
Konuralp Journal of Mathematics, 7 (1) (2019) 117-121

Konuralp Journal of Mathematics
Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath

e-ISSN: 2147-625X

Surface Area Computation Established by Cubic Spline
Functions
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Abstract

The genesis of open surfaces were made of with one dimensional cubic hermite spline functions extending to two directions on previous
studies. A calculus algorithm for approximately finding the area of the open rectangular surfaces created before in this study were given. The
results of the application examples were provided at a computer software developed.
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1. Introduction

In computational applications of applied mathematics, spline functions are significant. Creation of one-dimensional spline functions was
given by Graphic Constructor [1]. The cubic spline functions given in [1] study were extended in two directions to form the solution
visualision of the Cauchy problem for linear one dimensional t-hyperbolic PDE in [4]. The value of any point on the surface was computed
in [5] with help of the partial derivative values defined in the cardinal points that characterize the resulting open surface. This computation
will help in this study. Recall of previous constructions and computations will continue until the end of the section.
a,b,c,d ∈ R and Ω = [a,b]× [c,d], consider the rectangle on tOx plane as Ω region. For the

a = t0 < t1 < · · ·< ti < · · ·< tm−1 = b, m≥ 1 and

c = x0 < x1 < · · ·< x j < · · ·< xn−1 = d, n≥ 1

i = 0,1, · · · ,m−1, j = 0,1, · · · ,n−1

Ω region divided into (n−1)× (m−1) subregions that

ωi, j = {(t,x) : ti ≤ t ≤ ti+1, x j ≤ x≤ x j+1} (1.1)

i = 0,1, · · · ,m−2, j = 0,1, · · · ,n−2.

For any ωi, j subregion have cardinal points as ωti,x j , ωti+1,x j , ωti+1,x j+1 , ωti,x j+1 . The cardinal points of each ωi, j subregion defines a grid
Ωgrd . Been presented a function λ : Ωgrd → R on the grid extended on the Ω region in[4]. At that rate,

U = {u(0,0), u(0,1), · · · , u(0,n−1), u(1,0), · · · , u(m−1,n−1)},

GT = {gT (0,0), gT (0,1), · · · , gT (0,n−1), gT (1,0), · · · , gT (m−1,n−1)},

GX = {gX (0,0), gX (0,1), · · · , gX (0,n−1), gX (1,0), · · · , gX (m−1,n−1)},

u(i, j) ∈ R, gT (i, j) ∈ R, gX (i, j) ∈ R,

λ (ti,x j) = u(i, j), λ
′
t (ti,x j) = gT (i, j), λ

′
x(ti,x j) = gX (i, j),

f : Ω→ R, f (ti,x j) = u(i, j), λ (ti,x j) = f (ti,x j)

i = 0,1, · · · ,m−1, j = 0,1, · · · ,n−1.
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Computation of f : Ω→ R, f (t,x) differentiable real functions were given in [4, 5].

S(t,x0), S(t,x1), S(t,x2), . . . , S(t,xn−1), t0 ≤ t ≤ tn−1

H(t0,x), H(t1,x), H(t2,x), . . . , H(tm−1,x), x0 ≤ x≤ xm−1

S(t,x j), j = 0,1, · · · ,n−1, t0 ≤ t ≤ tm−1 describe direction of t spline functions and H(ti,x), i = 0,1, · · · ,m−1, x0 ≤ x≤ xn−1 describe
direction of x spline functions [5]. Let been considered that

T = {ti | ti < ti+1, i = 0,1, · · · ,m−1, m≥ 1},

X = {x j |x j < x j+1, j = 0,1, · · · ,n−1, n≥ 1}.

Superscript (T ) and (X) notations will point out that related values on direction of spline functions.
U and GT datasets provides for j = 0,1, · · · ,n−1, n pieces

U (T )
j = {u(T ) j

i = u(i, j) | i = 0,1, · · · ,m−1},

G(T )
j = {g(T ) j

i = gT(i, j) | i = 0,1, · · · ,m−1}

vectors for each S
(
t,x j

)
spline functions direction of t.

Furthermore,U with GX dataset provides for i = 0,1, · · · ,m−1, m pieces

U (X)
i = {u(X)i

j = u(i, j) | j = 0,1, · · · ,n−1},

G(X)
i = {g(X)i

j = gX(i, j) | j = 0,1, · · · ,n−1}

vectors for each H(ti,x) spline functions direction of x. Obvious that u(T ) j
i = u(X)i

j . Hereby, the m+ n pieces one-dimensional spline
functions be calculated. Differentiable real-valued function cubicSPL was submitted in detail in [1, 4, 5]. In this instance, one dimensional
computations are

s(t) =CubicSPL(T,U (T )
r ,G(T )

r , t), t ∈ [t0, tm−1], r ∈ { j | j = 0,1, · · · ,n−1},

h(x) =CubicSPL(X ,U (X)
p ,G(X)

p ,x), x ∈ [x0, xn−1], p ∈ {i | i = 0,1, · · · ,m−1}.

Let been that τ ∈ (tp, tp+1) and ξ ∈ (xr, xr+1), the value of (τ,ξ ) of the surface can be computed in two different layouts. First layout is

u(X)aux
j = s j(τ) =CubicSPL(T,U (T )

j ,G(T )
j ,τ), j = 0,1 · · · ,n−1,

g(X)aux
j = g(X)p

j
tp+1− τ

tp+1− tp
+ g(X)p+1

j
|tp− τ|

tp+1− tp
, j = 0,1 · · · ,n−1,

h(ξ ) =CubicSPL(X ,U (X)
aux ,G

(X)
aux ,ξ ). (1.2)

Second layout is

u(T )aux
i = hi(ξ ) =CubicSPL(X ,U (X)

i ,G(X)
i ,ξ ), i = 0,1 · · · ,m−1,

g(T )aux
i = g(T )ri

xr+1−ξ

xr+1− xr
+ g(T )r+1

i
|xr−ξ |

xr+1− xr
, i = 0,1 · · · ,m−1,

s(τ) =CubicSPL(T,U (T )
aux ,G

(T )
aux,τ). (1.3)

h(ξ ) at equation(1.2) and s(τ) at equation(1.3) offers identical approximations to f (τ, ξ ).

2. Open Surface Area

This section will focus on surface area of the surface defined in the previous section. Let been p ∈ {i | i = 0,1, · · · ,m− 2}, r ∈ { j | i =
0,1, · · · ,n−2}, when taken into account the particular one ωp,r subregions that belong to Ω(1.1), the v, v̂,w, ŵ ∈ R3 vectors’ formation that
depending on the values representing by the cardinal points are

v =


tp+1− tp

0

u(T )rp+1−u(T )rp

 , v̂ =

 0
xr+1− xr

u(X)p
r+1 −u(X)p

r

 ,

w =


tp− tp+1

0

u(T )r+1
p −u(T )r+1

p+1

 , ŵ =

 0
xr− xr+1

u(X)p+1
r −u(X)p+1

r+1

 .
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EΩ is represent the surface over establish by f : Ω→ R function on Ω region. Eωp,r is the surface piece that relation with ωp,r. ‖ · ‖ will be
denote the Euclidean norm of a vector and 〈·, ·〉 will be denote vector inner product. q = v− v̂, ‖v‖,‖v̂‖,‖q‖ are sides lengths of a triangle.
Vertices of triangle are junction with surface at f (tp,xr), f (tp+1,xr), f (tp,xr+1). −q = w− ŵ, ‖w‖,‖ŵ‖,‖q‖ are sides lengths of other
triangle, it’s vertices are adjacent at surface at f (tp+1,xr+1), f (tp,xr+1), f (tp+1,xr).

Π
(1)(Eωp,r )≈

1
2

‖v‖‖v̂‖
√√√√1−

(
〈v, v̂〉
‖v‖‖v̂‖

)2

+ ‖w‖‖ŵ‖

√√√√1−

(
〈w, ŵ〉
‖w‖‖ŵ‖

)2


gives rudimentary approximation to area calculation of Eωp,r which about ωp,r.
Another approach can be made as follows,
Let been v(1), v(2), v(3), v(4) ∈ R3, these vectors’ generation are that connected to the values represented by the cardinal points as

tµ =
tp+1 + tp

2
, xµ =

xr+1 + xr

2
, uµ = f

(
tµ ,xµ

)
,

v(1) =


−tµ

xµ

u(T )r+1
p −uµ

 , v(2) =


tµ

xµ

u(T )r+1
p+1 −uµ

 ,

v(3) =


tµ

− xµ

u(T )rp+1−uµ

 , v(4) =


−tµ

− xµ

u(T )rp −uµ

 .

Area of Eωp,r related with ωp,r is as follows

Π
(2)(Eωp,r ) ≈

1
2

∥∥∥v(1)
∥∥∥ ∥∥∥v(2)

∥∥∥
√√√√√1−


〈

v(1),v(2)
〉

∥∥v(1)
∥∥ ∥∥v(2)

∥∥
2

+
∥∥∥v(2)

∥∥∥ ∥∥∥v(3)
∥∥∥
√√√√√1−


〈

v(2),v(3)
〉

∥∥v(2)
∥∥ ∥∥v(3)

∥∥
2

+
∥∥∥v(3)

∥∥∥ ∥∥∥v(4)
∥∥∥
√√√√√1−


〈

v(3),v(4)
〉

∥∥v(3)
∥∥ ∥∥v(4)

∥∥
2

+
∥∥∥v(4)

∥∥∥ ∥∥∥v(1)
∥∥∥
√√√√√1−


〈

v(4),v(1)
〉

∥∥v(4)
∥∥ ∥∥v(1)

∥∥
2

 .

Thus, overall area of the EΩ surface congruous with region Ω is

Π(EΩ)≈
m−2

∑
i=0

n−2

∑
j=0

Π
(2)(Eωi, j ).

3. Splitting to segments

For the purpose of better approximation, each subregions has to split to more ω̂ segments by step widths given as

L(T ), L(X) ∈ Z, L(T ) ≥ 1, L(X) ≥ 1, η
(T ) =

ti+1− ti
L(T )

, η
(X) =

x j+1− x j

L(X)
.

tk = ti +η(T )k,

xl = x j +η(X)l,

u(T )lk = f (tk,xl),


k = 0,1, · · · ,L(T )−1,

l = 0,1, · · · ,L(X)−1.

Π
(2)(Eωi, j )≈

L(T )−2

∑
k=0

L(X)−2

∑
l=0

Π
(2)(Eω̂k,l

).
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Example 3.1. Considering that

T = [1,2,4,5,6], X = [0.5,2,3,5],

U =


1, −1, 2, 1, 3
−1, 1, 2, 2, 1

2, 1, −2, 3, 2
4, 3, 2, 2, 4

 , GT =


−2, 0, 0, 0, 0

1, 1.5, −0.4, −1, 0
1, 0, 0, 0.5, −0.5

1.5, 0.5, 0.2, 0.4, −1



and GX =


−1.3 1.4 0.9 0.7 −0.1

0 1.2 0 0.8 0
0 0.3 0 0.1 0.1

−0.5 0 1.3 −0.4 −0.3

 datums are represent an open surface, table (1) is comprised results for several selected

L(T ) and L(X) values.

Table 1: Computation results for several selected L(T ) and L(X) values of example (3.1).

L(T ) L(X) Area
1 1 46.69228
1 2 47.59803
2 1 48.03892
2 2 48.80278
2 3 49.40648
3 2 49.66742
3 3 49.44832
3 4 49.66095
4 3 49.75763
4 4 49.72240
5 5 49.85829
6 6 49.93540
7 7 49.98317
8 8 50.01477
9 9 50.03674
10 10 50.05263

L(T ) L(X) Area
11 11 50.06450
12 12 50.07358
13 13 50.08069
14 14 50.08636
15 15 50.09094
16 16 50.09471
17 17 50.09784
18 18 50.10047
29 29 50.11389
30 30 50.11444
31 31 50.11494
32 32 50.11539
33 33 50.11581
34 34 50.11619
35 35 50.11653
36 36 50.11685

L(T ) L(X) Area
37 37 50.11714
38 38 50.11741
39 39 50.11766
50 50 50.11949
55 55 50.11999
60 60 50.12036
70 70 50.12089
80 80 50.12123
90 90 50.12146
91 91 50.12148
92 92 50.12150
93 93 50.12152
94 94 50.12153

100 100 50.12163
200 200 50.12216
300 300 50.12226

Example 3.2.

T = [−1,1], X = [−1,1], U =

{
−1, 1

1, −1

}
,

GT =

{
1, 1
−1, −1

}
, GX =

{
1, −1
1, −1

}
,

Given these datums, according to the different selected segmentations quantity, few results are shown in table (2).

Table 2: A few results for chosen different L(T ) and L(X) values.

L(T ) L(X) Area
1 1 5.65685
1 2 5.41421
2 1 5.41421
2 2 5.23607

L(T ) L(X) Area
10 10 5.12755
30 30 5.12364
50 50 5.12333
70 70 5.12325

L(T ) L(X) Area
95 95 5.12321
100 100 5.12320
200 200 5.12317
300 300 5.12316

Example 3.3.

T = [−1,1], X = [−1,1], U =

{
−1, 1

1, −1

}
,

GT =

{
−1, −1

1, 1

}
, GX =

{
−1, 1
−1, 1

}
,

Here handled same segmentations quantity with previous example (3.2), few results are shown in the table (3).
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Table 3: A few results for chosen different L(T ) and L(X) values.

L(T ) L(X) Area
1 1 5.65685
1 2 5.41421
2 1 5.41421
2 2 6.36003

L(T ) L(X) Area
10 10 6.92092
30 30 6.94042
50 50 6.94198
70 70 6.94241

L(T ) L(X) Area
95 95 6.94262
100 100 6.94264
200 200 6.94281
300 300 6.94284

4. Conclusion

When the vertices points and the middle point of quadrilateral partitioned surface particle is considered, the areas of the four contiguous
triangles overlapping by these points were computed. This treat was repeated for all portions.
In synopsis, this exertion is an approach to the

Π(EΩ) =
∫ ∫

Ω

√(
∂ f
∂ t

)2
+

(
∂ f
∂x

)2
+1 dt dx

calculus for the function f : Ω→ R defined by cubic spline functions except definition of f as f (t,x)< 0.
Example results were provided by a computer console application that evolved in the course of this study. This console application attainable
of http://www.oguzersinan.net.tr/softwares address.
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