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Abstract

In the present study we give some corrections for our paper which published in the first
volume of this journal.

1. Erratum to ”On Convolution surfaces in Euclidean spaces”

Page 89.

Theorem 3.2. Let M ?N be a convolution surface of a paraboloid M and a translation surface N given with the parametrization (3.4). Then
the Gaussian curvature of the convolution surface is

KM?N =
4c f

′′
g
′′(

f ′′ +2
)(

g′′ +2c
)(

( f ′)2 +(g′)2 +1
)2 .

Proof. Let M ?N be a convolution surface of a paraboloid M and a translation surface N given with the parametrization (3.4) For simplicity
we define z = x+ y. Then the tangent space of M ?N is spanned by

zs =
1
2
(

f ′′+2,0, f ′
(

f ′′+2
))

,

zt =
1
2c

(
0,g′′+2c,g′

(
g′′+2c

))
.

Hence the coefficients of first and second fundamental forms of the convolution surface M ?N are

E = 〈zs,zs〉=
1
4

((
f ′
)2

+1
)(

f ′′+2
)2

,

F = 〈zs,zt〉=
f ′g′

4c

(
f ′′+2

)(
g′′+2c

)
, (3.5)

G = 〈zt ,zt〉=
1

4c2

((
g′
)2

+1
)(

g′′+2c
)2

,

and

e =
〈zss,zs× zt〉√

EG−F2
=

f ′′(g′′+2c)( f ′′+2)2

8c
√

EG−F2
,
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f =
〈zst ,zs× zt〉√

EG−F2
= 0, (3.6)

e =
〈ztt ,zs× zt〉√

EG−F2
=

g′′( f ′′+2)(g′′+2c)2

8c2
√

EG−F2
,

respectively. By definition the Gaussian curvature of the convolution surface M ?N is given by

KM?N =
eg− f 2

EG−F2 . (3.7)

So, substituting (3.5) and (3.6) into (3.7) after some calculation we get the result.�
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As a consequence of previous theorem one can get the following results.

Corollary 3.3. Let M ?N be a convolution surface of a paraboloid M and a translation surface (3.4). If the convolution M ?N is a flat surface,
then at least one of the following cases occur;

f (s) = a1s+a2, or g(t) = b1t +b2,

where ai and b j are real constants.

Corollary 3.4. The convolution surface M ?N given with the parametrization f (s) = a1s+a2 and g(t) = b1t +b2 is a part of a plane.
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Finally,convolution surface M ?N has the parametrization

(x+ y)(s, t) = (
h′+2 f f ′

2 f ′
cos t,

h′+2 f f ′

2c f ′
sin t,

(h′)2

4c( f ′)2 (ccos2 t + sin2 t)+h(s)). (3.10)

Theorem 3.5. Let M ?N be a convolution surface of a paraboloid M and a surface of revolution given with the parametrization (3.8). If
c = 1 then the convolution surface M ?N also a surface of revolution with Gaussian curvature

KM?N =
(ϕ2 +h)′

{
(ϕ2 +h)′′(ϕ +h)′− (ϕ2 +h)′(ϕ +h)′′

}
(ϕ + f )

{
((ϕ2 +h)′)2 +((ϕ +h)′)2

}2 ; f
′
6= 0, (3.11)

where ϕ(s) = h′(s)
2 f ′(s) is a real valued differentiable function different from 1.

Proof. Similar to the proof of Theorem 3.2 we get the result. �

Corollary 3.6. Let M ?N be a convolution surface of a paraboloid M with c = 1 and a surface of revolution (3.8). If the convolution surface
M ?N is a flat surface, then it is either a plane or a surface of revolution satisfying

(ϕ2 +h)′′(ϕ +h)′− (ϕ2 +h)′(ϕ +h)′′ = 0.

Proof. If M ?N is a flat surface, then

(ϕ2 +h)′
{
(ϕ2 +h)′′(ϕ +h)′− (ϕ2 +h)′(ϕ +h)′′

}
= 0 (3.12)

holds. So, we have two possible cases; ϕ2 +h = const. , or (ϕ2 +h)′′(ϕ +h)′− (ϕ2 +h)′(ϕ +h)′′ = 0. For the first case M ?N is a part of
a plane �.
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Omit the Equation 3.14.
Finally, the sum M ?N has the parametrization

(x+ y)(s, t) =


(

2t p(s)−z′(s)
2t

)
sins+(p′(s)+ t)coss(

z′(s)−2ct p(s)
2ct

)
coss+(p′(s)+ t)sins

z(s)+
(

z′(s)2

4ct2

)(
csin2 s+ cos2 s

)
 , t 6= 0. (3.15)
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Theorem 3.7. Let M ?N be a convolution surface of a paraboloid M with c = 1 and a right helicoid N given with the parametrization (3.17).
Then the Gaussian curvature of the convolution surface is

KM?N =−
ψ ′′ {(ψ ′(t− k)t +ψ(ψψ ′+ k)}(k− t)−

{
ψψ ′+(ψ ′)2(k− t)+ k

}2{
(ψ ′)2(k− t)2 +(ψψ ′+ k)2 +(ψψ ′+ t)2

}2 ; t 6= 0, (3.18)

where

ψ(t) =
−k
2t

,

is a real valued function.

Proof. Similar to the proof of Theorem 3.2 we get the result. �
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