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Abstract

This paper discusses the generalized Mellin transforms and their properties with examples and applications to integral and partial differential
equations. Several simple lemmas and theorems dealing with general properties of the generalized Mellin transform are proved. The main
focus of this paper is to develop the method of the generalized Mellin transform to solve partial differential equations and integral equations
in applied mathematics.
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1. Introduction

We derive the generalized Mellin transform and its inverse from the complex Fourier transform and its inverse [1][2][3], which are defined
respectively by

F {g(ξ ) ;k}= 1√
2π

∫
∞

−∞

e−ikξ g(ξ )dξ = G(k) (1.1)

F−1 {G(k) ;ξ}= 1√
2π

∫
∞

−∞

eikξ G(k)dk = g(ξ ) . (1.2)

Making the changes of variables xn = eξ and ik = c− p, where Re(xn)> 0 and c is a constant, in (1.1) and (1.2), we get

G(ip− ic) =
1√
2π

∫
∞

0
(xn)p−c g(logxn)

n
x

dx (1.3)

g(logxn) =
1√
2π

∫ c+i∞

c−i∞
xncx−npG(ip− ic)d p. (1.4)

Writing f (x) = n√
2π

x−ncg(logxn) and fn (p) = G(ip− ic) we define generalized Mellin transform of the function f (x)[4] and the inverse
generalized Mellin transform as follows:

Mn { f (x) ; p}= fn (p) =
∫

∞

0
xnp−1 f (x)dx (1.5)

M−1
n
{

fn (p) ;x
}
= f (x) =

n
2πi

∫ c+i∞

c−i∞
x−np fn (p)d p (1.6)

where f (x) is a real valued function defined on (0,∞) and the generalized Mellin transform variable p is a complex number. Obviously, Mn
and M−1

n are linear integral operators.
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1.1. Basic operational properties of Mellin transforms

Lemma 1.1. If Mn { f (x) ; p}= fn (p) , then the following operational properties hold true;

(i) Shifting Property: Mn {xan f (x) ; p}= fn (a+ p) , a > 0
(ii) Scaling Property: Mn { f (ax) ; p}= a−np fn (p) , a > 0

(iii) Mn { f (xan) ; p}= 1
an

fn
( p

an

)
(iv) Mn

{
x−n f

(
x−n) ; p

}
= fn

( 1
n −

p
n
)

(v) Mn

{
(n logx)k f (x) ; p

}
= dk

d pk fn (p) , k ∈ N

Proof. Shifting property given in (i) is seen by directly the definition of the Mn-transform (1.5). The identities given in (ii), (iii) and (iv),
respectively, are obtained by the definition of the generalized Mellin transform (1.5) and substituting ax = t, xna = t and x−n = t, respectively.
The relation given in (v) can easily be proved by using the result

d
d p

(
xnp−1

)
= n(logx)

(
xnp−1

)
, Re(x)> 0 .

Lemma 1.2. If Mn { f (x) ; p}= fn (p) , then the following operational properties hold true;
(i)Generalized Mellin transforms of derivatives :

Mn
{

f ′ (x) ; p
}
=−(np−1) fn

(
p− 1

n

)
(1.7)

where
[
xnp−1 f (x)

]
vanishes at x→ 0 and x→ ∞.

More generally, for r = 0,1,2, ...m−1, Re(p)> m
n ,

Mn

{
f (m) (x) ; p

}
= (−1)m Γ(np)

Γ(np−m)
fn
(

p− m
n

)
(1.8)

where
[
xnp−r−1 f (r) (x)

]
vanishes as x→ 0 and x→ ∞.

(ii) We have

Mn
{

x f ′ (x) ; p
}
=−np fn (p) (1.9)

where [xnp f (x)] vanishes at x = 0 and as x→ ∞.
More generally, we have

Mn

{
xm f (m) (x) ; p

}
= (−1)m Γ(np+m)

Γ(np)
fn (p) (1.10)

where
[
xnp+1 f (r) (x)

]
vanishes at x = 0 and as x→ ∞, for r = 0,1,2, ...,m−1.

(iii) Generalized Mellin transforms of differential operators
If Mn { f (x) ; p}= fn (p) , then

Mn

{(
x

d
dx

)2
f (x) ; p

}
= Mn

{
x2 f ′′ (x)+ x f ′ (x) ; p

}
= (np)2 fn (p) . (1.11)

(iv) Generalized Mellin transforms of integrals

Mn

{∫ x

0
f (t)dt; p

}
=− 1

np
fn

(
p+

1
n

)
(1.12)

and more generally,

Mn {Im f (x) ; p}= (−1)m Γ(np)
Γ(np+m)

fn
(

p+
m
n

)
, (1.13)

where Im [ f (x)] =
∫ x

0
∫ x

0 ...
∫ x

0 f (t)dt. Setting F (x) = Im [ f (x)] , we get Fm (x) = f (x) .

Proof. i)The relation (1.7) can be proved by using the definition of the Mn-transform and integration by parts and substituting xnp−1 = u.
(1.8) can be proven by using the mathematical induction principle.
ii) Using the definition (1.5) and changing the variable of the integration from x to u where xnp = u, we get

Mn
{

x f ′ (x) ; p
}

= −np
∫

∞

0
xnp−1 f (x)dx =−np fn (p) .

The relation (1.10) can be proved by using mathematical induction principle. We assume that the following holds true

Mn

{
xm−1 f (m−1) (x) ; p

}
= (−1)m−1 Γ(np+m−1)

Γ(np)
fn (p) . (1.14)

Using the definition of the Mn-transform, the relation (1.14) and substituting xnp+m−1 = u, we obtain the relation (1.10).
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iii) Using the relation (1.10), we have

Mn

{(
x

d
dx

)
f (x) ; p

}
=−np fn (p) , (1.15)

Mn

{(
x2 d2

dx2

)
f (x) ; p

}
= np(np+1) fn (p) . (1.16)

Using the definition (1.5) and its linearity, we obtain the relation (1.11).
iv) We take F (x) =

∫ x
0 f (t)dt so that F ′ (x) = f (x) with F (0) = 0. Application of (1.7) with F (x) as defined

Mn
{

f (x) = F ′ (x) ; p
}
=−(np−1)Mn

{
F (x) ; p− 1

n

}
(1.17)

which is replacing p by p+ 1
n , we arrive at the relation (1.12).

Now we assume that F (x) = Im [ f (x)] and Fm (x) = f (x). Using the relation (1.8) and replacing p by p+ m
n , we obtain the relation (1.13)

given in (iv).

1.2. Convolution Type Theorems

Theorem 1.3. If Mn { f (x) ; p}= fn (p) and Mn {g(x) ; p}= gn (p) , then the following relations hold:

Mn { f (x)∗g(x) ; p}= Mn

{∫
∞

0
f (ξ )g

(
x
ξ

)
dξ

ξ
; p
}
= fn (p)gn (p) , (1.18)

Mn { f (x)◦g(x) ; p}= Mn

{∫
∞

0
f (xξ )g(ξ )dξ ; p

}
= fn (p)gn

(
1
n
− p
)
. (1.19)

Proof. Using the definition of the Mn-transform, we have

Mn { f (x)∗g(x) ; p} = Mn

{∫
∞

0
f (ξ )g

(
x
ξ

)
dξ

ξ
; p
}

(1.20)

=
∫

∞

0
f (ξ )

dξ

ξ

[∫
∞

0
xnp−1g

(
x
ξ

)]
dx,

substituting x
ξ
= η , we obtain

Mn { f (x)∗g(x) ; p} =
∫

∞

0
f (ξ )dξ

[∫
∞

0
ξ

np−1
η

np−1g(η)

]
dη (1.21)

= fn (p)gn (p) .

Similarly, we have

Mn { f (x)◦g(x) ; p} = Mn

{∫
∞

0
f (xξ )g(ξ )dξ ; p

}
(1.22)

=
∫

∞

0
g(ξ )dξ

∫
∞

0
xnp−1 f (xξ )dx.

Making the change of variable xξ = η , we get

Mn { f (x)◦g(x) ; p} =
∫

∞

0
g(ξ )dξ

∫
∞

0
η

np−1
ξ
(1−np)−1 f (η)dη (1.23)

= gn

(
1
n
− p
)

fn (p) .

Note that, in this case, the operation ◦ is not commutative. Clearly, putting x = s, we find

M−1
n

{
fn

(
1
n
− p
)

gn (p) ; t
}
=
∫

∞

0
g(st) f (t)dt. (1.24)

Substituting g(t) = e−t and g(p) = Γ(p) , we get the Laplace transform of f (t) as

M−1
n

{
fn

(
1
n
− p
)

Γ(p) ; t
}
=
∫

∞

0
e−t f (t)dt = L{ f (t) ;s} . (1.25)
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1.3. Parseval’s Type Property

Theorem 1.4. If Mn { f (x) ; p}= fn (p) and Mn {g(x) ; p}= gn (p) , then the following relation holds,

Mn { f (x)g(x) ; p}=
∫

∞

0
xnp−1 f (x)g(x)dx

n
2πi

∫ c+i∞

c−i∞
fn (s)gn (p− s)ds.

In particular, when p = 1, we obtain the Parseval formula for the generalized Mellin transform,∫
∞

0
xn−1 f (x)g(x)dx =

n
2πi

∫ c+i∞

c−i∞
fn (s)gn (1− s)ds. (1.26)

Proof. Using the definition of the Mn-transform and M−1
n -transform, changing the order of integration, we have

Mn { f (x)g(x) ; p} =
n

2πi

∫
∞

0
xnp−1g(x)dx

∫ c+i∞

c−i∞
x−ns fn (s)ds

=
n

2πi

∫ c+i∞

c−i∞
x−ns fn (s)ds

∫
∞

0
xn(p−s)−1g(x)dx

=
n

2πi

∫ c+i∞

c−i∞
fn (s)gn (p− s)ds.

In particular, when p = 1, the above relation becomes (1.26) as follows,

Mn { f (x)g(x) ;1} =
∫

∞

0
xn−1 f (x)g(x)dx =

n
2πi

∫ c+i∞

c−i∞
fn (s)gn (1− s)ds.

2. Examples

We shall illustrate the above results by several examples like in [5].

Example 2.1. We show the followings

(i) Mn
{

e−mx; p
}
=

1
mnp Γ(np) ,

(ii) Mn

{
e−m|x|; p

}
=

1
mnp Γ(np) , where Re(np)> 0.

Demonstration: Since the relation given in (ii) is seen similarly, we only give the proof of the relation given in (i). Using the definition of
the Mn-transform and making the change of variable mx = t, we get

Mn
{

e−mx; p
}
= fn (p) =

∫
∞

0
xnp−1e−mxdx =

1
mnp

∫
∞

0
tnp−1e−tdt =

1
mnp Γ(np) .

Example 2.2. For the Beta function B(p,q) (see [7]), we obtain

Mn

{
1

x+1
; p
}
= B(np,1−np) . (2.1)

Demonstration: Using the definition (1.5) and making the change of variable from x to t, where x =
t

1− t
, we have

Mn

{
1

x+1
; p
}

= fn (p) =
∫ 1

0
tnp−1 (1− t)(1−np)−1 dt

= B(np,1−np) = Γ(np)Γ(1−np) .

Example 2.3. We show

Mn

{
1

ex−1
; p
}
= Γ(np)ζ (np) (2.2)

where Re(np)> 0, ζ (p) is the Riemann-Zeta function. It is defined by ζ (p) = ∑
∞
n=1

1
np , Re(p)> 0.

Demonstration: By the relation (i) of Example 2.1, the definitions of the Gamma and the Riemann-Zeta functions, and the equality
∑

∞
m=1 e−mx = 1

ex−1 , we get

fn (p) =
∫

∞

0
xnp−1 1

ex−1
dx =

∞

∑
m=1

∫
∞

0
xnp−1e−mxdx =

∞

∑
m=1

Γ(np)
mnp = Γ(np)ζ (np) .

Example 2.4. We show for Re(np)> 1,

Mn

{
2

e2x−1
; p
}
= 21−np

Γ(np)ζ (np) . (2.3)
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Demonstration: Using the definition (1.5), the relation (i) given in Example 2.1 and the identity 1
e2x−1 = ∑

∞
m=1 e−2mx, we have

Mn

{
2

e2x−1
; p
}

= 2
∫

∞

0
xnp−1 1

e2x−1
dx = 2

∞

∑
m=1

∫
∞

0
xnp−1e−2mxdx

= 2
∞

∑
m=1

Γ(np)
(2m)np = 21−np

Γ(np)ζ (np) .

Example 2.5. We show for Re(np)> 1,

Mn

{
1

ex +1
; p
}
=
(

1−21−np
)

Γ(np)ζ (np) . (2.4)

Demostration: Using the relations (2.2) and (2.3), we have

Mn

{
1

ex +1
; p
}

= −Mn

{
1

e2x−1
; p
}
+Mn

{
1

ex−1
; p
}

=
(

1−21−np
)

Γ(np)ζ (np) .

Example 2.6. For the Beta function B(p,q), we show

Mn
{
(1+ x)−m ; p

}
= B(np,m−np) (2.5)

Demonstration: By definition (1.5) and making the change of variable

x =
t

1− t
, we find

Mn
{
(1+ x)−m ; p

}
= B(np,m−np) =

Γ(np)Γ(m−np)
Γ(m)

.

Hence, we get M−1
n {Γ(np)Γ(m−np) ; p}= Γ(m)

(1+x)m .

Example 2.7. We show

Mn

{(
1− |x|

a

)
H
(

1− |x|
a

)
; p
}
= anp 1

np(np+1)
(2.6)

where Re(np)> 0,Re(a)> 0 and H(x) denotes the Heaviside Function (see [2]).

Demonstration: Using the definition (1.5) and the definition of Heaviside function we arrive at the relation (2.6).

Example 2.8. We show

Mn {cos(kx) ; p}= Γ(np)
knp cos

(
np

π

2

)
, (2.7)

Mn {sin(kx) ; p}= Γ(np)
knp sin

(
np

π

2

)
. (2.8)

Demonstration: Using the relation (i) given in Example 2.1 and the linearity of the generalized Mellin transform, we get

Mn

{
e−ikx; p

}
= Mn {cos(kx) ; p}− iMn {sin(kx) ; p}

=
Γ(np)

knp cos
(

np
π

2

)
− i

Γ(np)
knp sin

(
np

π

2

)
Using this relation, we arrive at the relations (2.7) and (2.8).
These results can be used to calculate the Fourier cosine and Fourier sine transforms of xnp−1. Result (2.7) can be written as∫

∞

0
xnp−1 cos(kx)dx =

Γ(np)
knp cos

(
np

π

2

)
,

or, equivalently,

Fc

{√
π

2
xnp−1; p

}
=

Γ(np)
knp cos

(
np

π

2

)
, (2.9)

Fs

{√
π

2
xnp−1; p

}
=

Γ(np)
knp sin

(
np

π

2

)
.
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2.1. Applications of the Generalized Mellin Transform

Example 2.9. We solve the following boundary value problem for A=constant

x2uxx + xux +uyy = 0, 0 < x < ∞, 0 < y < 1, (2.10)

u(x,0) = 0, (2.11)

u(x,1) =

{
A , 0≤ x≤ 1
0, x > 1

Demonstration: Applying the generalized Mellin transform of u(x,y) with respect to x defined by

u(p,y) =
∫

∞

0
xp−1u(x,y)dx, (2.12)

we reduce the given system into the form

d2un (p,y)
dy2 +(np)2 un (p,y) = 0, 0 < y < 1, (2.13)

u(p,0) = 0, un (p,1) =
∫

∞

0
xp−1Adx =

A
np

. (2.14)

The solution of the transformed problem (2.13)-(2.14) is

un (p,y) =
A

npsin(np)
sin(npy) , 0 < Re(np)< 1. (2.15)

The inverse generalized Mellin transform gives,

un (x,y) =
An
2πi

∫ c+i∞

c−i∞

x−np

np
sin(npy)
sin(np)

d p (2.16)

where u(p,y) is analytic in the vertical strip 0 < Re(np) = c < π . The integrand of (2.16) has simple poles at p = kπ

n ,k ∈ N which as lie
inside a semicircular contour in the right half plane. Evaluating of (2.16) by theory of residues gives the solution for x > 1 as

u(x,y) =
A
π

∞

∑
k=1

(−1)k x−kp

k
sin(kπy) .

Example 2.10. We solve the following integral equation∫
∞

0
f (ξ )K (xξ )dξ = g(x) ,x > 0 (2.17)

Demonstration: Application of the generalized Mellin transform with respect to x to given equation combined with the relation (1.19)
gives fn

( 1
n − p

)
kn (p) = gn (p). Replacing p by 1

n − p, we get fn (p)kn
( 1

n − p
)
= gn

( 1
n − p

)
. Thus the solution fn (p) = gn

( 1
n − p

)
hn (p)

is obtained, where hn (p) =
1

kn
( 1

n − p
) .

The inverse generalized Mellin transform combined with the relation (1.19) leads

f (x) = M−1
n

{
gn

(
1
n
− p
)

hn (p) ;x
}
=
∫

∞

0
h(xξ )g(ξ )dξ

provided h(x) = M−1
n
{

hn (p) ;x
}

exists. Thus, the problem is formally solved. If, in particular, hn (p) = kn (p), then the solution becomes
f (x) =

∫
∞

0 g(ξ )k (xξ )dξ where kn (p)kn
( 1

n − p
)
= 1 and hn (p)kn

( 1
n − p

)
= 1.

Example 2.11. We solve the following integral equation∫
∞

0
f (ξ )g

(
x
ξ

)
dξ

ξ
= h(x) (2.18)

where f (x) is unknown, g(x) and h(x) are given functions.

Demonstration: Applying the generalized Mellin Transform to given integral equation with respect to x, we obtain fn (p)gn (p) = hn (p) .

Then, applying the inverse generalized Mellin Transform to this equality, we obtain the formal solution as f (x) =
∫

∞

0 h(ξ )K
(

x
ξ

)
dξ

ξ
by the

convolution property (1.18).

Example 2.12. (Potential in an Infinite Wedge) Find the potential φ (r,θ) that satisfies the Laplace equation r2φrr + rφr +φθθ = 0 in an
infinite wedge 0 < r < ∞, −α < θ < α with the boundary conditions

φ (r,α) = φ (r,−α) = H (a− r) 0≤ r < ∞

φ (r,θ)→ 0 as r→ ∞ for all θ in −α < θ < α.
(2.19)
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Demonstration: We apply the generalized Mellin transform of the potential φ (r,θ) defined by Mn {φ (r,θ) ; p}= φn (p,θ)=
∞∫
0

rnp−1φ (r,θ)dr

of the given differential system, then we have

(np)(np+1)φn (p,θ)+(−np)φn (p,θ)+
d2φn (p,θ)

dθ 2 = 0 (2.20)

d2φn(p,θ)
dθ 2 +(np)2

φn (p,θ) = 0
φn (p,α) = φn (p,−α) = anp

np
(2.21)

The general solution of the transformed problem (2.21) as follows

φn (p,θ) =
anp

npcos(npα)
cos(npθ) . (2.22)

Applying the inverse generalized Mellin transform to (2.22), we have

φ (r,θ) =
n

2πi

c+i∞∫
c−i∞

r−np anp

npcos(npα)
cos(npθ)d p. (2.23)

The integrand of the (2.23) has the simple poles at np = 0 and np = (2k+1)
π

2α
, k = 0,1,2, ... Evaluating (2.23) by theory of residues

gives the solution, we get

φ (r,θ) = n

{
1+

1
β

∞

∑
k=0

(−1)(k+1)

(2k+1)

(a
r

)(2k+1)β
cos((2k+1)βθ)

}
(2.24)

where β =
π

2α
.

Example 2.13. (Potential in an Infinite Wedge) Find the potential φ (r,θ) that satisfies the Laplace equation r2φrr + rφr +φθθ = 0 in an
infinite wedge 0 < r < ∞, 0 < θ < α with the boundary conditions

φ (r,0) = 0 φ (r,α) = f (r)
φ (r,θ)→ 0 as r→ ∞ for all θ in 0 < θ < α.

(2.25)

Demonstration: We apply the generalized Mellin transform of the potential φ (r,θ) defined by Mn {φ (r,θ) ; p}= φn (p,θ)=
∞∫
0

rnp−1φ (r,θ)dr

of the given diferential system, then we obtain

d2φn (p,θ)
dθ 2 +(np)2

φn (p,θ) = 0, (2.26)

φn (p,0) = 0, φn (p,α) = fn (p)

The general solution of the transformed problem (2.26) is

φn (p,θ) =
fn (p)

sin(npα)
sin(npθ) .

The inverse generalized Mellin transform leads to the solution

φ (r,θ) =
n

2πi

c+i∞∫
c−i∞

r−np fn (p)
sin(npα)

sin(npθ)d p

where fn (p) = Mn { f (r) ; p}=
∞∫
0

rnp−1 f (r)dr.
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[4] N. Dernek, F. Aylıkçıand O. Yürekli, New Identities on the Generalized Exponential and Mellin Integral transformatons and Their Applications(to

appear)
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