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Abstract

In this paper, we consider the existence and uniqueness of solutions to the impulsive
differential equations with inclusions involving Katugampola fractional derivative. With the
help of properties of Katugampola fractional calculus and fixed point methods, we derive
existence and uniqueness results. Finally, an example is given to illustrate our theoretical
results.

1. Introduction

Fractional calculus and its potential applications have gained a lot of importance, mainly because fractional calculus has become a powerful
tool with more accurate and successful results in modelling several complex phenomena in numerous seemingly diverse and widespread
fields of science and engineering. Many fields such as physics, fluid mechanics, viscoelasticity, heat conduction in materials with memory,
chemistry and engineering can be described by fractional differential equations, see the basic books [1, 2, 3]. Recently, some basic theory for
fractional differential equations and inclusions was discussed see the papers [4, 5, 6, 7, 8, 9] and the references therein. In recent years,
attention has been paid to establish sufficient conditions for the existence results to differential systems involving Katugampola fractional
derivatives see the papers [10, 11, 12]. In recent years, numerous contributions have been made in the theory and applications of (impulsive)
fractional differential equations. The theory of impulsive differential equations and impulsive differential inclusions has been an object
interest because of its wide applications in physics, biology, engineering, medical fields, industry and technology. The reason for this
applicability arises from the fact that impulsive differential problems are an appropriate model for describing process which at certain
moments change their state rapidly and which cannot be described using the classical differential problems. For some of these applications
we refer to [13, 14, 15, 16, 17]. During the last ten years, impulsive differential inclusions with different condition have intensely studied by
many mathematicians. At present, the foundations of the general theory of impulsive differential equations and inclusions are already laid,
and many of them are investigated in details in the papers of Benchohra et al. [18, 19].
In this paper we are concerned with the existence of the following Katugampola fractional impulsive differential inclusions of the type,

ρ Dω
0+u(x) ∈ H(x,u(x)), x ∈ J= [0,T ], x 6= xm, m = 1,2, . . .k, 1 < ω ≤ 2,

∆u|x=xm = Im(u(x−m)), m = 1,2, . . . ,k,
∆u′|x=xm = Īm(u(x−m)), m = 1,2, . . . ,k,
u(0) = u0, u′(0) = u1,

(1.1)

where ρ Dω is the Katugampola fractional derivative in Caputo sense, H : J×R→ P(R) is a multivalued map, [P(R) is the family of all
nonempty subset of R], Im and Īm : R→ R, m = 1,2, · · ·k, and u0,u1 ∈ R, 0 = x0 < x1 < · · ·< xk < xk+1 = T , ∆u|x=xm = u(x+m)−u(x−m),
∆u′|x=xm = u′(x+m)−u′(x−m), u(x+m) = liml→0+ u(xm + l) and u(x−m) = liml→0− u(xm + l) denotes the right and left limits of u(x) at x = xm,
m = 1,2, . . .k.
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2. Prerequisites

In this section, we introduce notations, definitions, lemmas and theorems that will be used for the main results.
Let C(J,R) be the Banach space of all continuous functions from J into R with the norm

‖u‖
∞
= sup{|u(x)| : 0≤ x≤ T},

and let L1(J,R) be the Banach space of functions u : J→ R that are Lebesgue integrable with the norm

‖u‖L1 =
∫ T

0
|u(x)|dx.

The space AC1(J,R) consists of functions u : J→R, which are absolutely continuous, whose first derivative u′ is absolutely continuous. Let
(Y,‖·‖) be a Banach space and let us assume that

Qcl(Y ) = {X ∈ P(Y ) : X closed},

Qb(Y ) = {X ∈ P(Y ) : X bounded},

Qcp(Y ) = {X ∈ P(Y ) : X compact},

and,

Qcp,c(Y ) = {X ∈ P(Y ) : X compact and convex}.

A multivalued map F : Y → Q(Y ) is convex(closed) valued if F(t) is convex(closed) for all t ∈ Y . F is bounded on bounded sets if
F(B) = ∪t∈BF(t) is bounded in Y for all B ∈ Qb(Y )(i.e., supt∈B{sup{|u| : u ∈ F(t)}} < ∞). F is called upper semi-continuous on Y if
for each t0 ∈ Y , the set F(t0) is a nonempty closed subset of Y , and if for each open set M of Y containing F(t0), there exists an open
neighborhood M0 of t0 such that F(M0)⊆M. F is said to be completely continuous if F(B) is relatively compact for every B ∈ Qb(Y ). If
the multivalued map F is completely continuous with nonempty compact values, then F is upper semi-continuous if and only if F has a
closed graph (i.e., tn→ t∗, un→ u∗, un ∈ F(tn)⇒ u∗ ∈ F(t∗) ). F has a fixed point if there is t ∈ Y such that t ∈ F(t).
The fixed point set of the multivalued operator F will be denoted by Fix F . A multivalued map F : J→ Qcl(R) is said to be measurable if
for every u ∈ R, the function

x 7→ d(u,F(x)) = inf{|u−w| : w ∈ F(x)},

is measurable. See the books of Aubin and Cellina [5], Deimling [20] and Hu and Papageorgiou [21] for more details.

Definition 2.1. A multivalued map H : J×R→ P(R) is said to be Carathéodory if

(i) x 7→ H(x,y) is measurable for each y ∈ R;
(ii) y 7→ H(x,y) is upper semi-continuous for almost all x ∈ J.

For each u ∈PC(J,R), define the set of selections of H by

SH,u = {g ∈ L1(J,R) : g(x) ∈ H(x,u(x)) a.e. x ∈ J}.

Let (Y,d) be a metric space induced from the normed space (Y, |·|). Consider Gd : P(Y )×P(Y )→ R+∪{∞} given by

Fd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A,b)
}
,

where d(A,b) = infa∈A d(a,b), d(a,B) = infb∈B d(a,b). Then (Qb,cl(Y ),Gd) is a metric space and (Qcl(Y ),Gd) is a generalized metric
space. See the paper [22].

Definition 2.2. A multivalued operator M : Y → Qcl(Y ) is called

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Gd(M(t),M(u))≤ γd(t,u), f or each t,u ∈ Y,

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Lemma 2.3. [23] Let (Y,d) be a complete metric space. If M : Y → Qcl(Y ) is a contraction, then Fix M 6= /0.

Definition 2.4. [2, 3] The fractional(arbitrary) order integral of the function
h ∈ L1([a,b],R+) of order ω ∈ R+ is defined by

Iω
a h(x) =

1
Γ(ω)

∫ x

a
(x− s)ω−1h(s)ds,

where Γ is the gamma function. When a = 0, we write Iω h(x) = h(x)∗ψω (x), where ψω (x) = xω−1

Γ(ω)
for x > 0, and ψω (x) = 0 for x≤ 0, and

ψω → δ (x) as ω → 0, where δ is the delta function.
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Definition 2.5. [2, 3] For a function h given on the interval [a,b], the Caputo fractional-order derivative of h, is defined by

(cDω
a+h)(x) =

1
Γ(n−ω)

∫ x

a
(x− s)n−ω−1h(n)(s)ds,

where n = [ω]+1 and [ω] denotes the integer part of the real number ω .

Now, we consider the definitions of the generalized fractional operators introduced in [10, 11, 12].

Definition 2.6. The generalized left-sided fractional integral ρ Iω
a+h of order ω ∈ C(Re(ω)> 0) is defined by

(ρ Iω
a+h)(x) = ρ1−ω

Γ(ω)

∫ x
a (x

ρ − sρ )ω−1sρ−1h(s)ds, (2.1)

for x > a, if the integral exists.

Definition 2.7. The generalized fractional derivative, corresponding to the generalized fractional integral (2.1), is defined for x > a, by

(ρ Dω
a+h)(x) =

(
x1−ρ d

dx

)n
(ρ In−ω

a+ h)(x)

=
ρω−n+1

Γ(n−ω)

(
x1−ρ d

dx

)n ∫ x

a
(xρ − sρ )n−ω−1sρ−1h(s)ds, (2.2)

if the integral exists.

Definition 2.8. The Caputo-type generalized fractional derivative, ρ
c Dω

a+ is defined via the above generalized fractional derivative (2.2) as
follows

ρ
c Dω

a+h(x) =

(
ρ Dω

a+

[
h(s)−

n−1

∑
m=0

h(m)(a)
m!

(s−a)m

])
(x),

where n = dRe(ω)e.

Sufficient conditions are given in [2] for the fractional differential and integral to exist.

3. The convex case

In this section, we discuss about the existence of solutions for the problem (1.1) when the right hand side has the convex values. For this, we
assume that H is a compact, convex valued and multivalued map. Consider the Banach space,

PC(J,R) = {u : J→ R : u ∈ C((xm,xm+1],R), m = 0,1, . . .k+1

and there exist u(x−m),u(x
+
m), m = 1,2, . . .k with u(x−m) = u(xm)},

with the norm

‖u‖PC = sup
x∈J
|u(x)| .

Set J′ := [0,T ]\{x1,x2, . . .xk}.

Definition 3.1. A function u ∈PC(J,R)∩∪k
m=0AC

1((xm,xm+1),R) with its ω-derivative exists on J′ is said to be a solution of (1.1), if
there exists a function g ∈ L1([0,T ],R) such that g(x) ∈ H(x,u(x)) a.e. x ∈ J satisfies the differential equation ρ Dω

0+u(x) = g(x) on J′, and
conditions

∆u|x=xm = Im(u(x−m)), m = 1,2, . . .k,

∆u′|x=xm = Īm(u(x−m)), m = 1,2, . . .k,

u(0) = u0, u′(0) = u1,

are satisfied. Let h : [a,b]→ R be a continuous function. We need the following lemmas for the existence of solutions for the problem (1.1).

Lemma 3.2. [9] Let ω > 0, then the differential equation

ρ Dω
0+h(x) = 0,

has solutions h(x) = b0 +b1(
xρ

ρ
)+b2(

xρ

ρ
)2 + · · ·+bn−1(

xρ

ρ
)(n−1), bi ∈ R, i = 0,1,2, . . . ,n−1, n = [ω]+1.

Lemma 3.3. [9] Let ω > 0, then

ρ Iω
0+
(

ρ Dω
0+h(x)

)
= h(x)+b0 +b1(

xρ

ρ
)+b2(

xρ

ρ
)2 + · · ·+bn−1(

xρ

ρ
)(n−1),

for some bi ∈ R, i = 0,1,2, . . . ,n−1, n = [ω]+1.

From Lemma 3.2, and 3.3, we get the following results which is useful in the following sequel.
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Lemma 3.4. Let 1 < ω ≤ 2 and let g ∈PC(J,R). A function u is a solution of the fractional integral equation

u(x) =



u0 +u1(
xρ

ρ
)+ ρ1−ω

Γ(ω)

∫ x
0 (x

ρ − sρ )ω−1sρ−1g(s)ds, if x ∈ [0,x1],

u0 +u1(
xρ

ρ
)+ ρ1−ω

Γ(ω) ∑
m
i=1
∫ xi

xi−1
(xρ

i − sρ )ω−1sρ−1g(s)ds

+ ρ2−ω

Γ(ω−1) ∑
m
i=1(x

ρ−1− xρ−1
i )

∫ xi
xi−1

(xρ

i − sρ )ω−2sρ−1g(s)ds

+ ρ1−ω

Γ(ω)

∫ x
xm
(xρ − sρ )ω−1sρ−1g(s)ds

+∑
m
i=1 Ii(u(x−i ))+∑

m
i=1(x− xi)Īi(u(x−i )), if x ∈ (xm,xm+1], m = 1,2, . . .k,

(3.1)

if and only if u is a solution of the fractional initial value problem
ρ Dω

0+u(x) = g(x), for each x ∈ J′,

∆u|x=xm = Im(u(x−m)), m = 1,2, . . . ,k,
∆u′|x=xm = Īm(u(x−m)), m = 1,2, . . . ,k,
u(0) = u0, u′(0) = u1.

(3.2)

Proof. Assume that u satisfies (3.2). If x ∈ [0,x1] then ρ Dω
0+u(x) = g(x). From Lemma 3.3, we get

u(x) = b0 +b1(
xρ

ρ
)+

ρ1−ω

Γ(ω)

∫ x

0
(xρ − sρ )ω−1sρ−1g(s)ds.

Hence b0 = u0, b1 = u1. Thus

u(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω)

∫ x

0
(xρ − sρ )ω−1sρ−1g(s)ds.

If x ∈ (x1,x2], then from Lemma 3.3, we arrive to

u(x) = b0 +b1(
xρ − xρ

1
ρ

)+
ρ1−ω

Γ(ω)

∫ x

x1

(xρ − sρ )ω−1sρ−1g(s)ds. (3.3)

∆u|x=x1 = u(x+1 )−u(x−1 )

= b0−

(
u0 +u1(

xρ

1
ρ
)+

ρ1−ω

Γ(ω)

∫ x1

0
(xρ

1 − sρ )ω−1sρ−1g(s)ds

)
= I1(u(x−1 )).

Hence,

b0 = u0 +u1(
xρ

1
ρ
)+

ρ1−ω

Γ(ω)

∫ x1

0
(xρ

1 − sρ )ω−1sρ−1g(s)ds+ I1(u(x−1 )). (3.4)

∆u′|x=x1 = u′(x+1 )−u′(x−1 )

= b1−

(
u1 +

ρ2−ω (xρ−1− xρ−1
1 )

Γ(ω−1)

∫ x1

0
(xρ

1 − sρ )ω−2sρ−1g(s)ds

)
= Ī1(u(x−1 )),

and

b1 = u1 +
ρ2−ω

Γ(ω−1)
(xρ−1− xρ−1

1 )
∫ x1

0
(xρ

1 − sρ )ω−2sρ−1g(s)ds+ Ī1(u(x−1 )). (3.5)

Then by (3.3)-(3.5), we get

u(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω)

∫ x1

0
(xρ

1 − sρ )ω−1sρ−1g(s)ds

+
ρ2−ω

Γ(ω−1)
(xρ−1− xρ−1

1 )
∫ x1

0
(xρ

1 − sρ )ω−2sρ−1g(s)ds

+
ρ1−ω

Γ(ω)

∫ x

x1

(xρ − sρ )ω−1sρ−1g(s)ds

+ I1(u(x−1 ))+(x− x1)Ī1(u(x−1 )).

If x ∈ (xm,xm+1], then from Lemma 3.3, we get (3.1). Conversely, assume that u satisfies the equation (3.1). If x ∈ [0,x1] then u(0) = u0,
u′(0) = u1 and using the concept that ρ Dω

0+ is the left inverse of ρ Iω
0+ , we get,

ρ Dω
0+u(x) = g(x), for each x ∈ [0,x1].
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If x ∈ [xm,xm+1), m = 1,2, . . .k and using the fact that ρ Dω
0+L = 0, where L is a constant, we have

ρ Dω
0+u(x) = g(x), for each x ∈ [xm,xm+1).

Also, we can easily prove that

∆u|x=xm = Im(u(x−m)), m = 1,2, . . . ,k,

∆u′|x=xm = Īm(u(x−m)), m = 1,2, . . . ,k.

By using the nonlinear alternative of Leray-Schauder type for multivalued maps [24], we can prove our first result. For this, we assume the
following hypotheses:

(A1) H : J×R→ Pcp,c(R) is a Carathéodory multivalued map.
(A2) There exists q ∈ C(J,R+) and Φ : [0,∞)→ (0,∞) continuous and nondecreasing such that

‖H(x,y)‖P = sup{|g| : g ∈ H(x,y)} ≤ q(x)Φ(|y|), for x ∈ J and y ∈ R.

(A3) There exist Φ∗,Φ̄∗ : [0,∞)→ (0,∞) continuous and nondecreasing such that

|Im(y)| ≤Φ
∗(|y|), for y ∈ R,

|Īm(y)| ≤ Φ̄
∗(|y|), for y ∈ R.

(A4) There exists a number N > 0 such that

N

|u0|+T ρ

∣∣∣ u1
ρ

∣∣∣+aΦ(N)+ kΦ̄∗(N)+ kT ρ Φ̄∗(N)
> 1,

where q0 = sup{q(x) : x ∈ J} and a = kT ρω q0

ρω Γ(ω+1) +
kT ρω q0

ρω−1Γ(ω)
+ T ρω q0

ρω Γ(ω+1) .

(A5) There exists l̃ ∈ L1(J,R+) such that

Gd(H(x,y),H(x, ȳ))≤ l̃(x) |y− ȳ| for a.e. x ∈ J, y, ȳ ∈ R,

d(0,H(x,0))≤ l̃(x), a.e. x ∈ J.

Theorem 3.5. Under assumptions (A1)-(A5), the initial value problem (1.1) has at least one solution on J.

Proof. We transform the problem (1.1) into a fixed point problem. Consider the multivalued operator

M(u) = {h ∈PC(J,R) : h(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1g(s)ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1g(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1g(s)ds

+ ∑
0<xm<x

Im(u(x−m))+ ∑
0<xm<x

(x− xm)Īm(u(x−m)), g ∈ SH,u}.

Clearly from Lemma 3.4, fixed points of M are solutions to (1.1). We shall prove that M satisfies the assumptions of the nonlinear alternative
of Leray-Schauder type [24]. The proof of the theorem contains five steps.
Step 1: M(u) is convex for each u ∈PC(J,R). If h1,h2 ∈M(u), then there exist g1,g2 ∈ SH,u such that for each x ∈ J, we obtain,

hi(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1gi(s)ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1gi(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1gi(s)ds

+ ∑
0<xm<x

Im(u(x−m))+ ∑
0<xm<x

(x− xm)Īm(u(x−m)), i = 1,2.
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Let 0≤ d ≤ 1, then for each x ∈ J, we have

(dh1 +(1−d)h2)(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1[dg1(s)+(1−d)g2(s)]ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1[dg1(s)+(1−d)g2(s)]ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1[dg1(s)+(1−d)g2(s)]ds

+ ∑
0<xm<x

Im(u(x−m))+ ∑
0<xm<x

(x− xm)Īm(u(x−m)).

Since SH,u is convex(because H has convex values), we get

dh1 +(1−d)h2 ∈M(u).

Step 2: M maps bounded sets into bounded sets in PC(J,R). Let BΩ∗ = {u ∈PC(J,R) : ‖u‖
∞
≤ Ω∗} be bounded set in PC(J,R) and

u ∈ BΩ∗ . Then for each h ∈M(u) and x ∈ J, we get (A2)-(A3),

|h(x)| ≤ |u0|+
∣∣∣∣u1

ρ

∣∣∣∣T ρ +
ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1 |g(s)|ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1 |g(s)|ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 |g(s)|ds

+ ∑
0<xm<x

∣∣Im(u(x−m))
∣∣+ ∑

0<xm<x
(x− xm)

∣∣Īm(u(x−m))
∣∣

≤ |u0|+
∣∣∣∣u1

ρ

∣∣∣∣T ρ +
kT ρω q0

ρω Γ(ω +1)
Φ(Ω∗)+

T ρω q0

ρω−1Γ(ω)
Φ(Ω∗)+

T ρω q0

ρω Γ(ω +1)
Φ(Ω∗)+ kΦ

∗(Ω∗)+ kΦ̄
∗(Ω∗).

Thus,

‖h‖
∞
≤ |u0|+

∣∣∣∣u1

ρ

∣∣∣∣T ρ +
kT ρω q0

ρω Γ(ω +1)
Φ(Ω∗)+

T ρω q0

ρω−1Γ(ω)
Φ(Ω∗)+

T ρω q0

ρω Γ(ω +1)
Φ(Ω∗)+ kΦ

∗(Ω∗)+ kΦ̄
∗(Ω∗) := ˜̀.

Step 3: M maps bounded sets into equicontinuous sets of PC(J,R). Let t1, t2 ∈ J, t1 < t2, BΩ∗ be a bounded set of PC(J,R) as in Step 2,
let u ∈ BΩ∗ and h ∈M(u), then

|h(t2)−h(t1)| ≤
∣∣∣∣u1

ρ

∣∣∣∣(tρ

2 − tρ

1 )+
ρ1−ω

Γ(ω) ∑
0<xm<t2−t1

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1 |g(s)|ds

+
ρ1−ω

Γ(ω)

∫ t1

xm

∣∣∣(tρ

2 − sρ )ω−1− (tρ

1 − sρ )ω−1
∣∣∣ ∣∣∣sρ−1

∣∣∣ |g(s)|ds

+
ρ1−ω

Γ(ω)

∫ t2

t1

∣∣∣(tρ

2 − sρ )ω−1
∣∣∣ ∣∣∣sρ−1

∣∣∣ |g(s)|ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<t2−t1

(tρ−1
2 − xρ−1

m )
∫ xm

xm−1

(xρ
m− sρ )ω−2

∣∣∣sρ−1
∣∣∣ |g(s)|ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<t1

(tρ−1
2 − tρ−1

1 )
∫ xm

xm−1

(xρ
m− sρ )ω−2

∣∣∣sρ−1
∣∣∣ |g(s)|ds

+ ∑
0<xm<t2−t1

∣∣Im(u(x−m))
∣∣+ ∑

0<xm<t2−t1

(t2− xm)
∣∣Īm(u(x−m))

∣∣
+ ∑

0<xm<t1

(t2− t1)
∣∣Īm(u(x−m))

∣∣ .
From the hypotheses (A2) and (A3), we can easily show that the right hand side of the above inequality tends to zero independently of u as
t1→ t2. From Step 1 to Step 3 together with the Arzelá-Ascoli theorem, we can conclude that M : PC(J,R)→ P(PC(J,R)) is completely
continuous.
Step 4: M has a closed graph. Let un→ u∗, hn ∈M(un) and hn→ h∗. we want to prove that h∗ ∈M(u∗). hn ∈M(un) means that there
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exists gn ∈ SH,un such that, for each x ∈ J,

hn(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1gn(s)ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1gn(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1gn(s)ds

+ ∑
0<xm<x

Im(un(x−m))+ ∑
0<xm<x

(x− xm)Īm(un(x−m)).

we want to prove that, there exists g∗ ∈ SH,u∗ such that, for each x ∈ J,

h∗(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1g∗(s)ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1g∗(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1g∗(s)ds

+ ∑
0<xm<x

Im(u∗(x−m))+ ∑
0<xm<x

(x− xm)Īm(u∗(x−m)). (3.6)

Since H(x, ·) is upper semi continuous, then for every ε > 0, there exist m0(ε)≥ 0 such that for every m≥ m0, we get

gn(x) ∈ H(x,un(x))⊂ H(x,u∗(x))+ εB(0,1), a.e. x ∈ J.

Since H(·, ·) has compact values, then there exists a subsequence gmn(·) such that

gmn(·)→ g∗(·), as n→ ∞,

g∗(x) ∈ H(x,u∗(x)), a.e. x ∈ J.

Using the concept that the functions Im and Īm, m = 1,2, . . .k are continuous, we can easily prove that h∗ and g∗ satisfy (3.6).
Step 5: A priori bounds on solutions. Let u ∈PC(J,R) be such that u ∈ µM(u) for µ ∈ (0,1). Then there exists g ∈ SH,u such that, for
each x ∈ J,

|u(x)| ≤ |u0|+
∣∣∣∣u1

ρ

∣∣∣∣T ρ +
ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1q(s)Φ(|u(s)|)ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1q(s)Φ(|u(s)|)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1q(s)Φ(|u(s)|)ds

+ ∑
0<xm<x

Φ
∗(|u(s)|)+ ∑

0<xm<x
Φ̄
∗(|u(s)|)

≤ |u0|+
∣∣∣∣u1

ρ

∣∣∣∣T ρ +
kT ρω q0

ρω Γ(ω +1)
Φ(‖u‖

∞
)+

kT ρω q0

ρω−1Γ(ω)
Φ(‖u‖

∞
)+

kT ρω q0

ρω Γ(ω +1)
Φ(‖u‖

∞
)

+ kΦ
∗(‖u‖

∞
)+ kΦ̄

∗(‖u‖
∞
).

Thus,

‖u‖
∞

|u0|+
∣∣∣ u1

ρ

∣∣∣T ρ +aΦ(‖u‖
∞
)+ kΦ∗(‖u‖

∞
)+ kΦ̄∗(‖u‖

∞
)
≤ 1.

Then by (A4), there exists N such that ‖u‖
∞
6= N. Let

U = {u ∈PC(J,R) : ‖u‖
∞
< N}.

The operator M : U → P(PC(J,R)) is upper semi-continuous and completely continuous. From the choice of U , there is no u ∈ ∂U such
that u ∈ µM(u) for some µ ∈ (0,1). From the concepts of the nonlinear alternative of Leray-Schauder type [24], we conclude that M has a
fixed point u in U which is a solution of the problem (1.1). This completes the proof of the theorem.
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4. The nonconvex case

In this section, we discuss about the concepts for the existence of solutions for the problem (1.1), when the right hand side has a nonconvex
value. Now, we adopt the concepts from Bressan and Colombo [25], Covitz and Nodler [23], and some existence results for nonconvex
valued differential inclusion in [5, 21]. We consider the following hypotheses for the next theorem:

(A6) H : J×R→ Qcp(R) has the property that H(·,y) : J→ Qcp(R) is measurable, convex valued and integrable bounded for each y ∈ R.
(A7) There exist constants `∗, ¯̀∗ > 0 such that

|Im(y)− Im(ȳ)| ≤ `∗ |y− ȳ| , for each y, ȳ ∈ R and m = 1,2, . . .k,

|Īm(y)− Īm(ȳ)| ≤ ¯̀∗ |y− ȳ| , for each y, ȳ ∈ R and m = 1,2, . . .k.

Theorem 4.1. Assume that (A5)-(A7). If[
kl̃T ρω

ρω Γ(ω +1)
+

kl̃T ρω

ρω−1Γ(ω)
+

l̃T ρω

ρω Γ(ω +1)
+ k(`∗+T ρ ¯̀∗)

]
< 1, (4.1)

where l̃ = sup{l̃(x) : x ∈ J}, then (1.1) has one solution on J.

Proof. For each u ∈PC(J,R), the set SH,u is nonempty. From (A6) and (see [26, Theorem III.6], H has a measurable selection. We shall
prove that M satisfies the assumptions of Lemma 2.3. The proof contains two steps.
Step 1: M(u) ∈ Qcl(PC(J,R)) for each u ∈PC(J,R). Let (un)n≥0 ∈M(u) such that un→ ũ in PC(J,R). Then, ũ ∈PC(J,R) and there
exists gn ∈ SH,u such that for each x ∈ J,

un(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1gn(s)ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1gn(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1gn(s)ds

+ ∑
0<xm<x

Im(u(x−m))+ ∑
0<xm<x

(x− xm)Īm(u(x−m)).

From (A5) and H has compact values, we may pass to a subsequence if necessary to get that gn converges weakly to g in L1
w(J,R)(the space

endowed with the weak topology). A standard argument shows that gn converges strongly to g ∈ SH,u. Then, for each x ∈ J,

un(x)→ ũ(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1g(s)ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1g(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1g(s)ds

+ ∑
0<xm<x

Im(u(x−m))+ ∑
0<xm<x

(x− xm)Īm(u(x−m)).

So, ũ ∈M(u).
Step 2: There exists γ < 1 such that Gd(M(u),M(ū)) ≤ γ ‖u− ū‖

∞
for each u, ū ∈PC(J,R). Let u, ū ∈PC(J,R) and h1 ∈M(u). Then

there exists g1(x) ∈ H(x,u(x)) such that for each x ∈ J,

h1(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1g1(s)ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1g1(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1g1(s)ds

+ ∑
0<xm<x

Im(u(x−m))+ ∑
0<xm<x

(x− xm)Īm(u(x−m)).

From (A5), we get

Gd (H(x,u(x)),H(x, ū(x)))≤ l̃(x) |u(x)− ū(x)| .

Therefore, there exists z ∈ H(x, ū(x)) such that

|g1(x)− z| ≤ l̃(x) |u(x)− ū(x)| , x ∈ J.
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Consider U : J→ P(R) given by

U(x) = {z ∈ R : |g1(x)− z| ≤ l̃(x) |u(x)− ū(x)|}.

Since the multivalued operator V (x) =U(x)∩H(x, ū(x)) is measurable (See [He, Proposition III.4]), there exists a function g2(x) which is a
measurable selection for V . So, g2(x) ∈ H(x, ū(x)), and for each x ∈ J,

|g1(x)−g2(x)| ≤ l̃(x) |u(x)− ū(x)| .

Now, we define for each x ∈ J ,

h2(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1g2(s)ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1g2(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1g2(s)ds

+ ∑
0<xm<x

Im(u(x−m))+ ∑
0<xm<x

(x− xm)Īm(u(x−m)).

Then, for each x ∈ J,

|h1(x)−h2(x)| ≤
ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1 |g1(s)−g2(s)|ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1 |g1(s)−g2(s)|ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 |g1(s)−g2(s)|ds

+ ∑
0<xm<x

∣∣Im(u(x−m))− Im(ū(x−m))
∣∣+ ∑

0<xm<x
(x− xm)

∣∣Īm(u(x−m))− Īm(ū(x−m))
∣∣ ,

≤ l̃ρ1−ω

Γ(ω)

k

∑
m=1

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1 |u(s)− ū(s)|ds

+
l̃ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1 |u(s)− ū(s)|ds

+
l̃ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1 |u(s)− ū(s)|ds

+
k

∑
m=1

`∗
∣∣u(x−m)− ū(x−m)

∣∣+ k

∑
m=1

¯̀∗(x− xm)
∣∣u(x−m)− ū(x−m)

∣∣ ,
≤ kl̃T ρω

ρω Γ(ω +1)
‖u− ū‖

∞
+

kl̃T ρω

ρω−1Γ(ω)
‖u− ū‖

∞

+
l̃T ρω

ρω Γ(ω +1)
‖u− ū‖

∞
+ k`∗ ‖u− ū‖

∞
+ kT ρ ¯̀∗ ‖u− ū‖

∞
.

Thus,

‖h1−h2‖∞
≤
[

kl̃T ρω

ρω Γ(ω +1)
+

kl̃T ρω

ρω−1Γ(ω)
+

l̃T ρω

ρω Γ(ω +1)
+ k(`∗+T ρ ¯̀∗)

]
‖u− ū‖

∞
.

By an similar relation obtained by interchanging the roles of u and ū, we get

Gd(M(u),M(ū))≤
[

kl̃T ρω

ρω Γ(ω +1)
+

kl̃T ρω

ρω−1Γ(ω)
+

l̃T ρω

ρω Γ(ω +1)
+ k(`∗+T ρ ¯̀∗)

]
‖u− ū‖

∞
.

From (4.1), M is a contraction and by Lemma 2.3, M has a fixed point u which is a solution to (1.1). Hence the proof is complete.

Now, we prove a result for problem (1.1) by using the concept of the nonlinear alternative of Leray-Schauder type [24] for single-valued
maps with a selection theorem due to Bressan-Colombo for lower semi-continuous multivalued maps with decomposable values, also see
[27] for multivalued maps with decomposable values and their properties.
Let E be a subset of [0,T ]×R. E is L⊗B measurable if E belongs to the σ - algebra generated by all sets of the form J×D, where J is
Lebesgue measurable in [0,T ] and D is Borel measurable in R. A subset E of L1([0,T ],R) is decomposable if for all y,z ∈ E and J ⊂ [0,T ]
measurable, yχJ + zχ[0,T ]−J ∈ E, where χ stands for the characteristic function.
Let F : Y → P(Y ) be a multivalued operator with nonempty closed values. F is lower semi-continuous, if the set {t ∈ Y : F(t)∩B 6= /0} is
open for any open set B in Y .
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Definition 4.2. Let X be a separable metric space and let M : X→ P(L1([0,T ],R)) be a multivalued operator, then M has Bressan-Colombo
property if

(1) M is lower semi-continuous;
(2) M has nonempty closed and decomposable values.

Let H : [0,T ]×R→P(R) be a multivalued map with a nonempty compact values. Consider to H the multivalued operator H :PC([0,T ],R)→
P(L1([0,T ],R)) by letting

H(u) = {z ∈ L1([0,T ],R) : z(x) ∈ H(x,u(x)) f or a.e. x ∈ [0,T ]}.

The operator H is called the Niemytzki operator associated with H.

Definition 4.3. Let H : [0,T ]×R→ P(R) be a multivalued function with nonempty compact values. We say H is of lower semi-continuous
type if its associated Niemytzki operator H is lower semi-continuous and has nonempty closed and decomposable values.

Now we present a selection theorem due to Bressan and Colombo [25].

Theorem 4.4. [25] Let X be a separable metric space and let the operator M : X → P(L1([0,T ],R)) be a multivalued satisfying property
Bressan and Colombo. Then M has a continuous selection, that is there exists a continuous function(single-valued) f̃ : X → L1([0,1],R)
such that f̃ (u) ∈M(u) for every u ∈ X.

Next we introduce the following hypotheses:

(A8) H : [0,T ]×R→ P(R) is a nonempty compact valued multivalued map such that:
(a) (x,u) 7→ H(x,u) is L⊗B measurable;
(b) u 7→ H(x,u) is lower semi-continuous for a.e. x ∈ [0,T ].

(A9) For each p > 0, there exists a function hp ∈ L1([0,T ],R+) such that

‖H(x,u)‖P ≤ hp(x) f or a.e. x ∈ [0,T ],

and for u ∈ R with |u| ≤ p.

The following lemma plays important role in our main result.

Lemma 4.5. [28] Let H : [0,T ]×R→ P(R) be a multivalued map with nonempty, compact values. Assume that (A8), (A9) hold, then H is
of lower semi-continuous.

Theorem 4.6. Suppose that hypotheses (A2)-(A4), (A8), and (A9) are satisfied. Then the problem (1.1) has at least one solution.

Proof. From hypotheses (A8), (A9) and Lemma 4.5, F is of lower semi-continuous type. Then from Theorem 4.4, there exists a continuous
function h ∈PC([0,T ],R)→ L1([0,T ],R) such that h(u) ∈ H(u) for all u ∈PC([0,T ],R). Consider the problem

ρ Dω
0+u(x) ∈ h(u)(x), for a.e. x ∈ J= [0,T ], x 6= xk, m = 1,2, . . .k, 1 < ω ≤ 2,

∆u|x=xm = Im(u(x−m)), m = 1,2, . . . ,k,
∆u′|x=xm = Īm(u(x−m)), m = 1,2, . . . ,k,
u(0) = u0, u′(0) = u1.

(4.2)

If u is a solution of (4.2), then u is a solution of (1.1). Problem (4.2) can be reformulated as a fixed point problem for the operator
M1 : PC([0,T ],R)→PC([0,T ],R) defined by

M1(u)(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1h(u)(s)ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1h(u)(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1h(u)(s)ds

+ ∑
0<xm<x

Im(u(x−m))+ ∑
0<xm<x

(x− xm)Īm(u(x−m)).

Using (A2)-(A4) and from similar argument as in Theorem 3.5, we can prove that the operator M1 satisfies all conditions in the Leray-Schauder
alternative.

5. Topological structure of the solution set

In this section, we present a theorem on the topological structure of the set of solutions to (1.1).

Theorem 5.1. Assume that (A1), (A5) and the following hypotheses hold:

(A10) There exists q1 ∈ C(J,R+) such that ‖H(x,y)‖P ≤ q1(x) for x ∈ J and y ∈ R.
(A11) There exists d1,d2 > 0 such that

|Im(y)| ≤ d1, for y ∈ R,
|Īm(y)| ≤ d2, for y ∈ R.
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Then the solution set of (1.1) is not empty and is compact in PC(J,R).

Proof. Let

S = {u ∈PC(J,R) : u is a solution o f (1.1)}.

From Theorem 3.5, S 6= /0. Now, we want to prove that S is compact. Let (un)n∈N ∈ S, then there exists gn ∈ SH,un and x ∈ J such that

un(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1gn(s)ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1gn(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1gn(s)ds

+ ∑
0<xm<x

Im(un(x−m))+ ∑
0<xm<x

(x− xm)Īm(un(x−m)).

From hypotheses (A1), (A10) and (A11), we can show that there exists an N1 > 0 such that ‖un‖∞
≤ N1 for every n≥ 1. As in Step 3 in

Theorem 3.5, we can prove that the set {un : n≥ 1} is equicontinuous in PC(J,R). By Arzelá-Ascoli theorem, we can say that, there exists
a subsequence(denoted again by {un}) of {un} such that un converges to u in PC(J,R). We shall prove that there exist g(·) ∈ F(·,u(·)) and
x ∈ J such that

u(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1g(s)ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1g(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1g(s)ds

+ ∑
0<xm<x

Im(u(x−m))+ ∑
0<xm<x

(x− xm)Īm(u(x−m)).

Since H(x, ·) is upper semi-continuous, for every ε > 0, there exists n0(ε)≥ 0 such that for every n≥ n0, we get

gn(x) ∈ H(x,un(x))⊂ H(x,u(x))+ εB(0,1), a.e. x ∈ J.

Since H(·, ·) has compact values, there exists subsequence gnm(·) such that

gnm(·)→ g(·) as m→ ∞,

g(x) ∈ H(x,u(x)), a.e. x ∈ J.

Therefore,

|gnm(x)| ≤ q1(x), a.e. x ∈ J.

By Lebesgue’s dominated convergence theorem, we say that g ∈ L1(J,R) which implies that g ∈ SH,u. Thus, for x ∈ J, we get

u(x) = u0 +u1(
xρ

ρ
)+

ρ1−ω

Γ(ω) ∑
0<xm<x

∫ xm

xm−1

(xρ
m− sρ )ω−1sρ−1g(s)ds

+
ρ2−ω

Γ(ω−1) ∑
0<xm<x

(xρ−1− xρ−1
m )

∫ xm

xm−1

(xρ
m− sρ )ω−2sρ−1g(s)ds

+
ρ1−ω

Γ(ω)

∫ x

xm

(xρ − sρ )ω−1sρ−1g(s)ds

+ ∑
0<xm<x

Im(u(x−m))+ ∑
0<xm<x

(x− xm)Īm(u(x−m)).

Then,

S ∈ Pcp(PC(J,R)).
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6. An example

Example 6.1. We consider the Katugampola fractional impulsive differential inclusions of the type,

ρ Dω
0+u(x) ∈ H(x,u(x)), a. e. x ∈ J= [0,T ], x 6= 1

3 , 1 < ω ≤ 2,
∆u|x= 1

3
= 1

6+
∣∣∣u( 1

3
−
)
∣∣∣ ,

∆u′|x= 1
3
= 1

8+
∣∣∣u( 1

3
−
)
∣∣∣ ,

u(0) = u0, u′(0) = 0.

(6.1)

Let us assume the values T = 1, k = 1, x1 =
1
3 , ρ = 1, and x0 = x1 = 0. Set

H(x,u) = {g ∈ R : f1(x,u)≤ g≤ f2(x,u)},

where the functions f1, f2 : J×R→ R are given.

I1(u(x1)) =
1

6+
∣∣∣u( 1

3
−
)
∣∣∣ , Ī1(u(x1)) =

1

8+
∣∣∣u( 1

3
−
)
∣∣∣ .

Then the eqaution (6.1) takes the form (1.1). We consider for each x ∈ J, the function f1(x, ·) is lower semi-continuous(i.e.,the set {u ∈ R :
f1(x,u)> λ} is open for each λ ∈ R), and assume that for each x ∈ J, f2(x, ·) is upper semi-continuous(i.e.,the set {u ∈ R : f2(x,u)< λ} is
open for each λ ∈ R). Assume that there are q ∈ C(J,R+) and Φ : [0,∞)→ (0,∞) continuous and non decreasing such that

max(| f1(x,u)| , | f2(x,u)|)≤ q(x)Φ(|u|), x ∈ J and u ∈ R.

Assume that there exists a constant N > 0 such that

N(
2q0

Γ(ω+1) +
qo

Γ(ω)

)
Φ(N)+ 7

24

> 1.

From this, H is compact and convex valued and it is upper semi-continuous [20]. Since all the conditions of Theorem 3.5 are satisfied, the
problem (6.1) has at least one solution u on J.

7. Conclusion

In this article, Leray-Schauder type, Bressan and Colombo, Covitz and Nodler concepts are used to prove the the Katugampola fractional type
impulsive differential equations with inclusions. The obtained conditions ensure that the existence of at least one solution to the proposed
problem. Further, an example is investigated for the problem.
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819–822.


	Introduction
	Prerequisites
	The convex case
	The nonconvex case
	Topological structure of the solution set
	An example
	Conclusion

