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Abstract

In this paper, a powerful method, named as the double Laplace decomposition method, is used to obtain exact solutions of nonlinear partial
differential equations subject to initial conditions. We especially interested in Hirota, Schrödinger and complex modified KdV equations with
their initial conditions. The double Laplace deceomposition method is applied to these equations. We then gain complex-valued solutions,
yield the given initial conditions. Moreover, we give some nonlinear partial equations to demonstrate that this method effective, useful, and
powerful tool for getting real-valued functions.
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1. Introduction

In modern science and engineering, a great deal of scientific events and engineering problems can be modelled by linear or nonlinear
partial differential equations (LPDEs, NLPDEs). In nature, N/LPDEs may not be considered without being exposed to any forces and some
conditions. Scientists mostly focus on N/LPDEs which are subject to initial conditions. It is therefore important to gain the solutions of such
N/LPDEs. For this aim, several analytical and numerical methods have been established until now. The perturbation method [1]-[4], the
homotopy perturbation method [4]-[5], the Adomian decomposition method [7]-[11], the modified decomposition method [7], [12]-[15], the
Laplace decomposition method [7], [15], [16]-[18], the double Laplace decomposition method [20]-[25], and others. Among these methods,
we utilize the double Laplace decomposition method, combines the double Laplace transform and Adomian decomposition method to find
solutions for NLPDEs with initial values.
The Laplace transform has attracted a great deal of attention and many applications in modern science and engineering. This transform is
mostly used for one variable function, f (x). For a function of two variables, f (x, t), the double Laplace transform is more convenient and
suitable. There are numerous applications for the Laplace transform, but there are insufficient work on the double Laplace transform. In the
literature, we see some applications. In 2011, some significant theorems on two dimensional Laplace transform are proposed by Aghilli
and Moghaddam[19], and they applied the suggested method to nonhomogeneous parabolic partial differential equations. In 2012, Elzaki
[22] combined double Laplace transform and modified variational iteration method, and solved nonlinear convolution partial differential
equations by the proposed method. Eltayeb and Kilicman [23] used the double Laplace transform to solve some differential equations and
integro-differential equations in 2013. Debnath [24] paid his attention to the properties and convolution theorem for the double Laplace
transform in 2016. Dhunde and Waghmare [25] applied double Laplace transform technique in order to solve partial integro-differential
equations. In these applications, it is clearly seen that the double Laplace decomposition method is powerful one to obtain solutions of
real-valued functions.
Here we give some information about Hirota, Schrödinger, and complex mKdv equations, hence this work mainly focuses on these NLPDEs.
The well-known Hirota equation [26] is given by

iut +uxx +2|u|2u+ iauxxx +6ia|u|2ux = 0, (1.1)

where u(x, t) is the complex amplitude of slowly changing optical field, the subscripts t and x represent the temporal and spatial partial
derivatives, respectively, and α is a small parameter. The equation (1.1) describes the propagation of femtosecond soliton pulse in the single
mode fibers. uxx, |u|2u, uxxx, and |u|2ux demonstrate the group velocity dispersion, self phase modulation, third order dispersion, and self
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steepening, respectively [27]. Hirota equation plays significant role in modern science and therfore is of many applications in the literature,
see [28]-[32].
The Schrödinger equation, another famous mathematical and physical equation, is derived from the equation (1.1). For α = 0, the equation
(1.1) gives the Scrödinger equation [33] as follows:

iut +uxx +2|u|2u = 0. (1.2)

Here u(x, t) is a complex function of x and t. The equation (1.2) defines the propagation of pulses in single mode fibers in the condition of
ignoring fiber loss. It also characterizes the evolution of the evelope of modulated nonlinear wave groups. And also, it is noticed in nonlinear
wave propagation in dispersive and inhomogeneous media. Furthermore, it has significant roles in several areas of physics including water
waves, nonlinear optics, plasma physics, quantum mechanics, and so on, see [34], [35]. Because of its importance in these areas, there are
large number of works on obtainin the exact and approximate analytical solutions to Schrödinger equation, such as [36],[37].
In addition to Schrödinger equation, removing the terms of group velocity dispersion and self phase modulation from the equation (1.1)
grants the complex modified KdV equation(shortly, cmKdV). The equation reads

ut +αuxxx +6α|u|2ux = 0, (1.3)

which covers the dynamics for the amplitude of wave packet [38]. Here u(x, t) is a complex-valued function of x and t. The cmKdV equation
(1.3) is the theoretical model for propagation of the nametic optical fibers [39]. It also has applications in the propagation of transverse
magnetic waves and few-cycle optical pulses [40]. Our main intent is to demonstrate that the double Laplace decomposition method is
impressive, efficient, and fruitful for solving NLPDEs subject to the initial conditions. Therefore, we utulize this method to obtain the
solutions of Hirota equation, Schrödinger equation, and complex mKdV equation, whose solutions are complex-valued functions. The
application of this method to these equations indicate that the double Laplace decomposition method is impressive tool in order to get
solutions for complex-valued functions. To exemplify usefullness of this method for real-valued functions, we aslo put forward some
applications.
This work is prepared as follows. In section 2, we give some informations about double Laplace transform. We then highlights the double
Laplace decomposition method in section 3. We obtain the solutions of Hirota equation, Schrödinger equation, complex mKdV equation,
and two more equations subject to initial conditions in section 4. Finally, we give some conclusions in section 5.

2. Some Notes On Double Laplace Transform

Let us consider f (x, t), a function of two varibale x and t. The double Laplace transform of f (x, t) is defined by the following double integral:

LxLt [ f (x, t)] = F(p,s) =
∫

∞

0

∫
∞

0
e−px−st f (x, t)dtdx, (2.1)

whenever this integral exists. Here x, t ≥ 0 and p, s are complex numbers [41].
Let α and β be sufficiently large constants. The inverse double Laplace transform L−1

x L−1
t [F(p,s)] = f (x, t) is defined by

f (x, t) = L−1
x L−1

t [F(p,s)] =
1

2πi

∫
α+i∞

α−i∞
epxd p

1
2πi

∫
β+i∞

β−i∞
estF(p,s)ds (2.2)

where F(p,s) must be an analytic function for all p and s in the region defined by the inequalities Rep≤ c and Res≤ d.

Definition 2.1. A function f (x, t) is said to be of exponential order a > 0 and b > 0 on 0 ≤ x < ∞,0 ≤ t < ∞, if there exists a positive
constant K such that | f (x,y)| ≤ Keax+by.

Theorem 2.2. If a function f (x, t), continous in (0,X) and (0,T ), is of exponential order exp(ax+bt), then the double Laplace transform
of f (x, t) exists whenever Rep > a and Req > b.

Proof. The proof of this theorem is given in [42].

Because of this fact that all functions are supposed to be of exponential order in this paper.

Definition 2.3. Let f (x, t) and g(x, t) be continous functions for x, t ≤ 0 and of exponential order. Then, the double convolution of the
functions f (x, t) and g(x, t) is defined by

f (x, t)∗∗g(x, t) =
∫ t

0

∫ x

0
f (x−η , t−ζ )g(η ,ζ )dηdζ . (2.3)

Theorem 2.4. Suppose that f (x, t) and g(x, t) have double Laplace transforms say, F(p,s) and G(p,s), respectively. The double Laplace
transform of the convolution of f (x, t) and g(x, t) is

LxLt [ f (x, t)∗∗g(x, t)] = F(p,s)G(p,s). (2.4)

Proof. Firstly, the double Laplace transform is applied to the convolution f (x, t)∗∗g(x, t). Then, we have

LxLt [ f (x, t)∗∗g(x, t)] =
∫

∞

0

∫
∞

0
e−px−st( f (x, t)∗∗g(x, t))dxdt. (2.5)
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By the definition of the convolution, we get

LxLt [ f (x, t)∗∗g(x, t)] =
∫

∞

0

∫
∞

0
e−px−st(

∫ t

0

∫ x

0
f (x−η , t−ζ )g(η ,ζ )dηdζ )dxdt. (2.6)

For simplicity, we use the notations ξ = x−η and µ = t−ζ . After that, the integral turns into

LxLt [ f (x, t)∗∗g(x, t)] = (
∫

∞

0

∫
∞

0
e−pη−sζ f (η ,ζ )dηdζ )(

∫
∞

0

∫
∞

0
e−pξ−µ f (ξ ,µ)dξ dµ), (2.7)

where η ,ζ ,ξ ,andµ ≥ 0. From this equality, it is easily seen that

LxLt [ f (x, t)∗∗g(x, t)] = F(p,s)G(p,s). (2.8)

Theorem 2.5. Let f (x, t) and g(x, t) be continuous functions defined for x, t ≥ 0 and having double Laplace transforms, F(p,s), and G(p,s),
respectively. If F(p,s) = G(p,s), then f (x, t) = g(x, t).

Proof. Let α and β be sufficiently large constants. Then, f (x, t) can be written as

f (x, t) = L−1
x L−1

t [F(p,s)] =
1

2πi

∫
α+i∞

α−i∞
epxd p

1
2πi

∫
β+i∞

β−i∞
estF(p,s)ds. (2.9)

Putting the given condition that F(p,s) = G(p,s) into equation (2.9) yields

f (x, t) =
1

2πi

∫
α+i∞

α−i∞
epxd p

1
2πi

∫
β+i∞

β−i∞
estG(p,s)ds = L−1

x L−1
t [G(p,s)] = g(x, t). (2.10)

Here we give some fundamental properties of double Laplace transform and inverse double Laplace transform.
Let a, b, and c be constants.

1. LxLt [c] = c
ps .

2. LxLt [eax+bt ] = 1
(p−a)(s−b) .

3. LxLt [ei(ax+bt))] =
(ps−ab)+i(as+bp)
(p2+a2)(s2+b2)

.

4. LxLt [cos(ax+bt)] = ps−ab
(p2+a2)(s2+b2)

.

5. LxLt [sin(ax+bt)] = as+bp
(p2+a2)(s2+b2)

.

6.LxLt [xmtn] = m!n!
pm+1sn+1 where m and n are positive integers.

7.If f (x, t) = h(x)g(t), then LxLt [ f (x, t)] = LxLt [h(x)]LxLt [g(t)].

8.LxLt [eax+bt f (x, t)] = F [p−a,s−b].

9.LxLt [ f (ax,bt)] = 1
ab F [ p

a ,
s
b ].

10.LxLt [.] and L−1
x L−1

t [.] are linear transformations, that is,

LxLt [c1 f1(x, t)+ c2 f2(x, t)] = c1LxLt [ f1(x, t)]+ c2LxLt [ f2(x, t)], (2.11)

and

L−1
x L−1

t [c1F1(p,s)+ c2F2(p,s)] = c1L−1
x L−1

t [F1(p,s)]+ c2L−1
x L−1

t [F2(p,s)], (2.12)

where c1 and c2 are arbitrary constants.
Now we introduce the general formulas for the double Laplace transform of a function f (x, t) with any integer order partial derivatives w.r.t x
and t as follows:

LxLt [
∂ n f (x, t)

∂xn ] = pnF(p,s)−
n−1

∑
i=0

pn−1−iLt [
∂ i f (0, t)

∂xi ], (2.13)

and

LxLt [
∂ m f (x, t)

∂ tm ] = smF(p,s)−
m−1

∑
j=0

sm−1− jLx[
∂ j f (x,0)

∂ t j ]. (2.14)

For the first and second order partial derivatives, we have

LxLt [
∂ f (x, t)

∂x
] = pF(p,s)−F(0,s), LxLt [

∂ 2 f (x, t)
∂x2 ] = p2F(p,s)− pF(0,s)− ∂F(0,s)

∂x
, (2.15)

LxLt [
∂ f (x, t)

∂ t
] = sF(p,s)−F(p,0), LxLt [

∂ 2 f (x, t)
∂ t2 ] = s2F(p,s)− sF(p,0)− ∂F(p,0)

∂ t
. (2.16)
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3. Outline of The Method

This method is described as in the following manner. Let us consider the nonlinear nonhomogeneous partial differential equation in operator
form

Lu(x, t)+Ru(x, t)+Nu(x, t) = h(x, t) (3.1)

with initial conditions u(0, t) = f (t) and ux(0, t) = g(t). Here L is a second order partial differential operator with respect to x, R is a
remaining linear operator, N represents a general nonlinear differantial operator, and h(x, t) is a source term.
At the beginning of this method, the double Laplace transform is applied to both sides of the equation (3.1). Then we have

LxLt [Lu(x, t)+Ru(x, t)+Nu(x, t)] = LxLt [h(x, t)]. (3.2)

Using the linearity and the differentiation properties of the double Laplace transform yields

U(p,s) =
F(s)

p
+

G(s)
p2 +

1
p2 LxLt [h(x, t)]−

1
p2 [LxLt [Ru(x, t)]+LxLt [Nu(x, t)]] (3.3)

where U(p,s), F(s), and G(s) represents the double Laplace transforms of u(x, t), f (t), and g(t), respectively.
After this step, we use the following decomposition series

u(x, t) =
∞

∑
n=0

un(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+ . . . (3.4)

for the linear terms. And also, the infinite series defined by

N(u(x, t)) =
∞

∑
n=0

An(u(x, t)), (3.5)

is used for the nonlinear terms. Here An represents the Adomian polynomials, described by

An =
1
n!

dn

dαn

[
N(

∞

∑
i=0

α
iui)

]
α=0

,n = 0,1,2, . . . (3.6)

From this definition, we get the first terms as below:

A0 = N(u0), A1 = u1N′(u0), A2 = u2N′(u0)+
1
2!

u2
1N′′(u0). (3.7)

Now we substitute (3.4) and (3.5) into the equation (3.3), and afterwards we get

LxLt [
∞

∑
n=0

un(x, t)] =
F(s)

p
+

G(s)
p2 +

1
p2 LxLt [h(x, t)]−

1
p2 [LxLt [R[

∞

∑
n=0

un(x, t)]]+LxLt [
∞

∑
n=0

An]]. (3.8)

The inverse double Laplace transform is applied to both sides of the equation (3.8), and by the linearity of the inverse transform, we obtain

∞

∑
n=0

un(x, t) = f (t)+ xg(t)+L−1
x L−1

t [
1
p2 LxLt [h(x, t)]]−L−1

x L−1
t [

1
p2 [LxLt [R[

∞

∑
n=0

un(x, t)]]+LxLt [
∞

∑
n=0

An]]]. (3.9)

Comparing both sides of the equation (3.9) yields the following equalities:

u0(x, t) = f (t)+ xg(t)+L−1
x L−1

t [
1
p2 LxLt [h(x, t)]], (3.10)

u1(x, t) =−L−1
x L−1

t [
1
p2 [LxLt [R[u0(x, t)]+LxLt [A0]]], (3.11)

u2(x, t) =−L−1
x L−1

t [
1
p2 [LxLt [R[u1(x, t)]+LxLt [A1]]]. (3.12)

The general form of the recursive relation is given by

un+1 =−L−1
x L−1

t [
1
p2 [LxLt [R[un(x, t)]+LxLt [An]]], n≥ 0. (3.13)

Obtaining the components u0, u1, u2, . . . from the above recursive relation and putting them into the expansion (3.4) provide us with the
solution u(x, t).
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4. Applications of The Method

4.1. Solving Hirota Equation

We consider the nonhomogeneous Hirota equation given by

iut +uxx +2|u|2u+ iαuxxx +6iα|u|2ux = xeit +6iαx2eit +2x3eit , (4.1)

with the initial conditions u(0, t) = 0 and ux(0, t) = eit . The equation (4.1) can be written as

uxx = xeit +6iαx2eit +2x3eit − iut −2|u|2u− iαuxxx−6iα|u|2ux. (4.2)

We first apply the double Laplace transform to both sides of the equation (4.2). By the properties of the double Laplace transform we have

LxLt [u(x, t)] =U(p,s) = xeit +
1
p2 LxLt [xeit +6iαx2eit +2x3eit ]− 1

p2 [LxLt [iut + iαuxxx]+LxLt [2|u|2u+6iα|u|2ux]]. (4.3)

Here we use the decomposition series

u(x, t) =
∞

∑
n=0

un(x, t) (4.4)

for the linear terms, and

N(u(x, t)) =
∞

∑
n=0

An(u(x, t)), (4.5)

for the nonlinear terms. Putting these into the equation (4.3) gives

LxLt [
∞

∑
n=0

un(x, t)] =
1

p2(s− i)
+

1
p2 LxLt [xeit +6iαx2eit +2x3eit ]− 1

p2 [LxLt [R[
∞

∑
n=0

un(x, t)]]+LxLt [
∞

∑
n=0

An]], (4.6)

where R[u] = iut + iαuxxx and An[u] = 2|u|2u+6iα|u|2ux. Then, taking the inverse double Laplace transform of the equation (4.6) yields

∞

∑
n=0

un(x, t) = xeit +L−1
x L−1

t [
1
p2 LxLt [xeit +6iαx2eit +2x3eit ]]−L−1

x L−1
t [

1
p2 [LxLt [R[

∞

∑
n=0

un(x, t)]]+LxLt [
∞

∑
n=0

An]]]. (4.7)

From the equation (4.7), we obtain the recursive relation:

u0(x, t) = xeit +L−1
x L−1

t [
1
p2 LxLt [xeit +6iαx2eit +2x3eit ]], (4.8)

u1(x, t) =−L−1
x L−1

t [
1
p2 [LxLt [iu0t + iu0xxx]+LxLt [A0]]], (4.9)

.

.

.

un+1 =−L−1
x L−1

t [
1
p2 [LxLt [R[un(x, t)]+LxLt [An]]], n≥ 0. (4.10)

Eventually, we obtain

u0(x, t) = xeit − 1
6

eitx3 +
1
2

iαe3itx4 +
1

10
e3itx5, (4.11)

u1(x, t) =
1
2

ieitx2 +2ae3itx3 +
1
6

eitx3− 1
2

iae3itx4− 1
2

ie3itx4− 1
120

eitx5− 1
10

e3itx5 +
13
60

iae3itx6 +
13

420
e3itx7 +

3
7

a2e5itx7 (4.12)

− 1
48 iae3itx8− 9

70 iae5itx8− 1
432 e3itx9− 1

120 e5itx9− 1
9 a2e5itx9 + iae3it

1080 x10 + 7
225 iae5itx10 + 3

20 ia3e7itx10 + 1
132 a2e5itx11

+ 3
44 a2e7itx11 + e3it

11880 x11 + 1
550 e5itx11− 1

495 iae5itx12− 21iae7it

2200 x12− 1
48 ia3e7itx12− e7it

2600 x13− e5it

9360 x13− 1
52 a4e9itx13− 29a2e7it

3120 x13

+ 11
910 ia3e9itx14 + 23iae7it

18200 x14 + 19a2e9it

7000 x15 + e7it

21000 x15− iae9it

4000 x16− e9it

136000 x17

From u0 and u1, we get the noise terms as − 1
6 eitx3, 1

2 iαe3itx4, and 1
10 e3itx5. Deleting these terms from the first component u0 gives the

desired solution:

u(x, t) = xeit . (4.13)
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4.2. Solving Schrödinger Equation

We consider the following nonhomogeneous Schrödinger equation

iut +uxx +2|u|2u = 2it2−2x2t−2ix6t6, (4.14)

with the initial conditions u(0, t) = 0 and ux(0, t) = 0. We can rewrite the equation (4.14) as follows:

uxx = 2it2−2x2t−2ix6t6− iut −2|u|2u. (4.15)

Applying the double Laplace transform to both sides of the equation (4.15) and using the properties of the double Laplace transform gives

LxLt [u(x, t)] =U(p,s) =
1
p2 LxLt [2it2−2x2t−2ix6t6]− 1

p2 [LxLt [iut ]+LxLt [2|u|2u]]. (4.16)

Here the expansions

u(x, t) =
∞

∑
n=0

un(x, t) (4.17)

and

N(u(x, t)) =
∞

∑
n=0

An(u(x, t)), (4.18)

are used for the linear and nonlinear terms, respectively. We put these expansions into the equation (4.16). Then we get

LxLt [
∞

∑
n=0

un(x, t)] =
1
p2 LxLt [2it2−2x2t−2ix6t6]− 1

p2 [LxLt [R[
∞

∑
n=0

un(x, t)]]+LxLt [
∞

∑
n=0

An]], (4.19)

where R[u] = iut and An[u] = 2|u|2u. Applying the inverse double Laplace transform ot both sides of the equation (4.19) yields

∞

∑
n=0

un(x, t) = L−1
x L−1

t [
1
p2 LxLt [2it2−2x2t−2ix6t6]−L−1

x L−1
t [

1
p2 [LxLt [R[

∞

∑
n=0

un(x, t)]]+LxLt [
∞

∑
n=0

An]]]. (4.20)

If we compared the both sides of the equation (4.20), then we get the recursive relation as below:

u0(x, t) = L−1
x L−1

t [
1
p2 LxLt [2it2−2x2t−2ix6t6]], (4.21)

u1(x, t) =−L−1
x L−1

t [
1
p2 [LxLt [iu0t ]+LxLt [A0]]], (4.22)

.

.

.

un+1 =−L−1
x L−1

t [
1
p2 [LxLt [R[un(x, t)]+LxLt [An]]], n≥ 0. (4.23)

We therefore obtain

u0(x, t) = ix2t2− 1
6

x4t− 1
28

ix8t6 (4.24)

u1(x, t) =
1
6

x4t +
1

180
ix6 +

1
28

ix8t6− 17
1260

x10t5− 1
792

ix12t4 +
1

19656
x14t3− 3

2548
x14t10 +

17
3360

x16t9 +
1

51408
ix18t8 (4.25)

+ 3
148960 ix20t14− 1

362208 x22t13− 1
7134400 ix26t18.

Comparing the first two components, u0 and u1, gives the noise terms, − 1
6 x4t and − 1

28 ix8t6. By canceling these terms from the first
component u0, we obtained the desired solution as:

u(x, t) = ix2t2. (4.26)
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4.3. Solving Complex mKdV Equation

We consider the nonhomogeneous complex mKdV equation as

ut +αuxxx +6α|u|2ux = ixeit +6αx2xe3it , (4.27)

with the initial condition u(x,0) = x. In other way, the equation (4.27) is given by

ut = ixeit +6αx2xe3it −αuxxx−6α|u|2ux. (4.28)

By applying the double Laplace transform to both sides of the equation (4.28) and using the properties of the double Laplace transform, we
get

LxLt [u(x, t)] =U(p,s) =
1
s

LxLt [ixeit +6αx2xe3it ]− 1
s
[LxLt [αuxxx]+LxLt [6α|u|2u]]. (4.29)

We then put the expansions (3.4) and (3.5) into the equation (4.29). We therefore have

LxLt [
∞

∑
n=0

un(x, t)] =
1
s

LxLt [ixeit +6αx2xe3it ]− 1
s
[LxLt [R[

∞

∑
n=0

un(x, t)]]+LxLt [
∞

∑
n=0

An]], (4.30)

where R[u] = αuxxx and An[u] = 6α|u|2u]. By applying the inverse double Laplace transform ot both sides of the equation (4.30), we obtain

∞

∑
n=0

un(x, t) = L−1
x L−1

t [
1
s

LxLt [ixeit +6αx2xe3it ]]−L−1
x L−1

t [
1
s
[LxLt [R[

∞

∑
n=0

un(x, t)]]+LxLt [
∞

∑
n=0

An]]]. (4.31)

From the above equality, we get the recursive relation as follows:

u0(x, t) = x+L−1
x L−1

t [
1
s

LxLt [ixeit +6αx2xe3it ]], (4.32)

u1(x, t) =−L−1
x L−1

t [
1
s
[LxLt [R[u0]]+LxLt [A0]]], (4.33)

.

.

.

un+1 =−L−1
x L−1

t [
1
s
[LxLt [R[un(x, t)]+LxLt [An]]], n≥ 0. (4.34)

We hence attain

u0(x, t) = xeit +2iαx2−2iαx2e3it (4.35)

u1(x, t) =−96a4e3itx5 +48a4e6itx5− 32
3

a4e9itx5 +96ia4tx5 +
176a4x5

3
−120ia3eitx4− 120

7
ia3e7itx4 +60ia3e4itx4 + (4.36)

540
7 ia3x4−24a2e2itx3 + 48

5 a2e5itx3 + 72a2x3

5 +2iae3itx2−2iax2.

From the first two components, u0 and u1,we observe the noise terms as 2iαx2 and 2iαx2e3it . Removing these terms from the first component
u0 provides us with the solution

u(x, t) = xeit . (4.37)

4.4. Examples

Here we solve two nonhomogeneous nonlinear partial differential equations subject to the initial conditions by the double Laplace
decomposition method.

4.4.1. Example 1

For the first example, we consider the following equation

utt −α
2uxx +βu− γu2 = tα2sin(x)+ tβ sin(x)− t2

γsin(x)2, (4.38)

with the initial values u(x,0) = 0 and ut(x,0) = sin(x). First thing is to get utt alone in the left side and put the other terms into the right side.
We hence have

utt = tα2sin(x)+ tβ sin(x)− t2
γsin(x)2 +α

2uxx−βu+ γu2. (4.39)

Applying the double Laplace tranform to both sides of the equation (4.39) gives

LxLt [u(x, t)] =U(p,s) =
1
s2 LxLt [sin(x)]+

1
s2 LxLt [tα2sin(x)+ tβ sin(x)− t2

γsin(x)2]− 1
s2 [LxLt [α

2uxx−βu]+LxLt [γu2]]. (4.40)
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By following the same process shown above, we get

u0(x, t) = tsin(x)+L−1
x L−1

t [
1
s2 LxLt [tα2sin(x)+ tβ sin(x)− t2

γsin(x)2]], (4.41)

u1(x, t) =−L−1
x L−1

t [
1
s2 [LxLt [R[u0]t ]+LxLt [A0]]] (4.42)

.

.

.

un+1 =−L−1
x L−1

t [
1
s2 [LxLt [R[un(x, t)]+LxLt [An]]], n≥ 0. (4.43)

From above, we obtain

u0(x, t) =−
1
24

γt4 +
1

24
γt4 cos(2x)+

1
6

α
2t3 sin(x)+

1
6

β t3 sin(x)+ t sin(x), (4.44)

u1(x, t) =
1

34560
γ

3t10 +
1

103680
γ

3t10 cos(4x)− 1
25920

γ
3t10 cos(2x)+

1
10368

α
2
γ

2t9 sin(3x)− 1
3456

α
2
γ

2t9 sin(x) (4.45)

+ 1
10368 βγ2t9 sin(3x)− 1

3456 βγ2t9 sin(x)+ 1
4032 α4γt8 + 1

2016 α2βγt8 + 1
4032 β 2γt8− 1

4032 α4γt8 cos(2x)− 1
2016 α2βγt8 cos(2x)

− 1
4032 β 2γt8 cos(2x)− 1

336 γ2t7 sin(x)+ 1
1008 γ2t7 sin(3x)+ 1

180 α2γt6 + 1
144 βγt6− 1

90 α2γt6 cos(2x)− 1
144 βγt6 cos(2x)

− 1
120 α4t5 sin(x)− 1

60 α2β t5 sin(x)− 1
120 β 2t5 sin(x)+ 1

24 γt4− 1
24 γt4 cos(2x)− 1

6 α2t3 sin(x)− 1
6 β t3 sin(x).

Here the noise terms are 1
24 γt4, 1

24 γt4 cos(2x), 1
6 α2t3 sin(x), and 1

6 β t3 sin(x). If we remove the noise terms from u0, then we obtain the
solution

u(x, t) = tsin(x). (4.46)

4.4.2. Example 2

For the first example, we consider the following equation

utt −uxxxut −uxxx =−2sin(x), (4.47)

with the initial values u(x,0) = cos(x) and ut(x,0) = 1. Firstly, let us consider the equation (4.47) as follows:

utt =−2sin(x)+uxxxut +uxxx. (4.48)

Then, we apply the double Laplace tranform to both sides of the equation (4.48) yields

LxLt [u(x, t)] =U(p,s) = cos(x)+ t +
1
s2 LxLt [−2sin(x)]− 1

s2 [LxLt [uxxx]+LxLt [uxxxut ]]. (4.49)

In the same manner above, we have

u0(x, t) = cos(x)+ t +
1
s2 LxLt [−2sin(x)], (4.50)

u1(x, t) =−L−1
x L−1

t [
1
s2 [LxLt [R[u0]t ]+LxLt [A0]]] (4.51)

.

.

.

un+1 =−L−1
x L−1

t [
1
s2 [LxLt [R[un(x, t)]+LxLt [An]]], n≥ 0. (4.52)

where R[un] = unxxx and An[u] = unxxxunt . From this recursive relation, we obtain

u0(x, t) = cos(x)+ t− t2sin(x), (4.53)

u1(x, t) = t2sin(x)− 1
6

t3 +
1
6

t3cos(2x)+
1
6

t4cos(x)− 1
20

t5sin(2x). (4.54)

It is easily seen that t2sin(x) is the noise term. We take away the noise term from u0 to attain the solution as

u(x, t) = cos(x)+ t. (4.55)
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5. Conclusion

In this present paper, we focus on the double Laplace decomposition method. We take the advantage of this method in order to obtain the
exact solutions of some significant NLPDEs, namely Hirota, Schrödinger, cmKdV, and two more equations with the initial conditions. It
is clearly demonstrated that this method is really convenient, appropriate, advantageous, and sufficient to acquire the exact solutions of
NLPDEs subject to the given initial conditions. It is also seen that this method is simple and direct. Moreover, we quickly obtain the exact
solution with the help of the noise terms. The best part of this method is that there is no need for linearization of nonlinear terms thanks to
the Adomian polynomials compared to other methods. We eventually state that this method is indeed trustworthy and applicable to almost all
NLPDEs subject to the initial conditions.
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