On the New Wirtinger Type Inequalities

Mehmet Zeki Sarıkaya ${ }^{\text {* }}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
*Corresponding author E-mail: sarikayamz@gmail.com

Abstract

The aim of this paper to establish some generalized and refinement of Wirtinger type inequality.

Keywords: Wirtinger inequality, Hölder's inequality.
2010 Mathematics Subject Classification: 26D15, 26A51, 26A33, $26 A 42$.

1. Introduction

The classical Wirtinger inequality is given by
$\int_{a}^{b}(f(x))^{2} d x \leq \int_{a}^{b}\left(f^{\prime}(x)\right)^{2} d x$
for any $f \in C^{1}([a, b])$ satisfying $f(a)=f(b)=0$ in [6]. Then, Beesack extended the inequality (1.1) and proved that
$\int_{a}^{b}(f(x))^{4} d x \leq \frac{4}{3} \int_{a}^{b}\left(f^{\prime}(x)\right)^{4} d x$
for any $f \in C^{2}([a, b])$ satisfying $f(a)=f(b)=0$ in [5].
One of the most impressive issues in inequality theory is integral inequalities involving a function and its derivative. Wirtinger inequality in this area of the theorems has been a particular attraction due to close coupling to linear differential equations and differential geometry. Wirtinger's inequality compares the integral of a square of a function with that of a square of its first derivative. Over the last twenty years a large number of papers have been appeared in the literature which deals with the simple proofs, various generalizations and discrete analogues of Wirtinger's inequality and its generalizations, see [1]-[11]. The purpose of this paper is to establish some generalized and refinement of Wirtinger type inequalities.

2. Main Results

Now, we present the main results:
Theorem 2.1. Let $f \in C^{1}([a, b])$ with $f(a)=f(b)=0$ and $f^{\prime} \in L_{2}[a, b]$, then, we have the following inequality
$\int_{a}^{b}[f(x)]^{2} d x \leq \frac{(b-a)^{2}}{6} \int_{a}^{b}\left[f^{\prime}(x)\right]^{2} d x$.
Proof. From the hypotheses, we have
$[f(x)]^{2} \leq\left[\int_{a}^{x} f^{\prime}(t) d t\right]^{2}, \quad$ with $f(a)=0$
$[f(x)]^{2} \leq\left[\int_{x}^{b} f^{\prime}(t) d t\right]^{2}, \quad$ with $f(b)=0$.
By using the Cauchy-Shwartz inequality, we have
$[f(x)]^{2} \leq(x-a) \int_{a}^{x}\left[f^{\prime}(t)\right]^{2} d t$
and
$[f(x)]^{2} \leq(b-x) \int_{x}^{b}\left[f^{\prime}(t)\right]^{2} d t$.
By integrating both sides of the inequality (2.1) from a to $a \lambda+(1-\lambda) b$ for $\lambda \in[0,1]$, we get
$\int_{a}^{a \lambda+(1-\lambda) b}[f(x)]^{2} d x \leq \int_{a}^{a \lambda+(1-\lambda) b} \int_{a}^{x}(x-a)\left[f^{\prime}(t)\right]^{2} d t d x$.
Then using Fubini's theorem it follows that
$\int_{a}^{a \lambda+(1-\lambda) b}[f(x)]^{2} d x \leq \frac{1}{2} \int_{a}^{a \lambda+(1-\lambda) b}\left[(1-\lambda)^{2}(b-a)^{2}-(t-a)^{2}\right]\left[f^{\prime}(t)\right]^{2} d t$.
By the change of variable $t=a u+(1-u) b$,on the right hand sides integrals, we get

$$
\begin{align*}
& \int_{a}^{a \lambda+(1-\lambda) b}[f(x)]^{2} d x \tag{2.3}\\
\leq & \frac{(b-a)^{3}}{2} \int_{\lambda}^{1}\left[(1-\lambda)^{2}-(1-u)^{2}\right]\left[f^{\prime}(a u+(1-u) b)\right]^{2} d u
\end{align*}
$$

Similarly, by integrating both sides of the inequality (2.2) from $a \lambda+(1-\lambda) b$ to b for $\lambda \in[0,1]$, we get
$\int_{a \lambda+(1-\lambda) b}^{b}[f(x)]^{2} d x \leq \int_{a \lambda+(1-\lambda) b}^{b} \int_{x}^{b}(b-x)\left[f^{\prime}(t)\right]^{2} d t d x$.
Then using Fubini's theorem it follows that
$\int_{a \lambda+(1-\lambda) b}^{b}[f(x)]^{2} d x \leq \frac{1}{2} \int_{a \lambda+(1-\lambda) b}^{b}\left[\lambda^{2}(b-a)^{2}-(b-t)^{2}\right]\left[f^{\prime}(t)\right]^{2} d t$.
By the change of variable $t=a u+(1-u) b$,on the right hand sides integrals, we get
$\left.\int_{a \lambda+(1-\lambda) b}^{b}[f(x)]^{2} d x \leq \frac{(b-a)^{3}}{2} \int_{0}^{\lambda}\left[\lambda^{2}-u^{2}\right]\left[f^{\prime}(a u+(1-u) b)\right)\right]^{2} d u$.
Adding (2.3) and (2.4), it follows that

$$
\begin{aligned}
\int_{a}^{b}[f(x)]^{2} d x \leq & \frac{(b-a)^{3}}{2} \int_{\lambda}^{1}\left[(1-\lambda)^{2}-(1-u)^{2}\right]\left[f^{\prime}(a u+(1-u) b)\right]^{2} d u \\
& \left.\left.+\frac{(b-a)^{3}}{2} \int_{0}^{\lambda}\left[\lambda^{2}-u^{2}\right] \right\rvert\, f^{\prime}(a u+(1-u) b)\right)\left.\right|^{2} d u .
\end{aligned}
$$

By integrating both sides of the inequality from 0 to 1 with respect to λ, we get

$$
\begin{aligned}
\int_{a}^{b}[f(x)]^{2} d x \leq & \frac{(b-a)^{3}}{2} \int_{0}^{1} \int_{\lambda}^{1}\left[(1-\lambda)^{2}-(1-u)^{2}\right]\left[f^{\prime}(a u+(1-u) b)\right]^{2} d u d \lambda \\
& \left.+\frac{(b-a)^{3}}{2} \int_{0}^{1} \int_{0}^{\lambda}\left[\lambda^{2}-u^{2}\right]\left[f^{\prime}(a u+(1-u) b)\right)\right]^{2} d u d \lambda
\end{aligned}
$$

By using change order of the integrals, we have

$$
\begin{aligned}
\int_{a}^{b}[f(x)]^{2} d x \leq & \frac{(b-a)^{3}}{2} \int_{0}^{1} \int_{0}^{u}\left[(1-\lambda)^{2}-(1-u)^{2}\right]\left[f^{\prime}(a u+(1-u) b)\right]^{2} d \lambda d u \\
& \left.+\frac{(b-a)^{3}}{2} \int_{0}^{1} \int_{u}^{1}\left[\lambda^{2}-u^{2}\right]\left[f^{\prime}(a u+(1-u) b)\right)\right]^{2} d \lambda d u \\
= & \left.\frac{(b-a)^{3}}{6} \int_{0}^{1}\left[f^{\prime}(a u+(1-u) b)\right)\right]^{2} d u
\end{aligned}
$$

which is the desired inequality.
Theorem 2.2. Let $f \in C^{1}([a, b])$ with $f(a)=f(b)=0, p>1$, and $f^{\prime} \in L_{p}[a, b]$, then, we have the following inequality
$\int_{a}^{b}|f(x)|^{p} d x \leq \frac{(b-a)^{p-1}}{2^{p-1} p} \int_{a}^{b}\left|f^{\prime}(x)\right|^{p} d x$.
Proof. From the hypotheses, we have
$|f(x)|^{p} \leq\left(\int_{a}^{x}\left|f^{\prime}(t)\right| d t\right)^{p}, \quad$ with $f(a)=0$
$|f(x)|^{p} \leq\left(\int_{x}^{b}\left|f^{\prime}(t)\right| d t\right)^{p}, \quad$ with $f(b)=0$.
and hence from Hölder's inequality with indices p and $\frac{p}{p-1}$, it follows that
$|f(x)|^{p} \leq(x-a)^{p-1} \int_{a}^{x}\left|f^{\prime}(t)\right|^{p} d t$
and
$|f(x)|^{p} \leq(b-x)^{p-1} \int_{x}^{b}\left|f^{\prime}(t)\right|^{p} d t$.
By integrating both sides of the inequality (2.6) from a to $a \lambda+(1-\lambda) b$ for $\lambda \in[0,1]$, we get

$$
\begin{align*}
& \int_{a}^{a \lambda+(1-\lambda) b}|f(x)|^{p} d x \tag{2.8}\\
\leq & \int_{a}^{a \lambda+(1-\lambda) b}(x-a)^{p-1} \int_{a}^{x}\left|f^{\prime}(t)\right|^{p} d t d x \\
= & \left.\frac{(x-a)^{p}}{p}\left|f^{\prime}(x)\right|^{p}\right|_{a} ^{a \lambda+(1-\lambda) b}-\frac{1}{p} \int_{a}^{a \lambda+(1-\lambda) b}(x-a)^{p}\left|f^{\prime}(x)\right|^{p} d x \\
\leq & \frac{(1-\lambda)^{p}(b-a)^{p}}{p}\left|f^{\prime}(a \lambda+(1-\lambda) b)\right|^{p}
\end{align*}
$$

Similarly, by integrating both sides of the inequality (2.7) from $a \lambda+(1-\lambda) b$ to b for $\lambda \in[0,1]$, we get

$$
\begin{align*}
& \int_{a \lambda+(1-\lambda) b}^{b}|f(x)|^{p} d x \tag{2.9}\\
\leq & \int_{a \lambda+(1-\lambda) b}^{b}(b-x)^{p-1} \int_{x}^{b}\left|f^{\prime}(t)\right|^{p} d t d x \\
= & \left.\frac{(b-x)^{p}}{p}\left|f^{\prime}(x)\right|^{p}\right|_{a \lambda+(1-\lambda) b} ^{b}-\frac{1}{p} \int_{a \lambda+(1-\lambda) b}^{b}(b-x)^{p}\left|f^{\prime}(x)\right|^{p} d x \\
\leq & \frac{\lambda^{p}(b-a)^{p}}{p}\left|f^{\prime}(a \lambda+(1-\lambda) b)\right|^{p} .
\end{align*}
$$

Adding (2.8) and (2.9), it follows that
$\int_{a}^{b}|f(x)|^{p} d x \leq \frac{(b-a)^{p}}{p}\left[(1-\lambda)^{p}+\lambda^{p}\right]\left|f^{\prime}(a \lambda+(1-\lambda) b)\right|^{p}$.
By integrating both sides of the inequality from 0 to 1 with respect to λ, we get
$\int_{a}^{b}|f(x)|^{p} d x \leq \frac{(b-a)^{p}}{p} \int_{0}^{1}\left[(1-\lambda)^{p}+\lambda^{p}\right]\left|f^{\prime}(a \lambda+(1-\lambda) b)\right|^{p} d \lambda$.
It is not difficult to reveal that the function
$h(u)=(1-\lambda)^{p}+\lambda^{p}$
for all $\lambda \in[0,1]$ attains its maximum $\frac{1}{2^{p-1}}$ at the point $\lambda=\frac{1}{2} \in[0,1]$ and using the change of variable $u=a \lambda+(1-\lambda) b$, which is the same as (2.5). This completes the proof.

Theorem 2.3. Let $f, g \in C^{1}([a, b])$ with $f(a)=f(b)=0, g(a)=g(b)=0$, and $f^{\prime}, g^{\prime} \in L_{2}[a, b]$, then, we have the following inequality
$\int_{a}^{b}|f(x)||g(x)| d x \leq \frac{(b-a)^{2}}{8} \int_{a}^{b}\left[\left|f^{\prime}(x)\right|^{2}+\left|g^{\prime}(x)\right|^{2}\right] d x$.
Proof. From the hypotheses, we have
$f(x)=\frac{1}{2}\left(\int_{a}^{x} f^{\prime}(t) d t-\int_{x}^{b} f^{\prime}(t) d t\right)$
and
$g(x)=\frac{1}{2}\left(\int_{a}^{x} g^{\prime}(t) d t-\int_{x}^{b} g^{\prime}(t) d t\right)$.
Using the properties of modulus we have
$|f(x)| \leq \frac{1}{2}\left(\int_{a}^{b}\left|f^{\prime}(t)\right| d t\right)$,
$|g(x)| \leq \frac{1}{2}\left(\int_{a}^{b}\left|g^{\prime}(t)\right| d t\right)$.
Multiplying the left sides and right sides of (2.13) and (2.14) and then integrating both sides of the inequality from a to b with respect to x, we get
$\int_{a}^{b}|f(x)||g(x)| d x \leq \frac{(b-a)}{4}\left(\int_{a}^{b}\left|f^{\prime}(t)\right| d t\right)\left(\int_{a}^{b}\left|g^{\prime}(t)\right| d t\right)$.
By using the Cauchy-Shwartz inequality, and then using elemantary inequality $\sqrt{m n} \leq \frac{1}{2}(m+n), m, n \geq 0$, we have

$$
\begin{aligned}
\int_{a}^{b}|f(x)||g(x)| d x & \leq \frac{(b-a)^{2}}{4}\left(\int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t\right)^{\frac{1}{2}}\left(\int_{a}^{b}\left|g^{\prime}(t)\right|^{2} d t\right)^{\frac{1}{2}} \\
& \leq \frac{(b-a)^{2}}{8} \int_{a}^{b}\left[\left|f^{\prime}(x)\right|^{2}+\left|g^{\prime}(x)\right|^{2}\right] d x
\end{aligned}
$$

which is the desired inequality.
Remark 2.4. By taking $f=g$ and $f^{\prime}=g^{\prime}$ in Theorem 2.3, we have
$\int_{a}^{b}[f(x)]^{2} d x \leq \frac{(b-a)^{2}}{4} \int_{a}^{b}\left[f^{\prime}(x)\right]^{2} d x$.

References

[1] R. P. Agarwal and P. Y. H. Pang, Remarks on the generalizations of Opial's inequality, J. Math. Anal. Appl. 190:2 (1995), 559-577.
[2] M.W. Alomari, On Beesack-Wirtinger Inequality, Results Math 72 (2017), 1213-1225
[3] P.R. Beesack, Integral inequalities involving a function and its derivative, Amer. Math. Monthly 78 (1971), 705-741.
[4] P.R. Beesack, Integral inequalities of the Wirtinger type, Duke Math. J. 25, 477-498, (1958).
[5] P. R. Beesack, Hardy's inequality and its extensions, Pacific J. Math. 11 (1961), 39-61.
[6] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, 1988.
[7] C.F. Lee, C.C. Yeh, C.H. Hong, R.P. Agarwal, Lyapunov and Wirtinger inequalities, Appl. Math. Lett. 17 (2004) 847-853.
[8] J. Jaroš, On an integral inequality of the Wirtinger type, Applied Mathematics Letters 24 (2011) 1389-1392.
[9] D.S. Mitrinović, J.E. Pecarić and A.M. Fink, Inequalities involving functions and their integrals and derivatives, Dordrecht, 1991.
[10] S-E. Takahasi and T. Miura, A note on Wirtinger-Beesack's integral inequalities, Math. Inequal. Appl. 6 (2003), no. 2, 277-282.
[11] C.A. Swanson, Wirtinger's inequality, SIAM J. Math. Anal. 9, 484-491, (1978).

