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Abstract
In this paper, we consider the following boundary value problem

y(4) + q (x) y = λy, 0 < x < 1,
y′′′ (1) − (−1)σ y′′′ (0) + αy (0) = 0,

y(s) (1) − (−1)σ y(s) (0) = 0, s = 0, 2,

where λ is a spectral parameter, q (x) ∈ L1 (0, 1) is complex-valued function and σ = 0, 1.
The boundary conditions of this problem are regular but not strongly regular. Asymptotic
formulae for eigenvalues and eigenfunctions of the considered boundary value problem are
established. When α ̸= 0, we proved that all the eigenvalues, except for finite number, are
simple and the system of root functions of this spectral problem forms a Riesz basis in the
space L2 (0, 1). Furthermore, we show that the system of root functions forms a basis in
the space Lp (0, 1), 1 < p < ∞ (p ̸= 2), under the conditions α ̸= 0 and q (x) ∈ W 1

1 (0, 1).
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1. Introduction
Henceforth, L denotes the differential operator generated by the differential expression

l (y) = y(4) + q (x) y, x ∈ (0, 1) , (1.1)

and boundary conditions

U3 (y) ≡ y′′′ (1) − (−1)σ y′′′ (0) + αy (0) = 0,

Us (y) ≡ y(s) (1) − (−1)σ y(s) (0) = 0,
(1.2)

where q (x) ∈ L1 (0, 1) is complex-valued function, s = 0, 2 and σ = 0, 1. It is easy to
verify that boundary conditions (1.2) are regular, but not strongly regular.
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In [11,14–16], Kerimov, Kaya and Gunes investigated the following problem

y(4) + p2 (x) y′′ + p1 (x) y′ + p0 (x) y = λy, 0 < x < 1,
y′′′ (1) − (−1)σ y′′′ (0) + α3,2y′′ (0) + α3,1y′ (0) + α3,0y (0) = 0,
y′′ (1) − (−1)σ y′′ (0) + α2,1y′ (0) + α2,0y (0) = 0,
y′ (1) − (−1)σ y′ (0) + α1,0y (0) = 0,
y (1) − (−1)σ y (0) = 0

in various cases. However, the problems in [11, 14–16] cannot be reduced to eigenvalue
problem for the operator (1.1)-(1.2).

In [8, 19, 27], it was proven that the system of root functions of a differential operator
with strongly regular boundary conditions forms a basis. Besides, the basicity of root
functions of a differential operator with non-strongly regular boundary conditions was
investigated in [3–7, 9, 12, 17, 20–26,29–33]. For more information about these papers, see
[11,14–16].

We define c0 and εn as follows:

c0 =
1∫
0

q (ξ) dξ, (1.3)

εn =

∣∣∣∣∣∣
1∫
0

q (ξ) .e2(2n−σ)πiξdξ

∣∣∣∣∣∣+
∣∣∣∣∣∣

1∫
0

q (ξ) .e−2(2n−σ)πiξdξ

∣∣∣∣∣∣+ n−1. (1.4)

Now, we give two theorems and their corollary and we will prove them.

Theorem 1.1. If q (x) ∈ L1 (0, 1) is a complex-valued function and α ̸= 0, all eigenvalues
of differential operator (1.1)–(1.2), excluding a finite number, are simple and form two
sequences {λn,1} and {λn,2} and these eigenvalues have the following asymptotic formulae
for sufficiently large numbers n:

λn+n1,1 = ((2n − σ) π)4 .

{
1 + c0

((2n − σ) π)4 + O
(
n−4εn

)}
,

λn+n2,2 = ((2n − σ) π)4 .

{
1 + c0 − 2 (−1)σ α

((2n − σ) π)4 + O
(
n−4εn

)}
,

(1.5)

where n1, n2 are certain integers. Moreover, for sufficiently large numbers n, the corre-
sponding eigenfunctions un,1 (x) and un,2 (x) have the asymptotic formulae:

un+n1,1 (x) =
√

2 sin (2n − σ) πx + O (εn) ,

un+n2,2 (x) =
√

2 cos (2n − σ) πx + O (εn) .
(1.6)

Theorem 1.2. If q (x) ∈ L1 (0, 1) is a complex-valued function and α ̸= 0, the root
functions of differential operator (1.1)-(1.2) form a Riesz basis in the space L2 (0, 1). In
addition, if q (x) ∈ W 1

1 (0, 1), then the root functions form a basis in Lp (0, 1), 1 < p < ∞,
where

Lp (0, 1) =

f |f : (0, 1) → C,

1∫
0

|f (ξ)|p dξ < +∞

 ,

W n
p (0, 1) =

{
f |f : (0, 1) → C, f (n) ∈ Lp (0, 1)

}
.

Corollary 1.3. If q (x) ∈ L2 (0, 1) is a complex-valued function and α ̸= 0, then n1 +n2 =
1 − σ. Hence, we can choose n1 = 0, n2 = 1 − σ.
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2. Some auxiliary formulae
We denote the set {

ρ ∈ C : 0 ≤ arg ρ ≤ π

4

}
(2.1)

by S0 and the different four roots of the algebraic equation ω4 + 1 = 0 by ωk, k = 1, 4.
The numbers ωk, k = 1, 4, can be ordered so that the inequalities

ℜ (ρω1) ≤ ℜ (ρω2) ≤ ℜ (ρω3) ≤ ℜ (ρω4) (2.2)
hold for all ρ ∈ S0, where ℜ (z) denotes the real parts of a complex number z (see [28,
Chapter II, §4.2]). From now on, the numbers ωk, k = 1, 4, will be chosen by satisfying the
inequalities (2.2) for all ρ ∈ S0. Then, we get by [28, Chapter II, §4.8] that the numbers
ω1, ω2, ω3, ω4 are determined as

ω1 = e
3πi

4 , ω2 = e− 3πi
4 , ω3 = e

πi
4 , ω4 = e− πi

4 . (2.3)
One can easily see that

ω1 = −ω4, ω2 = −ω3. (2.4)

Lemma 2.1 ([16]). For all ρ ∈ S0, the inequalities

ℜ (ρω1) ≤ −
√

2
2

|ρ| , ℜ (ρω4) ≥
√

2
2

|ρ| . (2.5)

are valid.

Let
T0 = {ρ − c : ρ ∈ S0} ,

where c is a complex number. The inequalities (2.2) and (2.5) will be rewritten in the
forms

ℜ ((ρ + c) ω1) ≤ ℜ ((ρ + c) ω2) ≤ ℜ ((ρ + c) ω3) ≤ ℜ ((ρ + c) ω4) , (2.6)

ℜ ((ρ + c) ω1) ≤ −
√

2
2

|ρ + c| , ℜ ((ρ + c) ω4) ≥
√

2
2

|ρ + c| (2.7)

for all ρ ∈ T0.
For each ρ ∈ T0, the equation

l (y) + ρ4y = 0 (2.8)
has four solutions y1 (x, ρ), y2 (x, ρ), y3 (x, ρ), y4 (x, ρ). These solutions are linearly inde-
pendent and analytic when |ρ| ≥ M0, where M0 is a positive constant [28, Chapter II, §4.5-
4.6]. Besides, the derivatives of these functions satisfy the following integro-differential
equations

dsyk (x, ρ)
dxs

= ρsωs
keρωkx + 1

4ρ3

x∫
0

∂sK1 (x, ξ, ρ)
∂xs

q (ξ) yk (ξ, ρ) dξ−

− 1
4ρ3

1∫
x

∂sK2 (x, ξ, ρ)
∂xs

q (ξ) yk (ξ, ρ) dξ, s = 0, 3,

(2.9)

where

K1 (x, ξ, ρ) =
k∑

α=1
ωαeρωα(x−ξ), K2 (x, ξ, ρ) =

4∑
α=k+1

ωαeρωα(x−ξ). (2.10)

Let zk,s (x, ρ) , k = 1, 4, s = 0, 3, be functions that satisfy the equations
dsyk (x, ρ)

dxs
= ρseρωkxzk,s (x, ρ) . (2.11)
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By [28, Chapter II, §4.5], the functions zk,s (x, ρ) are analytic with respect to ρ and satisfy

zk,s (x, ρ) = ωs
k + O

(
ρ−1

)
, s = 0, 3, k = 1, 4. (2.12)

By (2.9)-(2.11), we have

zk,s (x, ρ) = ωs
k +

ωs+1
k

4ρ3

x∫
0

q (ξ) zk,0 (ξ, ρ) dξ+

+ 1
4ρ3

k−1∑
α=1

ωs+1
α

x∫
0

eρ(ωα−ωk)(x−ξ)q (ξ) zk,0 (ξ, ρ) dξ−

− 1
4ρ3

4∑
α=k+1

ωs+1
α

1∫
x

eρ(ωα−ωk)(x−ξ)q (ξ) zk,0 (ξ, ρ) dξ.

(2.13)

Note that, by (2.6), we get

ℜ (ρ (ωα − ωβ)) = ℜ ((ρ + c) (ωα − ωβ)) − ℜ (c (ωα − ωβ)) ≤ 2 |c| ,

where 1 ≤ α ≤ β ≤ 4. By using the above inequality and (2.12), we obtain for k = 1, 4

x∫
0

q (ξ) zk,0 (ξ, ρ) eρ(ωα−ωk)(x−ξ)dξ = O (1) , α ≤ k,

1∫
x

q (ξ) zk,0 (ξ, ρ) eρ(ωα−ωk)(x−ξ)dξ = O (1) , α > k.

By using the last relations and the formulae (2.12)-(2.13), we get

zk,s (x, ρ) = ωs
k + O

(
ρ−3

)
, s = 0, 3, k = 1, 4. (2.14)

If we now put (2.14) in (2.13), then (2.13) takes the form

zk,s (x, ρ) = ωs
k +

ωs+1
k

4ρ3

x∫
0

q (ξ) dξ + 1
4ρ3

k−1∑
α=1

ωs+1
α

x∫
0

q (ξ) eρ(ωα−ωk)(x−ξ)dξ−

− 1
4ρ3

4∑
α=k+1

ωs+1
α

1∫
x

q (ξ) eρ(ωα−ωk)(x−ξ)dξ + O
(
ρ−6

)
.
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By the last relation, we have

z2,s (0, ρ) = ωs
2 − ωs+1

3
4ρ3

1∫
0

q (ξ) e2ρω2ξdξ

−ωs+1
4

4ρ3

1∫
0

q (ξ) eρ(ω2−ω4)ξdξ + O
(
ρ−6

)
,

z3,s (0, ρ) = ωs
3 − ωs+1

4
4ρ3

1∫
0

q (ξ) eρ(ω3−ω4)ξdξ + O
(
ρ−6

)
,

z2,s (1, ρ) = ωs
2 + ωs+1

1
4ρ3

1∫
0

q (ξ) eρ(ω1−ω2)(1−ξ)dξ + O
(
ρ−6

)
,

z3,s (1, ρ) = ωs
3 + ωs+1

1
4ρ3

1∫
0

q (ξ) eρ(ω1−ω3)(1−ξ)dξ+

+ωs+1
2

4ρ3

1∫
0

q (ξ) e2ρω2(1−ξ)dξ + O
(
ρ−6

)
,

(2.15)

where we assume that c0 = 0. The case c0 ̸= 0 will be investigated later.

3. Proof of Theorem 1.1
Let

∆ (ρ) =

∣∣∣∣∣∣∣∣
U3 (y1) U3 (y2) U3 (y3) U3 (y4)
U2 (y1) U2 (y2) U2 (y3) U2 (y4)
U1 (y1) U1 (y2) U1 (y3) U1 (y4)
U0 (y1) U0 (y2) U0 (y3) U0 (y4)

∣∣∣∣∣∣∣∣ . (3.1)

If the vertex −c in the domain T0 is properly chosen, then eigenvalues λ of the operator
(1.1)-(1.2) whose absolute values are sufficiently large have the form λ = −ρ4, where the
numbers ρ are the zeros of the following equation

∆ (ρ) = 0 (3.2)

and in T0. Conversely, the set of such numbers ρ contains all the zeros of (3.2) in T0
excluding a finite number [28, Chapter II. § 4.9]. By (2.11), we have

Us (yk) = ρs {eρωkzk,s (1, ρ) − (−1)σ zk,s (0, ρ)} ,
U3 (yk) = ρ3 {eρωkzk,3 (1, ρ) − (−1)σ zk,3 (0, ρ)} + αzk,0 (0, ρ) (3.3)

for s = 0, 2 and k = 1, 4. By (2.7), eρω1 exponentially tends to zero and eρω4 exponentially
tends to infinity. So, the relations

Us (y1) = − (−1)σ ρs
{
z1,s (0, ρ) + O

(
ρ−7)} , s = 0, 2,

U3 (y1) = − (−1)σ ρ3
{

z1,3 (0, ρ) − (−1)σ α

ρ3 z1,0 (0, ρ) + O
(
ρ−7

)}
,

Us (y4) = ρseρω4
{
z4,s (1, ρ) + O

(
ρ−7)} , s = 0, 3

(3.4)

are valid by (2.14) and (3.3).
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Let

As,k (ρ) =


z1,s (0, ρ) , if k = 1,
eρωkzk,s (1, ρ) − (−1)σ zk,s (0, ρ) , if k = 2, 3,
z4,s (1, ρ) , if k = 4,

A3,k (ρ) =


z1,3 (0, ρ) − (−1)σ α

ρ3 z1,0 (0, ρ), if k = 1,

eρωkzk,3 (1, ρ) − (−1)σ zk,3 (0, ρ) + α

ρ3 zk,0 (0, ρ) , if k = 2, 3,

z4,3 (1, ρ) , if k = 4,

(3.5)

where s = 0, 2. By the formulae (3.3)-(3.5), it is obvious that

Us (y1) = − (−1)σ ρs
{
As,1 (ρ) + O

(
ρ−7)} ,

Us (yk) = ρsAs,k (ρ) ,
Us (y4) = ρseρω4

{
As,4 (ρ) + O

(
ρ−7)} ,

(3.6)

where k = 2, 3 and s = 0, 3. We put these formulae of boundary conditions in the equation
(3.2). If we divide out the common multipliers ρ3, ρ2, ρ of the rows and also divide out
the common multipliers − (−1)σ and eρω4 of the columns of the determinant ∆ (ρ), then
we get that the equation (3.2) is equivalent to

∆1 (ρ) + O
(
ρ−7

)
= 0, (3.7)

where

∆1 (ρ) =

∣∣∣∣∣∣∣∣
A3,1 (ρ) A3,2 (ρ) A3,3 (ρ) A3,4 (ρ)
A2,1 (ρ) A2,2 (ρ) A2,3 (ρ) A2,4 (ρ)
A1,1 (ρ) A1,2 (ρ) A1,3 (ρ) A1,4 (ρ)
A0,1 (ρ) A0,2 (ρ) A0,3 (ρ) A0,4 (ρ)

∣∣∣∣∣∣∣∣ . (3.8)

We now rewrite the formulae (35)-(36) in [14]. If ρ is a root of equation (3.7), we get
that the equalities

eρω2 − (−1)σ = O
(
ρ−3

)
, eρω3 − (−1)σ = O

(
ρ−3

)
(3.9)

are valid.
By using the relations (2.14), (2.15) and (3.9) for s = 0, 3, we have

As,k (ρ) = A
(k)
s,k (ρ) + B

(k)
s,k (ρ) + O

(
ρ−6) , k = 2, 3,

As,k (ρ) = ωs
k + O

(
ρ−3) , k = 1, 4,

(3.10)

where

A
(2)
s,2 (ρ) = ωs

2 (eρω2 − (−1)σ) + (−1)σ ωs+1
3

4ρ3

1∫
0

q (ξ) e2ρω2ξdξ, s = 0, 2,

A
(3)
s,3 (ρ) = ωs

3 (eρω3 − (−1)σ) + (−1)σ ωs+1
2

4ρ3

1∫
0

q (ξ) e2ρω2(1−ξ)dξ, s = 0, 2,

A
(2)
3,2 (ρ) = ω3

2 (eρω2 − (−1)σ) + (−1)σ ω4
3

4ρ3

1∫
0

q (ξ) e2ρω2ξdξ + α

ρ3 ,

A
(3)
3,3 (ρ) = ω3

3 (eρω3 − (−1)σ) + (−1)σ ω4
2

4ρ3

1∫
0

q (ξ) e2ρω2(1−ξ)dξ + α

ρ3 ,

(3.11)
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and

B
(k)
s,k (ρ) = (−1)σ ωs+1

1
4ρ3

1∫
0

q (ξ) eρ(ω1−ωk)(1−ξ)dξ

+(−1)σ ωs+1
4

4ρ3

1∫
0

q (ξ) eρ(ωk−ω4)ξdξ, s = 0, 3, k = 2, 3.

(3.12)

By the relations (3.9), (3.11) and (3.12), we have

As,k (ρ) = O
(
ρ−3

)
, k = 2, 3, s = 0, 3. (3.13)

If we put the equalities (3.10) in the determinant (3.8), then, by using (3.13), we get
that the equation (3.7) is equivalent to

∆2 (ρ) + O
(
ρ−7

)
= 0, (3.14)

where

∆2 (ρ) =

∣∣∣∣∣∣∣∣∣∣∣

ω3
1 A

(2)
3,2 (ρ) + B

(2)
3,2 (ρ) A

(3)
3,3 (ρ) + B

(3)
3,3 (ρ) ω3

4
ω2

1 A
(2)
2,2 (ρ) + B

(2)
2,2 (ρ) A

(3)
2,3 (ρ) + B

(3)
2,3 (ρ) ω2

4
ω1 A

(2)
1,2 (ρ) + B

(2)
1,2 (ρ) A

(3)
1,3 (ρ) + B

(3)
1,3 (ρ) ω4

1 A
(2)
0,2 (ρ) + B

(2)
0,2 (ρ) A

(3)
0,3 (ρ) + B

(3)
0,3 (ρ) 1

∣∣∣∣∣∣∣∣∣∣∣
.

By the definition of B
(k)
s,k (ρ) (see: (3.12)), it can be easily proven that the columns(

B
(2)
3,2 (ρ) , B

(2)
2,2 (ρ) , B

(2)
1,2 (ρ) , B

(2)
0,2 (ρ)

)T

and (
B

(3)
3,3 (ρ) , B

(3)
2,3 (ρ) , B

(3)
1,3 (ρ) , B

(3)
0,3 (ρ)

)T

are two linear combinations of the first and fourth columns of the determinant ∆2 (ρ).
Consequently, the determinant ∆2 (ρ) can be rewritten as follows:

∆2 (ρ) =

∣∣∣∣∣∣∣∣∣∣∣

ω3
1 A

(2)
3,2 (ρ) A

(3)
3,3 (ρ) ω3

4
ω2

1 A
(2)
2,2 (ρ) A

(3)
2,3 (ρ) ω2

4
ω1 A

(2)
1,2 (ρ) A

(3)
1,3 (ρ) ω4

1 A
(2)
0,2 (ρ) A

(3)
0,3 (ρ) 1

∣∣∣∣∣∣∣∣∣∣∣
. (3.15)

If we put (3.11) in the determinant (3.15) and calculate it, then we get that the equation
(3.14) is reduced to

−16 (eρω2 − (−1)σ) (eρω3 − (−1)σ)

−4ω2α (eρω2 − (−1)σ)
ρ3 + 4ω2α (eρω3 − (−1)σ)

ρ3 + O
(
ρ−6ε (ρ)

)
= 0,

(3.16)

where

ε (ρ) =

∣∣∣∣∣∣
1∫
0

q (ξ) e2ρω2ξdξ

∣∣∣∣∣∣+
∣∣∣∣∣∣

1∫
0

q (ξ) e2ρω2(1−ξ)dξ

∣∣∣∣∣∣+
∣∣∣ρ−1

∣∣∣ . (3.17)

Note that the formula
ε (ρ) = o (1)

can be easily proved by using the proof of Riemann-Lebesque Lemma.
After some calculations, the equation (3.16) splits into the following two equations:

eρω2 = (−1)σ + O
(
ρ−3ε (ρ)

)
, (3.18)
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eρω2 = (−1)σ + ω2α

2ρ3 + O
(
ρ−3ε (ρ)

)
. (3.19)

Consider the equation (3.18). By Rouche’s theorem, we can get that the roots of the
equation (3.18) in T0 with sufficiently large absolute values lie in the sets Gn ⊂ T0, where
Gn is O

(
n−1)-neighborhood of − (2n − σ) πi/ω2, n = n0, n0 + 1, . . . and n0 is sufficiently

large positive integer [28, Chapter II, § 4.9]. Besides, the equation (3.18) has a unique
root in Gn. Assume that ρ̃ is the unique root of (3.18) in Gn. By the equalities (40) and
(41) in [14], we obtain

ρ̃ = −(2n − σ) πi

ω2
+ r, r = O

(
n−3

)
. (3.20)

If we use the formulae (3.20) in (3.17), we obtain

ε (ρ) = O (εn) , (3.21)

where εn is the sequence defined in (1.4).
Now, we find more accurate formula for the number r. The following formulae

1
ρ̃3 = ω2

(2n − σ)3 π3
+ O

(
n−7

)
, (3.22)

eρ̃ω2 = (−1)σ
{

1 + rω2 + O
(
n−6

)}
(3.23)

can be easily obtained by using (3.20). By putting ρ = ρ̃ in (3.18) and using the relations
(3.21) and (3.23), we have

r = O
(
n−3εn

)
. (3.24)

Thus, the equation (3.18) has the unique root

ρ̃n,1 = −(2n − σ) πi

ω2
+ O

(
n−3εn

)
(3.25)

in O
(
n−1)-neigbourhood Gn of zn = − (2n − σ) πi/ω2, n = n0, n0 + 1, . . . by (3.20) and

(3.24).
Similarly, we conclude that the equation (3.19) has the unique root

ρ̃n,2 = − 1
ω2

{
(2n − σ) πi − (−1)σ iα

2 (2n − σ)3 π3

}
+ O

(
n−3εn

)
(3.26)

in O
(
n−1)-neigbourhood Gn of the point zn, n = n0, n0 + 1, . . . by the formulae (3.20)-

(3.23).
Now, we investigate the eigenfunction ũn,1 (x) corresponding to the eigenvalue λ =

− (ρ̃n,1)4. We use the following determinant for this eigenfunction

ũn,1 (x) = (−1)σ e−ρω4
√

2
4ω2iαρ3

∣∣∣∣∣∣∣∣
y1 (x, ρ) y2 (x, ρ) y3 (x, ρ) y4 (x, ρ)
U3 (y1) U3 (y2) U3 (y3) U3 (y4)
U2 (y1) U2 (y2) U2 (y3) U2 (y4)
U1 (y1) U1 (y2) U1 (y3) U1 (y4)

∣∣∣∣∣∣∣∣ ,
where ρ = ρ̃n,1 and n is sufficiently large positive integer. Easily, we can rewrite

ũn,1 (x) = − ρ3√
2

4ω2iα

×

∣∣∣∣∣∣∣∣
− (−1)σ y1 (x, ρ) y2 (x, ρ) y3 (x, ρ) e−ρω4y4 (x, ρ)

− (−1)σ ρ−3U3 (y1) ρ−3U3 (y2) ρ−3U3 (y3) ρ−3e−ρω4U3 (y4)
− (−1)σ ρ−2U2 (y1) ρ−2U2 (y2) ρ−2U2 (y3) ρ−2e−ρω4U2 (y4)
− (−1)σ ρ−1U1 (y1) ρ−1U1 (y2) ρ−1U1 (y3) ρ−1e−ρω4U1 (y4)

∣∣∣∣∣∣∣∣ ,
(3.27)
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By (2.11)-(2.12), we can obtain

yk (x, ρ) = O (1) , k = 1, 2, 3, e−ρω4y4 (x, ρ) = O (1) , (3.28)

where ρ = ρ̃n,1. Putting the formulae (3.6) in (3.27) and using (3.28), we get that the
formulae (3.27) has the form

ũn,1 (x) = − ρ3√
2

4ω2iα

∣∣∣∣∣∣∣∣
− (−1)σ y1 (x, ρ) y2 (x, ρ) y3 (x, ρ) e−ρω4y4 (x, ρ)

A3,1 (ρ) A3,2 (ρ) A3,3 (ρ) A3,4 (ρ)
A2,1 (ρ) A2,2 (ρ) A2,3 (ρ) A2,4 (ρ)
A1,1 (ρ) A1,2 (ρ) A1,3 (ρ) A1,4 (ρ)

∣∣∣∣∣∣∣∣ , (3.29)

where ρ = ρ̃n,1. If we calculate the determinant in (3.29) by using (3.10), (3.13) and
(3.28), then we have

ũn,1 (x) = − ρ3√
2

4ω2iα
{y3 (x, ρ) E2 (ρ) − y2 (x, ρ) E3 (ρ)} + O

(
ρ−3

)
, (3.30)

where ρ = ρ̃n,1 and

Ek (ρ) =

∣∣∣∣∣∣
ω3

1 A3,k (ρ) ω3
4

ω2
1 A2,k (ρ) ω2

4
ω1 A1,k (ρ) ω4

∣∣∣∣∣∣ , k = 2, 3.

By the last formula and (3.10), we get that the determinant Ek (ρ) can be rewritten as
follows

Ek (ρ) =

∣∣∣∣∣∣∣∣
ω3

1 A
(k)
3,k (ρ) ω3

4

ω2
1 A

(k)
2,k (ρ) ω2

4

ω1 A
(k)
1,k (ρ) ω4

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

ω3
1 B

(k)
3,k (ρ) ω3

4

ω2
1 B

(k)
2,k (ρ) ω2

4

ω1 B
(k)
1,k (ρ) ω4

∣∣∣∣∣∣∣∣+ O
(
ρ−6

)
, k = 2, 3,

where ρ = ρ̃n,1. By (3.12), the second determinant above is zero, i.e.,

Ek (ρ) =

∣∣∣∣∣∣∣∣
ω3

1 A
(k)
3,k (ρ) ω3

4

ω2
1 A

(k)
2,k (ρ) ω2

4

ω1 A
(k)
1,k (ρ) ω4

∣∣∣∣∣∣∣∣+ O
(
ρ−6

)
, k = 2, 3, (3.31)

where ρ = ρ̃n,1. The following formulae

A
(k)
1,k (ρ) = A

(k)
2,k (ρ) = O

(
ρ−3ε

)
, A

(k)
3,k (ρ) = α

ρ3 + O
(
ρ−3ε

)
are directly obtained by using (3.11) and (3.18), where k = 2, 3, ρ = ρ̃n,1 and ε = εn. If
we calculate the determinant in (3.31) by using the last relations, we get

Ek (ρ) = −2ω2α

ρ3 + O
(
ρ−3ε

)
,

where k = 2, 3 and ρ = ρ̃n,1 and ε = εn. Consequently, we have

ũn,1 (x) =
√

2
2i

(y3 (x, ρ̃n,1) − y2 (x, ρ̃n,1)) + O (εn)

by (3.30). On the other hand, we can write

y2 (x, ρ̃n,1) = e−(2n−σ)πix + O
(
n−1) , y3 (x, ρ̃n,1) = e(2n−σ)πix + O

(
n−1) ,

(ρ̃n,1)−1 = O
(
n−1) ,

by (2.11), (2.12) and (3.25). Finally, we have the expression

ũn,1 (x) =
√

2 sin (2n − σ) πx + O (εn) . (3.32)
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Now, we also investigate the eigenfunction ũn,2 (x) corresponding to the eigenvalue
λ = − (ρ̃n,2)4 by using the following determinant

ũn,2 (x) = (−1)σ e−ρω4
√

2
4iα

∣∣∣∣∣∣∣∣
y1 (x, ρ) y2 (x, ρ) y3 (x, ρ) y4 (x, ρ)
U2 (y1) U2 (y2) U2 (y3) U2 (y4)
U1 (y1) U1 (y2) U1 (y3) U1 (y4)
U0 (y1) U0 (y2) U0 (y3) U0 (y4)

∣∣∣∣∣∣∣∣
where ρ = ρ̃n,2. In a similar way, we get

ũn,2 (x) =
√

2 cos (2n − σ) πx + O (εn) . (3.33)

We now prove the formulae (1.5) and (1.6). By the relation λ = −ρ4, we have

λ̃n,1 = − (ρ̃n,1)4 = ((2n − σ) π)4
{

1 + O
(
n−4εn

)}
,

λ̃n,2 = − (ρ̃n,2)4 = ((2n − σ) π)4
{

1 − 2 (−1)σ α

((2n − σ) π)4 + O
(
n−4εn

)}
.

The above formulae are valid in case of c0 = 0. Now, assume that c0 ̸= 0 (see (1.3)).
Consider the eigenvalue problem with the differential expression

y(4) + q (x) y = λy

(see (1.1)). We can rewrite this problem as

y(4) + (q (x) − c0) y = (λ − c0) y.

One can easily see that the integral of q (x) − c0 on the line [0, 1] is zero. Then, by the
above proof, for the eigenvalues λ − c0, the formulae

λ̃n,1 − c0 = ((2n − σ) π)4
{

1 + O
(
n−4εn

)}
,

λ̃n,2 − c0 = ((2n − σ) π)4
{

1 − 2 (−1)σ α

((2n − σ) π)4 + O
(
n−4εn

)}
.

(3.34)

are valid and the eigenfunctions y do not change. On the other hand, the construction of
the integers n1 and n2 is similar to the way in [11, 14–16]. Hence, the formulae (1.5) and
(1.6) can be obtained by (3.32), (3.33) and (3.34).

4. Proofs of Theorem 1.2 and Corollary 1.3
First, we prove that the root functions of the operator L form a Riesz basis in L2 (0, 1)

provided q (x) ∈ L1 (0, 1).
Let

v1,1 (x) , v1,2 (x) , . . . , vn,1 (x) , vn,2 (x) , . . . (4.1)
be the biorthogonal system of the following system

u1,1 (x) , u1,2 (x) , . . . , un,1 (x) , un,2 (x) , . . . , (4.2)
i.e. (un,j , vm,s) = δn,m.δj,s, n, m = 1, 2, . . . , j, s = 1, 2. By [19, p.84] or [28, p.99], (4.1)
is the root functions of the adjoint differential operator L∗. L∗ consists of the differential
expression and boundary conditions

l∗ (z) = ziv + q (x)z,
U∗

0 (z) ≡ z (1) − (−1)σ z (0) = 0,
U∗

1 (z) ≡ z′ (1) − (−1)σ z′ (0) = 0,
U∗

2 (z) ≡ z′′ (1) − (−1)σ z′′ (0) = 0,
U∗

3 (z) ≡ z′′′ (1) − (−1)σ z′′′ (0) + αz (0) = 0.

(4.3)
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(4.3) shows that the differential operator L∗ provides the conditions of Theorem 1.1. So,
the formulae

vn+n1,1 (x) = rn+n1,1 (sin (2n − σ) πx + O (εn)) ,

vn+n2,2 (x) = rn+n2,2 (cos (2n − σ) πx + O (εn)) (4.4)

are valid for sufficiently large numbers n, where the numbers rnj+n,j , j = 1, 2 are deter-
mined by the inner product

(
unj+n,j , vnj+n,j

)
= 1. By these equality and (1.6), (4.4), we

have
rn+nj ,j =

√
2 + O (εn) , j = 1, 2,

for sufficiently large numbers n. Consequently, if we put the last equality in (4.4), we get

vn+n1,1 (x) =
√

2 sin (2n − σ) πx + O (εn) ,

vn+n2,2 (x) =
√

2 cos (2n − σ) πx + O (εn) .
(4.5)

Each of the systems (4.1) and (4.2) is complete in L2 (0, 1) [2]. Furthermore, by (1.6)
and (4.5), we get that the sequence of the multiplication of the norms of the elements of
the systems (4.1) and (4.2) is bounded i.e. ∥un∥∥vn∥ ≤ M for all n ∈ N, where M is
a constant. On the other hand, since all the eigenvalues, excluding a finite number, are
simple, then there are at most finitely many associate functions in the root functions of
L. Hence, the system (4.2) is a Riesz basis in L2 (0, 1) by the main theorem in [18].

Now, we prove Corollary 1.3 by the assumption q (x) ∈ L2 (0, 1). Let

g0 (x) = 1, g2n−1 (x) =
√

2 sin 2nπx, g2n (x) =
√

2 cos 2nπx, (4.6)

g̃2n−1 =
√

2 sin (2n − 1) πx, g̃2n =
√

2 cos (2n − 1) πx, (4.7)
where n = 1, 2, . . . . The systems (4.6) and (4.7) are seperately orthonormal bases in
L2 (0, 1). Since q (x) ∈ L2 (0, 1), then the sum of the squares of the absolute values of
Fourier coefficients is convergent. Then, we can easily obtain the following

∞∑
n=1

ε2
n < +∞. (4.8)

Now, we assume σ = 0. In the case σ = 1, proof can be obtained in a similar method by
using (4.7). Let n1 ≥ 0 and n2 ≥ 0. By (1.6), (4.6) and (4.8), we obtain

∞∑
n=1

(
∥un+n1,1 − g2n−1∥2 + ∥un+n2,2 − g2n∥2

)
≤ const

∞∑
n=1

ε2
n < +∞. (4.9)

One can easily see that n1 + n2 root functions of L and one function in the system (4.6)
are absent in (4.9). Let n1 + n2 > 1. By (4.9), the system S generated by all functions
excluding n1 + n2 − 1 functions in the system (4.2) is quadratically close to the system
(4.6). Since (4.6) is a Riesz basis in L2 (0, 1), then S is also a Riesz basis in L2 (0, 1) [10].
This contradicts the basicity of the system (4.2). Similarly, let n1 = n2 = 0. Since (4.2)
forms a Riesz basis in L2 (0, 1), then again by (4.9), the system {gk (x)}∞

k=1 is a Riesz basis
in L2 (0, 1). Obviously, the latter contradicts the basicity of {gk (x)}∞

k=0 in L2 (0, 1). All
other cases can be checked in a similar method.

Hence, the equality n1 + n2 = 1 is valid. So, we can assume that n1 = 0, n2 = 1 − σ
without loss of generality. Then, we obtain

un,1 (x) =
√

2 sin (2n − σ) πx + O (εn) ,

un+1−σ,2 (x) =
√

2 cos (2n − σ) πx + O (εn) ,

vn,1 (x) =
√

2 sin (2n − σ) πx + O (εn) ,

vn+1−σ,2 (x) =
√

2 cos (2n − σ) πx + O (εn) .

(4.10)

by (1.6) and (4.5).
Now, we show that the root functions of L form a basis in the Lebesgue space Lp (0, 1)

when q (x) ∈ W 1
1 (0, 1), where 1 < p < ∞, p ̸= 2. We prove the basicity in Lp (0, 1) in the
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case σ = 0. In the case σ = 1, the proof is similar. Since the function q (x) is in the space
W 1

1 (0, 1), then it is differentiable and its derivative is integrable. So, we get

εn = O
(
n−1

)
by using (1.3). Thus, the formulae (4.10) turn into

un,1 (x) =
√

2 sin (2n − σ) πx + O
(
n−1) ,

un+1−σ,2 (x) =
√

2 cos (2n − σ) πx + O
(
n−1) ,

vn,1 (x) =
√

2 sin (2n − σ) πx + O
(
n−1) ,

vn+1−σ,2 (x) =
√

2 cos (2n − σ) πx + O
(
n−1) .

(4.11)

For each p ∈ (1, ∞), (4.6) is a basis in Lp (0, 1) [1, Chapter VIII, §20, Theorem 2]. Then,
there exists Mp > 0 such that the inequality∥∥∥∥∥

N∑
n=0

(f, gn) gn

∥∥∥∥∥
p

≤ Mp ∥f∥p , N = 1, 2, . . . , (4.12)

holds for each function f (x) ∈ Lp (0, 1), where ∥·∥p is the norm of the normed space
Lp (0, 1) [13, Chapter I, §4, Theorem 6]. Let p ∈ (1, 2). Since (4.2) is a complete system in
L2 (0, 1), then it is also complete in Lp (0, 1). Besides, one can easily see that the inequality

∥(f, vn,j) un,j∥p ≤ const ∥f∥p ,

where j = 1, 2 and n = 1, 2, . . . .
By theorem 6 in [13, Chapter VIII, §4], for the basicity of this system in Lp (0, 1), we

must prove that there exists a constant M > 0 such that the inequality∥∥∥∥∥∥
m∑

n=1

2∑
j=1

(f, vn,j) un,j

∥∥∥∥∥∥
p

≤ M ∥f∥p m = 1, 2, . . . ,

holds for f (x) ∈ Lp (0, 1). Instead of the above inequality, it is enough to prove the
following

Jm (f) =
∥∥∥∥∥

m∑
n=1

{(f, vn,1) un,1 + (f, vn+1,2) un+1,2}
∥∥∥∥∥

p

≤ M ′ ∥f∥p , (4.13)

where M ′ is a positive constant and m = 1, 2, . . . .
By (4.6) and (4.11), we have

Jm (f) ≤ Jm,1 (f) + Jm,2 (f) + Jm,3 (f) + Jm,4 (f) , (4.14)

where

Jm,1 (f) =
∥∥∥∥∥

2m∑
n=1

(f, gn) gn

∥∥∥∥∥
p

, Jm,2 (f) =
∥∥∥∥∥

2m∑
n=1

(f, gn) O
(
n−1

)∥∥∥∥∥
p

,

Jm,3 (f) =
∥∥∥∥∥

2m∑
n=1

(
f, O

(
n−1

))
gn

∥∥∥∥∥
p

, Jm,4 (f) =
∥∥∥∥∥

2m∑
n=1

(
f, O

(
n−1

))
O
(
n−1

)∥∥∥∥∥
p

.

By (4.12),
Jm,1 (f) ≤ const ∥f∥p . (4.15)
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By Theorem 2.8 (Riesz theorem) [34, Chapter XII, §2,], the relations

Jm,2 (f) ≤ const
2m∑
n=1

|(f, gn)| n−1

≤ const
( 2m∑

n=1
|(f, gn)|q

)1/q ( 2m∑
n=1

n−p

)1/p

≤ const ∥f∥p ,

(4.16)

holds, where 1/p + 1/q = 1. Moreover,

Jm,3 (f) ≤
∥∥∥∥∥

2m∑
n=1

(
f, O

(
n−1

))
gn

∥∥∥∥∥
2

=
( 2m∑

n=1

∣∣∣(f, O
(
n−1

))∣∣∣2)1/2

≤ const ∥f∥1

( 2m∑
n=1

n−2
)1/2

≤ const ∥f∥p .

(4.17)

Further,

Jm,4 ≤ const ∥f∥1

2m∑
n=1

n−2 ≤ const ∥f∥p . (4.18)

The inequalities (4.14)-(4.18) prove the inequality (4.13). The basicity of (4.2) in
Lp (0, 1) is obtained when 1 < p < 2.

Assume that the relations 2 < p < ∞ and 1/p + 1/q = 1 hold. Then, 1 < q < 2 and
the biorthogonal system (4.1) is the root functions of the adjoint operator L∗. Above, we
show that the system of root functions of such operator is a basis of Lq (0, 1). So, the
system (4.2) being biorthogonal system of (4.1) is a basis in Lp (0, 1).
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