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PORTFOLIO SELECTION BASED ON A NONLINEAR NEURAL
NETWORK: AN APPLICATION ON THE ISTANBUL STOCK

EXCHANGE (ISE30)

ILGIM YAMAN AND TÜRKAN ERBAY DALKILIÇ

Abstract. Portfolio optimization is frequently used method for the best port-
folio selection, according to some objective. Heuristic techniques designed for
solving a problem finding an approximate solution when classic methods fail to
find any exact solution, have often used in portfolio selection problem. How-
ever, almost none of these techniques used a neural network to allocate the pro-
portion of stocks. The main goal of portfolio optimization problem is minimiz-
ing the risk of portfolio while maximizing the expected return of the portfolio.
This study tackles a neural network in order to solve the portfolio optimization
problem. The data set is the daily price of Istanbul Stock Exchange-30 (ISE-
30) from May 2015 to May 2017. This study uses Markowitz’s Mean-Variance
model. Indeed, the portfolio optimization model is quadratic programming
(QP) problem. Therefore, many heuristic methods were used to solve port-
folio optimization method such as particle swarm optimization, ant colony
optimization etc. In fact, these methods do not satisfy stock markets demands
in the financial world. This study proposed a nonlinear neural network to
solve the portfolio optimization problem. In the implementation phase, the
proposed method for portfolio optimization problem has more effective results
than present methods.

1. INTRODUCTION

Portfolio optimization problem is a very prominent issue in the financial world.
Up to 1950’s, traditional portfolio approach was dealing with just minimizing risk.
Harry Markowitz had proposed modern portfolio theory [1,2] which is the kernel
of portfolio optimization. In this problem, the main goal is that while maximizing
the expected return, in the meanwhile risk of portfolio is minimizing. Markowitz’s
portfolio optimization problem is denominated mean-variance model. Indeed, the
mean-variance model serves to estimate the proportion of stocks that investors

Received by the editors: July 13, 2018; Accepted: December 24, 2018.
2010 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18.
Key words and phrases. Portfolio optimization, nonlinear neural network, Markowitz mean-

variance model.

c©2019 Ankara University
Communications Facu lty of Sciences University of Ankara-Series A1 Mathematics and Statistics

1709



1710 ILGIM YAMAN AND TÜRKAN ERBAY DALKILIÇ

will buy and hold. However, the optimization method is not suffi cient for today’s
finance world. The main problem is solving a large-scale quadratic programming
problem. Actually, this problem is an NP-hard (non-deterministic polynomial time
hardness) problem which requires long computing time. Konno and Yamazaki [3]
replace risk function in Markowitz mean-variance model with the absolute deviation
of risk function and formulates a mean absolute deviation portfolio optimization
model. Many models are generated based on Markowitz mean-variance model.
Mean-Var model is proposed by Jorion [4]. Simaan [5], compares the mean-variance
model with the mean absolute deviation model. Moreover, Rockafellar and Uryaser
[6], studied mean-cvar model. Yan [7] proposed multi-period semi-variance model.
Junhui et al. [8], presented nonlinear futures hedging model based on skewness risk
and kurtosis risk. These models which owing to probability theory, need the exact
estimation: mean of return, variance, and covariance.
In operational research, Konno and Wijayanayake [9] proposed a branch and

bound algorithm for calculating the optimal solution of a portfolio selection problem
under concave transaction costs and minimal transaction unit constraints. For the
portfolio selection algorithm, Lai et al. [10] used a double-stage genetic. Chen and
Yaotang [11] suggested a partitioned portfolio insurance strategy and a relational
genetic algorithm centered relational encoding to optimize the new partitioned port-
folio insurance strategy. Charpentier and Oulidi [12] proposed a simple method to
estimate the optimal allocation based on a Value-at-Risk minimization constraint,
in addition, it derives empirical-confidence intervals. Juan [13] considered portfo-
lio optimization algorithm for multi-objective planning. Presented method formed
genetic algorithm with multi-objective optimization portfolio planning system. Yu-
tao et al. [14] offered a memetic immune algorithm for multi-objective optimization
by introducing the pareto dominance which is based on descent operator and the
differential evolution operator. Jie et al. [15] presented an optimization model of
microgrid multi-objective economic dispatch that adopted the maximum fuzzy sat-
isfaction degree method in order to alter the multi-objective optimization problem
to a non-linear single-objective optimum problem.
After developing in the fuzzy set theory, the fuzzy theory has been used in the

many portfolio optimization research. Yong et al. [16] represent a bi-objective
mixed project portfolio selection model and a fuzzy mixed projects and securities
portfolio optimization model. Jiuping et al. [17] proposed an integrated fuzzy
random portfolio selection model with a chance constraint. Thus, the developed
model consists of fuzzy random returns and the equivalent partitions of two types
of chance constraints.
In order to solve QP problems, simplex method, interior point method, active set

method and gradient projection method are commonly preferred. These methods
could not meet real-life requirements beside require much computational time and
cost. In 1985, in order to solve linear programming problem, Tank and Hopfield
[18] proposed recurrent neural network based on a gradient method. The major
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advantage of this method is its implementation by using analog electronic circuits.
These circuits operate in parallel, which leads to minimizing computational time.
That study pioneered the neural network models. Kennedy and Chua [19] proposed
a method based on Karush-Kuhn-Tucker conditions which guaranteed convergence.
However, this method merely gives an approximated optimal solution. Maa and
Schanblatt [20] developed a two-phase model that meets the exact solution. Unfor-
tunately, their model which is relatively complex requires a careful system parame-
ter selection. Zhang and Constantinides [21] invented the lagrangian programming
neural network. In this method, dummy variables are presented as new variables
in order to cope with inequality constraints. Resulting variables bring about the
high dimension which have need for more computation. Dissimilarly, Wang [22]
added a time-variant variable to the neural network to solve the linear programs.
Xia [23] overcomes all these obstacles by solving primal and dual problems simulta-
neously. In 2000, Nguyen [24] presented a recurrent neural network model having
Xia’s models advantages. Moreover, it has faster convergence rate and a more in-
tuitive economic interpretation. In 2014, QP problems can solve with the improved
model proposed by Yan [25].
Portfolio optimization model as a backbone of the finance theory whose neural

networks are used to plot effi cient frontier associated with the portfolio selection
problem [26]. Recently, the neural network has been frequently used in financial
expectations. Bohra [26] classified stocks with a membership of expected returns.
In this study, proposed the neural network is adapted to solve portfolio optimiza-

tion problem by solving primal and dual problems simultaneously. In this respect,
we use ISE-30 dataset to solve the nonlinear neural network. This paper is orga-
nized as: In section 2, portfolio selection is given. In section 3, recurrent nonlinear
neural network is described. In section 4, we propose a nonlinear neural network
algorithm for solving portfolio selection problem. In Section 5, we present some
experimental results. In Section 6, we finish with some discussion.

2. PORTFOLIO SELECTION

The trade-off between risk and expected return is a very important issue for the
investors. Standard portfolio optimization is presented in 1959 by Markowitz. The
main purpose of this problem is to minimize risk while ensuring that the portfolio
has an expected return of R∗ and that the proportions sum to one. Standard
portfolio optimization determines stocks proportions (xi : i = 1, 2, ..., N) where N
indicates number of stocks that investors could be selected. The standard portfolio
optimization problem is a nonlinear programming model that is shown by Eq. (1).

min

N∑
i=1

N∑
j=1

xixjσij (1)
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N∑
i=1

xi = 1

N∑
i=1

xiµi = R∗

0 ≤ xi ≤ 1, i = 1, ..., N

Expected return of portfolio, risk of portfolio and Sharpe Ratio denotes with
respectively;

E(Rp) =

N∑
i=1

xiµi σp =

√√√√ N∑
i=1

N∑
j=1

xixjσij Sp =
E(Rp)−Rf

σp
(2)

where N is the number of assets in the portfolio, µi presents expected return of the
ith asset. σij is the correlation between the ith and jth assets and xi; ith assets’
proportion of being in the portfolio. R* is the expected return in the portfolio. Rf
is the risk-free rate of return. The main goal is that getting a proportion of assets’
being in the selected portfolio (xi). One of the methods that solves this nonlinear
programming problem is a nonlinear neural network.

3. NONLINEAR NEURAL NETWORK

Nguyen [24] presented a nonlinear neural network for solving linear programming
models. Nguyen’s network solves the primal problem and dual problem simultane-
ously. Fig. 1 [24] demonstrates the configuration of a primal neuron.

Figure 1. Structure of primal neuron.

The nonlinear neural network consists of two layers. One of that is primal
neuron and the other one is dual neuron. Inputs of primal neurons are outputs
of dual neurons and derivatives. Similarly, inputs of dual neurons are outputs
of primal neuron and their derivatives. In contrast to Tank and Hopfield’s [18]
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proposed algorithm, Nyguyen’s neural networks’neurons is symmetric. Structure
of the nonlinear neural network is shown in Fig.2 [24]. The improvement in this
method is not only dual neurons is taken an input of model but also their derivatives.
This structures ensure nonlinearity into system. The dual neurons have a similar
configuration. Nguyen’s neural network is extended by Yan [25] in order to solve
quadratic programming problems. Background information is given in such articles
[23-30].

Figure 2. Topology of neural network

Consider the QP problem is given by Eq. (3).

Min
1

2
xTQx+ eTx,

Dx = b,

Ax ≥ c, (3)

x ≥ 0
x and e are n-dimensional vectors, Q is an n × n symmetric positive definite
matrix, D ∈ Rp×n, A ∈ Rm×n , b ∈ Rp×1, c ∈ Rm×1 The Lagrangian function of
this minimization problem can be written as

L(x, y, z) = 1

2
xTQx+ eTx− yT (Dx− b)− zT (Ax− c) (4)

where z ∈ Rp+ = {z ∈ Rp|z ≥ 0} y ∈ Rm are Lagrangian multipliers. According
to Karush-Kuhn-Tucker (KKT) conditions, x∗ is a solution of Lagrangian function
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given by Eq. (4) if there exists y∗ ∈ Rm, z∗ ∈ Rp+ so that (x∗, y∗, z∗) satisfies the
conditions which are given by Eq. (5):

Qx∗ + e−DT y∗ −AT z∗ ≥ 0,
x∗T (Qx∗ + e−DT y∗ −AT z∗) = 0, (5)

b−Dx∗ = 0,
c−Ax∗ ≤ 0,
z∗T (c−Ax∗) = 0.

Yan [25] proposed the recurrent neural network for solving quadratic programming
problem given in Eq. (6).

ẋ = −Q(x+ kẋ)− e+DT (y + kẏ) +AT (z + kż), x ≥ 0,
ẏ = b−D(x+ kẋ), (6)

ż = −A(x+ kẋ) + c, z ≥ 0,

4. NONLINEAR NEURAL NETWORK FOR PORTFOLIO
OPTIMIZATION PROBLEM

Standard portfolio optimization problem is a simple nonlinear programming
problem. Indeed, the main goal is minimizing risk while ensuring that R is the
expected return of the portfolio and the total proportion of stocks equals to one.
Nonlinear neural network solves nonlinear programming problems. Primal and dual
problems which are nonlinear programing problems solved simultaneously. Outputs
of dual neurons and their derivatives are the inputs of primal neurons, similarly the
primal neuron’s outputs and derivatives are the inputs of dual neurons and their
derivatives. This paper proposed a neural network in order to solve portfolio op-
timization problem is given in Eq. (7a-c). The topology of this neural network is
given by Fig. 3.

ẋ = −2σ(x+ kẋ) + [1, 1, ...1]T (y + kẏ) + µT (z + kż), x > 0 (a)

ẏ = [1, 1...1]− [1, 1...1](x+ kẋ) (b) (7)

ż = −µ(x+ kẋ) +R, z > 0 (c)

Proposed algorithm:

Step1: Initialize the x = {0}, y = {0, 1, 2, 3}, z = {−1, 0, 1, 2} and dx, dy, and
dz as a zeros vectors.

Step2: Assignee mean and variance of stocks to the corresponding variables µ, σ.

Step3: Calculate first node in order to get (x+ kẋ)
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Figure 3. Topology of neural network for solving portfolio optimization

Step4a: Take first node’s output as an input to calculate ẏ as an output by using
Eq. (7b).

Step4b: Take first node i.e (x + kẋ) in order to calculate output z. by using
Eq. (7c).

Step5a:Take ẏ and y as an input in order to calculate node i.e (y + kẏ).

Step5b:Take ż and z as an input in order to calculate node i.e µT (z + kż).

Step6: Calculate ẋ by using former nodes outputs as an input of the last node
by using Eq. (7a).

Step7: If termination criteria are satisfied, go to Step 8 if not satisfied go to Step 3.

Step8: Calculate expected return, risk and Sharpe ratio of the portfolio with
selected proportions of xi by using Eq. (2).

5. Computational Experiments

In this section, we present the results obtained nonlinear neural network that
solved portfolio optimization problem. The test data which is Istanbul Stock Ex-
change 30 data were obtained from https://tr.investing.com/.com. This data cor-
responds to daily prices between June 2015 and May 2017 which is totally 480 days.
There are 30 different stocks whose abbreviations are given by Table-4 in Appen-
dix. To indicate advantages and effectiveness of proposed algorithm, comparison is
done between heuristic and traditional methods. The traditional method which is
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active set method to solve quadratic optimization problem is an iterative method
that solves a sequence of equality-constrained quadratic problems. This method
consists of two phase. In the first phase, objective is ignored while feasible point
found for the constraints. In the second phase the objective is minimized while
feasibility is maintained. The active set method had frequently used to solve port-
folio optimization problem. In order to solve portfolio optimization problem by the
active set method, ’optimoptions’function is used in MATLAB2014b whereas the
proposed algorithm given in Section-4 be programmed in MATLAB2014b.
The covariance matrix σ30×30 and the mean vector µ30×1 of ISE-30 stocks are

calculated as;

σ =


0.00034056 0.0001635 0.00013038 0.00011224 . . . 0.00028666
0.00016350 0.00032489 0.00098450 0.00010401 . . . 0.00016158
0.00013038 0.00098945 0.00033762 0.00078248 . . . 0.00013672

. . . . . . . . . . . . . . . . . .
0.0002866 0.0001615 0.00013677 0.0001115 . . . 0.00035471



µ =



0.000665
0.001305
0.002515
0.000546
0.000650
0.001745
0.000466

. . .
0.000778
0.000943
0.000366


The portfolio optimization problem fitness function f(x) based on σ and µ given

by Eq. (8).

minf(x) = x210.00034056 + 2x1x20.0001635 + 2x1x30.00013038 + . . .

+x2300.00035471

x1 + x2 + · · ·+ x30 = 1 (8)

x10.0066 + x20.0013 + x30.0025 + x40.0005 + · · ·+ x300.004 ≥ 0.002
0 ≤ xi ≤ 1, i = 1, 2, ..., 30

where; xi : proportion of ith stock.
The expected return of the portfolio calculated by the Eq. (9).

E(Rp) = x10.00065 + x20.001305 + · · ·+ x300.000366 (9)
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The Risk of Portfolio Calculated by the Eq. (10).

σp =
√
x210.00034056 + 2x1x20.0001635 + 2x1x30.00013038 + · · ·+ x2300.00035471

(10)
The Sharpe Ratio of the Portfolio Calculated by the Eq. (11)

Sp =
x10.00065 + x20.001305 + ...+ x30 − 0√

x210.00034056 + 2x1x20.0001635 + 2x1x30.00013038 + ...+ x
2
300.00035471

(11)
According to the principle of superiority, low risky investment will be selected in
which investments have the same variance. Moreover increasing in expected return
leads to increase the risk in the portfolio. Expected return, the risk of the portfolio
and the fitness function (f(x)) is given for the different initial value of y and z are
given in Table 1.
Table 1. Expected return, risk and fitness function value of portfolio for

different initial value of (y, z)
Iteration Expected Sharpe Fitness

Initial Values Number Return Risk Ratio function
y z n µ σ Sp f(x)
0 1 260 0.001945 0.012035 0.16156 0.00014485
1 0 440 0.002033 0.012354 0.16215 0.00015265
1 1 440 0.0020034 0.012355 0.16216 0.00015265
0 0 200 0.0017735 0.011793 0.15039 0.00013908
1 -1 442 0.0019992 0.012306 0.16246 0.00015144
1 2 440 0.0020037 0.012355 0.16218 0.00015265
2 -1 456 0.0020177 0.012946 0.15585 0.00016761
2 1 491 0.0020006 0.012354 0.16238 0.00015262
0 2 170 0.0017300 0.011206 0.15439 0.00012557
3 1 500 0.0020123 0.012652 0.15905 0.00016008
3 -1 500 0.0020123 0.012652 0.15905 0.00016007

As shown in Table 1, for the different initial value of y and z nearly same stocks
are selected. Firstly, selected a portfolio has the minimum fitness function value
f(x) = (0.00012557) which has initial values: y = 0, z = 2. Shape ratio indicates
how much additional return investors earn by taking additional risk. A portfolio
with a higher Sharpe ratio is considered superior to theirs. When the initial values
are y = 1, z = −1, the highest Sharpe ratio is obtained (Sp = 0.16246). Each stock
change in proportion is given in Fig. 4 with different colors. Also, fitness functions
for the two different initial point that form the curves in Fig. 5. As shown in Table
2, the initial points are y = 0, z = 2, Nine stocks are selected for the first portfolio
which are composed of 0.03 % As shown in Table 2, the initial points are y = 0,
z = 2, Nine stocks are selected for the first portfolio which are composed of 0.03
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Figure 4. Allocation of stocks’proportion for different initial val-
ues of y, z

Figure 5. Fitness function graphs for different initial values of y, z

% ARCLK, 0.28 % ASELS, 0.08 % BIMAS, 0.01 % ECICL, 0.07 % ENKAI, 0.13
% OTKAR, 0.24 % PETKM, 0.08 % TEKFN, 0.08 % TUPRS stocks. When the
initial points are y = 1, z = −1, seven stocks are selected 0.35 % ASELS, 0.07 %
BIMAS, 0.02 % ECICL, 0.01 % ENKAI, 0.08 % OTKAR, 0.34 % PETKM, 0.13 %
TEKFN.
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Table 2. Proportions of selected stocks
Proportion Proportion

Name of Stocks for y = 0, z = 2 for y = 1, z = −1
ARCLK 0.03 0
ASELS 0.28 0.35
BIMAS 0.08 0.07
ECILC 0.01 0.02
ENKAI 0.07 0.01
OTKAR 0.13 0.08
PETKM 0.24 0.34
TEKFN 0.08 0.13
TUPRS 0.08 0

Table 3. Proportions of selected stocks by nonlinear
neural network and active set method

Non-Linear
Name of Active Neural Network
Stocks Set Method (for y = 1, z = −1)
ARCLK 0.0135 0
ASELS 0.0600 0.35
BIMAS 0.1869 0.07
DOHOL 0.0368 0
ECILC 0 0.02
ENKAI 0.1514 0.01
OTKAR 0.1065 0.08
PETKM 0.1267 0.34
TKFEN 0.0210 0.13
TUPRS 0.1019 0
TTKOM 0.0780 0
TCELL 0.1173 0
Expected
Return 0.00094 0.00200
Risk 0.01000 0.01231
Sharpe
Ratio 0.09400 0.16246
f(x) 0.00005 0.00015

As shown in Table 3, the results of active set method and proposed method (for
y = 1, z = −1) which has a highest Sharpe Ratio are compared. While active set
method selects eleven stocks in order to invest money, the nonlinear neural network
selects seven stocks. The selected stocks by active set method are 0.01 % ARCLK,
0.06 % ASELS, 0.19 % BIMAS, 0.04 % DOHOL, 0.15 % ENKAI, 0.10 % OTKAR,
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0.12 % PETKM, 0.02 % TKFEN, 0.11 % TUPRS, 0.08 % TTKOM, 0.12 % TCELL.
The expected return of portfolio which is selected by active set method 0.00094,
risk of the portfolio 0.01 and Sharpe Ratio is 0.094. Although the variances (risk) of
the selected portfolios are quite similar, the proposed method, for y = 1, z = 1, gets
high expected return (0.002), then active set method (0.00094). Based on Sharpe
Ratio criteria, selected portfolio with neural network is superior to other portfolios.

6. Discussion

In this paper, we proposed a nonlinear neural network to solve portfolio selection
problem. Proposed algorithm has been run for different initial value of y and z.
It is seen that the number of selected stocks differ when using different starting
values. The initial points (y = 1, z = −1) gives best Sharpe Ratio and it is se-
lected seven stocks. Then the proposed method is compared with the traditional
method, active set method. The ISE-30 data is used for the comparison of nonlinear
neural network and active set method that is frequently used for solving quadratic
optimization problems such as portfolio optimization problem. The remarkable
distinction is that the nonlinear neural network has greater expected return than
active set method while having the relatively same risk. The Sharpe Ratio shows
that selected portfolios have relatively same risk, but proposed algorithm for port-
folio selection problem has higher expected return than the active set method. As a
result of these experiments nonlinear neural network to solve portfolio optimization
model can be assumed as a powerful model.
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7. Appendix

Table 4. Abbreviation of BIST30 Stocks
AKBNK Akbank TAŞ
ARCLK Arçelik AŞ
ASELS Aselsan Elektronik Sanayi ve Ticaret AŞ
BIMAS BIM Birleşik Magazalar AŞ
DOHOL Doğan Şirketler Grubu Holding AŞ
ECILC Eczacıbaşıİlaç Sanayi ve Finansal Yatırımlar Sanayi ve Ticaret AŞ
EKGYO Emlak Konut Gayrimenkul Yatırım Ortakları
ENKAI ENKA İnşaat ve Sanayi AŞ
EREGL Ereğli Demir ve Çelik FabrikalarıTAŞ
GARAN Türkiye Garanti Bankası
SAHOL HacıÖmer SabancıHolding AŞ
KRDMD Kardemir Karabuk Çelik Sanayi ve Ticaret AŞ
KCHOL Koc Holding AŞ
KOZAL Koza Altın İşletmeleri AŞ
KOZAA Koza Anadolu Metal Madencilik İşletmeleri AŞ
OTKAR Otokar Otomotiv ve Savunma Sanayi AŞ
PGSUS Pegasus Hava Taşımacılı̆gıAŞ
PETKM Petkim Petrokimya Holding AŞ
SISE Türkiye Şi̧se ve Cam FabrikalarıAŞ
TAVHL TAV HavalimanlarıHolding
TKFEN Tekfen Holding AŞ
THYAO Türk Hava YollarıAO
TOASO Tofas Turk Otomobil FabrikasıAŞ
TUPRS Türkiye Petrol Rafinerileri AŞ
TTKOM Turk Telekominikasyon AŞ
TCELL Turkcell İleti̧sim Hizmetleri AŞ ORD
HALKB Türkiye Halk Bankası
ISCTR Türkiye Is BankasıAS Class C
VAKBN Türkiye Vakıflar BankasıTAO
YKBNK Yapıve Kredi BankasıAŞ
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