fσ-set) U in X such that x ∈ U and f(U) ⊂ V .

5.9. Definition A function f : (X, τ) −→ (Y, σ) is defined to be D-irresolute (D∗-
irresolute, Dδ-irresolute) if for each point x ∈ X and each open Fσ-set (strongly open
Fσ-set, regular Fσ-set) V containing f(x) there is an open Fσ-set (strongly open Fσ-set,
regular Fσ-set) U in X such that x ∈ U and f(U) ⊂ V .

The following results are immediate from the preceding definitions and the discussion
in Section 3.

5.10. Proposition Let f : (X, τ) −→ (Y, σ) be a function between topological spaces.
Then

(1) f : (X, τ) −→ (Y, σ) is D-continuous if and only if f : (X, τ) −→ (Y, σd) is
continuous.

(2) f : (X, τ) −→ (Y, σ) is D∗-continuous if and only if f : (X, τ) −→ (Y, σ∗) is
continuous.

(3) f : (X, τ) −→ (Y, σ) is Dδ-continuous if and only if f : (X, τ) −→ (Y, σ#) is
continuous.

(4) f : (X, τ) −→ (Y, σ) is D-supercontinuous if and only if f : (X, τd) −→ (Y, σ) is
continuous.

(5) f : (X, τ) −→ (Y, σ) is D∗-supercontinuous if and only if f : (X, τ∗) −→ (Y, σ) is
continuous.

(6) f : (X, τ) −→ (Y, σ) is Dδ-supercontinuous if and only if f : (X, τ#) −→ (Y, σ) is
continuous.

(7) f : (X, τ) −→ (Y, σ) is D-irresolute if and only if f : (X, τd) −→ (Y, σd) is
continuous.

(8) f : (X, τ) −→ (Y, σ) is D∗-irresolute if and only if f : (X, τ∗) −→ (Y, σ∗) is
continuous.

(9) f : (X, τ) −→ (Y, σ) is Dδ-irresolute if and only if f : (X, τ#) −→ (Y, σ#) is
continuous.

The standard result that compactness is preserved by continuous functions, Proposi-
tion 5.10 and Theorem 4.1 can be used to prove the next set of results.

5.11. Proposition Let f : (X, τ) −→ (Y, σ) be a surjection.

(A) If f is D-continuous (D∗-continuous, Dδ-continuous) and (X, τ) is compact then
(Y, σ) is d-compact (d∗-compact, Dδ-compact).

(B) If f is D-supercontinuous (D∗-supercontinuous, Dδ-supercontinuous) and (X, τ)
is d-compact (d∗-compact, Dδ-compact) then (Y, σ) is compact.

(C) If f is D-irresolute (D∗-irresolute, Dδ-irresolute) and (X, τ) is d-compact (d∗-
compact, Dδ-compact) then (Y, σ) is d-compact (d∗-compact, Dδ-compact).



Proof. We prove one case of each part only. The other cases have exactly similar
proofs.

(A) For D-continuity: Now f : (X, τ) −→ (Y, σd) is a continuous surjection and (X, τ)
is compact, so that (Y, σd) is compact. Thus (Y, σ) is d-compact.

(B) For D∗-supercontinuity: Now f : (X, τ∗) −→ (Y, σ) is a continuous surjection and
(X, τ∗) is compact. Hence (Y, σ) is compact.

(C) For Dδ-irresoluteness: Now f : (X, τ#) −→ (Y, σ#) is a continuous surjection and
(X, τ#) is compact. Therefore (Y, σ#) is compact, so that (Y, σ) is Dδ-compact.

Note that 5.11(A) is Theorems 5.2 and 5.3 of Kohli and Singh [10], while 5.11(B) is
Theorems 5.5 and 5.6 of [10]. The proofs provided by Kohli and Singh [10] are from first
principles, and quite different in character to the proofs given above.

The change of topology approach can be used to suggest new results. To illustrate,
we provide two such results.

5.12. Proposition Let f, g : (X, τ) −→ (Y, σ) be D-irresolute, and (Y, σ) be D-
Hausdorff. Then E, the equalizer of f and g, given by E = {x ∈ X : f(x) = g(x)} is
d-closed in (X, τ).

Proof. We have that f, g : (X, τd) −→ (Y, σd) are continuous, and that (Y, σd) is
Hausdorff. Thus by a standard result, e.g. Dugundji [4, page 140, 1.5(1)], we have that
E is closed in (X, τd), so that E is d-closed in (X, τ).

5.13. Proposition If f : (X, τ) −→ (Y, σ) isDδ-irresolute and (Y, σ) isDδ-Hausdorff,
then G(f), the graph of f , is closed in (X × Y, τ# × σ#).

Proof. Note that f : (X, τ#) −→ (Y, σ#) is continuous, and that (Y, σ#) is Hausdorff.
Then a standard result for continuous functions, e.g. Dugundji [4, page 140, 1.5(3)],
implies that G(f) is closed in (X × Y, τ# × σ#).
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