Area of a Triangle in Terms of the \(m \)-Generalized Taxicab Distance

Harun Barıs Çolakoğlu

Akdeniz University, Vocational School of Technical Sciences, Department of Computer Technologies, 07070, Antalya, Türkiye.

Corresponding author E-mail: hbcocolakoglu@akdeniz.edu.tr

Abstract

In this paper, we give three area formulas for a triangle in the \(m \)-generalized taxicab plane in terms of the \(m \)-generalized taxicab distance. The two of them are \(m \)-generalized taxicab versions of the standard area formula for a triangle, and the other one is an \(m \)-generalized taxicab version of the well-known Heron’s formula.

Keywords: Taxicab distance, \(m \)-generalized taxicab distance, area, Heron’s formula.

2010 Mathematics Subject Classification: 51K05, 51K99, 51N20.

1. Introduction

Taxicab geometry was introduced by Menger [11], and developed by Krause [10], using the taxicab metric which is the special case of the well-known \(l_p \)-metric (also known as Minkowski distance) for \(p = 1 \). In this geometry, circles are squares with each diagonal is parallel to a coordinate axis. Afterward, in [15] Lawrence J. Wallen defined the (slightly) generalized taxicab metric, in which circles are rhombuses with each diagonal is also parallel to a coordinate axis. Finally, \(m \)-generalized taxicab metric is defined in [3], for any rhombus (so, any square) to be a circle instead of rhombuses having each diagonal parallel to a coordinate axis. In the last case, for any real number \(m \) and positive real numbers \(u \) and \(v \), the \(m \)-generalized taxicab distance between points \(P_1 = (x_1, y_1) \) and \(P_2 = (x_2, y_2) \) in \(\mathbb{R}^2 \) is defined by

\[
d_{T(m)}(P_1, P_2) = (u|x_1 - x_2| + m|y_1 - y_2|) + v|m(x_1 - x_2) - (y_1 - y_2)|/(1 + m^2)^{1/2}.
\]

In addition, as a special case of \(d_{T(m)} \) for \(u = v = 1 \),

\[
d_{T(1)}(P_1, P_2) = ((x_1 - x_2) + m|y_1 - y_2|) + |m(x_1 - x_2) - (y_1 - y_2)|/(1 + m^2)^{1/2}
\]

is called the \(m \)-taxicab distance between points \(P_1 \) and \(P_2 \), while the well-known Euclidean distance between \(P_1 \) and \(P_2 \) is

\[
d_{E}(P_1, P_2) = [(x_1 - x_2)^2 + (y_1 - y_2)^2]^{1/2}.
\]

The \(m \)-generalized taxicab unit circle is a rhombus with diagonals having slopes of \(m \) and \(-1/m \), and with vertices \(A_1 = \left(\frac{1}{m}, \frac{1}{m} \right) \), \(A_2 = \left(-\frac{1}{m}, \frac{1}{m} \right) \), \(A_3 = \left(\frac{1}{m}, -\frac{1}{m} \right) \) and \(A_4 = \left(-\frac{1}{m}, -\frac{1}{m} \right) \), where \(k = (1 + m^2)^{1/2} \); if \(u = v \), then \(m \)-generalized taxicab unit circle is a square with vertices \(A_1, A_2, A_3 \) and \(A_4 \). The \(m \)-generalized taxicab distance between two points is invariant under all translations. In addition, if \(u \neq v \), then the \(m \)-generalized taxicab distance between two points is invariant under rotations of \(\pi \) radian around a point and reflections in lines parallel to the lines with slope \(m \) and \(-1/m \); if \(u = v \), then rotations of \(\pi/2 \), \(\pi \) and \(3\pi/2 \) radians around a point, and reflections in lines parallel to the lines with slope \(m \), \(-1 \) or \(-m \) (see [3], [4] and [6]).

Since the distance function is different from that of Euclidean geometry, it is interesting to study the \(m \)-generalized taxicab analogues of topics that include the distance concept in Euclidean geometry. In this paper, we give area formulas for a triangle in the \(m \)-generalized taxicab plane in terms of the \(m \)-generalized taxicab distance. One can see from Figure 1 that there are triangles whose \(m \)-generalized taxicab lengths of corresponding sides are the same, while areas of these triangles are different, in the \(m \)-generalized taxicab plane. So, how can one compute the area of a triangle in the \(m \)-generalized taxicab plane? In this study, we present three formulas to compute the area of a triangle in the \(m \)-generalized taxicab plane. Henceforth, we use \(u' = u/(1 + m^2)^{1/2} \) and \(v' = v/(1 + m^2)^{1/2} \) to shorten phrases.
Theorem 2.1. Let ABC be a triangle with area \mathcal{A}. The following theorem gives the first m-generalized taxicab version of the area formula.

2. The m-generalized taxicab version of standard area formula

It is well-known that the standard area formula for triangle ABC is $\mathcal{A} = \frac{ah}{2}$, where $a = d_E(B,C)$ and $h = d_E(A,B)$ where H is the orthogonal projection of the point A on the line BC. Here, we give two m-generalized taxicab versions of this formula in terms of the m-generalized taxicab distance, depending on choice of $h = d_{T^m}(A,H)$ or $h' = d_{T^m}(A,BC)$. The following equation given in [3], which relates the Euclidean distance to the m-generalized taxicab distance between two points in the Cartesian coordinate plane, plays an important role in the first m-generalized taxicab version of the area formula.

Proposition 2.1. For any two points A and B in \mathbb{R}^2 that do not lie on a vertical line, if n is the slope of the line through A and B, then

$$d_E(A,B) = \mu(n)d_{T}(A,B)$$

(2.1)

where $\mu(n) = (1 + n^2)^{1/2}/(u'M + v'M)$. If A and B lie on a vertical line, then

$$d_E(A,B) = 1/(u'M + v'M)d_{T}(A,B).$$

(2.2)

Notice that $\mu(m) = \frac{1}{m}$ and if $m \neq 0$, then $\mu(1/m) = \frac{1}{m}$. Therefore, if l_A is the line through A with slope m, and l_B is the line through B and perpendicular to the line l_A, then

$$d_{T}(A,B) = ud_E(A,l_B) + vd_E(B,l_A).$$

In addition, for any non-zero real number n, if $a = v$ then $\mu(n) = \mu(1/n)$.

The following theorem gives the first m-generalized taxicab version of the standard area formula of a triangle.

Theorem 2.1. Let ABC be a triangle with area \mathcal{A} in the m-generalized taxicab plane, let H be orthogonal projection of the point A on the line BC, let n be the slope of the line BC, and let $a = d_{T}(B,C)$ and $h = d_{T}(A,H)$.

(i) If BC is parallel to a coordinate axis, then

$$\mathcal{A} = ah/2(u'M + v'M).$$

(2.3)

(ii) If BC is not parallel to any coordinate axis, then

$$\mathcal{A} = [\mu(n)\mu(1/n)]ah/2.$$

(2.4)

Proof. Let $a = d_E(B,C)$ and $h = d_E(A,B)$. Then, $\mathcal{A} = ah/2$.

(i) If BC is parallel to x-axis, then AH is parallel to y-axis and

$$a = [1/(u'M + v'M)]a$$

and $h = [1/(u'M + v'M)]h$.

If BC is parallel to y-axis, then AH is parallel to x-axis and

$$a = [1/(u'M + v'M)]a$$

and $h = [1/(u'M + v'M)]h$.

Hence, we get

$$\mathcal{A} = ah/2(u'M + v'M).$$

(ii) Let BC not be parallel to any coordinate axis, and let n be the slope of the line BC. Then, the slope of the line AH is $(-1/n)$. Therefore $a = \mu(n)a$ and $h = \mu(-1/n)h$, hence

$$\mathcal{A} = [\mu(n)\mu(-1/n)]ah/2.$$

In the m-generalized taxicab plane, m-generalized taxicab distance from a point P to a line l is naturally defined by

$$d_{T}(P,l) = \min_{Q \in l} \{d_{T}(P,Q)\}.$$

(2.5)

In the following proposition, we give a formula for $d_{T}(P,l)$, similar to the Euclidean geometry.
Proposition 2.2. Given a point \(P = (x_0, y_0) \) and a line \(l : ax + by + c = 0 \) in the \(m \)-generalized taxicab plane. The \(m \)-generalized taxicab distance from the point \(P \) to the line \(l \) can be calculated by the following formula:

\[
d_{T_m}(P, l) = (1 + m^2)^{1/2} |ax_0 + by_0 + c| / \max \left\{ \frac{|a + bm|}{u}, \frac{|am - b|}{v} \right\}.
\]

(2.6)

Proof. It is clear that if \(P \) is on line \(l \), then equation holds. Let \(P \) not be on line \(l \). To find the minimum \(m \)-generalized taxicab distance from the point \(P \) which is off the line \(l \), we let define tangent line to an \(m \)-generalized taxicab circle with center \(P \) and radius \(r \), as a line whose \(m \)-generalized taxicab distance from \(P \) is equal to \(r \), being natural analogue to the Euclidean geometry. Then, we expand an \(m \)-generalized taxicab circle with center \(P \) until the line \(l \) becomes a tangent to the \(m \)-generalized taxicab circle (see Figure 2). It is clear to see that a line can only be a tangent to an \(m \)-generalized taxicab circle at one vertex or two vertices (that is, at one edge). Since corresponding vertices of expanding \(m \)-generalized taxicab circle are on line through \(P \) and parallel to line \(mx - y = 0 \) or \(x + my = 0 \), if \(l \) is a tangent to the \(m \)-generalized taxicab circle with center \(P \), then \(P_1 = \left(\frac{bmy_0 - by_0 - c}{a + bm}, \frac{-amy_0 + ax_0 - cm}{a + bm} \right) \) or \(P_2 = \left(\frac{bmy_0 + bmy_0 + cm}{b - am}, \frac{-amy_0 + ax_0 - c}{b - am} \right) \) is a tangent point, which are intersection points of the line \(l \) and \(mx - y = 0 \) or \(x + my = 0 \), respectively (see Figure 2). Therefore, \(d_{T_m}(P, l) = \min \{d_{T_m}(P, P_1), d_{T_m}(P, P_2)\} \).

\[\text{Figure 2}\]

\[ax + by + c = 0\]

Since \(d_{T_m}(P, P_1) = \frac{(1 + m^2)^{1/2} |ax_0 + by_0 + c|}{|a + bm|/u} \) and \(d_{T_m}(P, P_2) = \frac{(1 + m^2)^{1/2} |ax_0 + by_0 + c|}{|am - b|/v} \), one gets

\[
d_{T_m}(P, l) = (1 + m^2)^{1/2} |ax_0 + by_0 + c| / \max \left\{ \frac{|a + bm|}{u}, \frac{|am - b|}{v} \right\}.
\]

(2.6)

The following equation, which relates the Euclidean distance to the \(m \)-generalized taxicab distance from a point to a line in the Cartesian coordinate plane, plays an important role in the second \(m \)-generalized taxicab version of the area formula.

Proposition 2.3. Given a point \(P \) and a line \(l \) which is not vertical in the Cartesian plane, if \(n \) is the slope of the line \(l \), then

\[
d_E(P, l) = \tau(n) d_{T_m}(P, l)
\]

(2.7)

where \(\tau(n) = \max \left\{ \frac{|m - n|}{u}, \frac{|mn + 1|}{v} \right\} / \left[(1 + n^2)(1 + m^2) \right]^{1/2} \). If \(l \) is vertical, then \(d_E(P, l) = \left[\max \left\{ \frac{1}{u}, \frac{|m|}{v} \right\} / (1 + m^2)^{1/2} \right] d_{T_m}(P, l) \).

Proof. Let \(P = (x_0, y_0) \) be a point, and \(l : ax + by + c = 0 \) be a line with slope of \(n \), in the Cartesian plane. If \(l \) is not a vertical line, then \(b \neq 0 \) and \(n = -\frac{a}{b} \). Then, one gets

\[
d_E(P, l) = |ax_0 + by_0 + c| / |b| \left(1 + n^2 \right)^{1/2} \text{ and } d_{T_m}(P, l) = (1 + m^2)^{1/2} |ax_0 + by_0 + c| / |b| \max \left\{ \frac{|m - n|}{u}, \frac{|mn + 1|}{v} \right\}.
\]

Therefore, \(d_E(P, l) = \tau(n) d_{T_m}(P, l) \) where \(\tau(n) = \max \left\{ \frac{|m - n|}{u}, \frac{|mn + 1|}{v} \right\} / \left[(1 + n^2)(1 + m^2) \right]^{1/2} \). If \(l \) is a vertical line, then \(b = 0 \) and \(a \neq 0 \). Therefore, one gets that

\[
d_E(P, l) = |ax_0 + c| / |a| \text{ and } d_{T_m}(P, l) = (1 + m^2)^{1/2} |ax_0 + c| / |a| \max \left\{ \frac{1}{u}, \frac{|m|}{v} \right\}.
\]

Hence one has

\[
d_E(P, l) = \left[\max \left\{ \frac{1}{u}, \frac{|m|}{v} \right\} / (1 + m^2)^{1/2} \right] d_{T_m}(P, l).
\]

(2.7)

Notice that \(\tau(m) = \frac{1}{u} \), and if \(m \neq 0 \), then \(\tau(-\frac{1}{m}) = \frac{1}{v} \). The following theorem gives another \(m \)-generalized taxicab version of the standard area formula of a triangle:
Theorem 2.2. Let ABC be a triangle with area \(\mathcal{A} \) in the m-generalized taxicab plane, \(n \) be the slope of the line BC, and let \(a = d_{T_m}(B,C) \) and \(h' = d_{T_m}(A,BC) \). Then

\[
\mathcal{A} = \max \left\{ \frac{|m-n|}{2}, \frac{|m+n+1|}{2} \right\} \frac{ah'}{2u[|mn+1|+v|m-n|]},
\]
(2.8)

If BC is vertical, then

\[
\mathcal{A} = \max \left\{ \frac{1}{2}, \frac{|m|}{2} \right\} \frac{ah'}{2u|m|+v}.
\]
(2.9)

Proof. Let \(a = d_E(B,C) \) and \(h = d_E(A,BC) \). Then, \(\mathcal{A} = ah'/2 \). Let BC not be vertical, and \(n \) be the slope of the line BC. By Proposition 2.1 and Proposition 2.3, \(a = u(n)a \) and \(h = \tau(n)h' \), hence one has

\[
\mathcal{A} = |\mu(n)\tau(n)|ah'/2 = \max \left\{ \frac{|m-n|}{2}, \frac{|m+n+1|}{2} \right\} \frac{ah'/2}{2u[|mn+1|+v|m-n|]}.
\]

If BC is vertical, then \(a = \left| \frac{1}{(u'|m|+v')} \right| a \) and \(h = \max \left\{ \frac{1}{2}, \frac{|m|}{2} \right\} / (1+m^2)^{1/2}h' \). Hence, one has

\[
\mathcal{A} = \max \left\{ \frac{1}{2}, \frac{|m|}{2} \right\} \frac{ah'/2}{2u|m|+v}.
\]

The following corollary follows from Theorem 2.1 and Theorem 2.2.

Corollary 2.1. Let ABC be a triangle with area \(\mathcal{A} \) in the m-generalized taxicab plane, and let \(a = d_{T_m}(B,C) \), \(h = d_{T_m}(A,H) \), and \(h' = d_{T_m}(A,BC) \). If BC is parallel to mx − y = 0 or x + my = 0, then \(h = h' \) and \(\mathcal{A} = ah'/2uv \).

Proof. If BC is parallel to mx − y = 0 or x + my = 0, then \(n = m \) and \(n = -1/m \), respectively, and Equation (2.4) and Equation (2.8) gives \(\mathcal{A} = ah'/2uv = ah'/2uv \), so \(h = h' \).

3. The m-generalized taxicab version of Heron’s formula

It is well-known that if ABC is a triangle with the area \(\mathcal{A} \) in the Euclidean plane, and \(a = d_E(B,C) \), \(b = d_E(A,C) \), \(c = d_E(A,B) \), and \(p = (a+b+c)/2 \), then

\[
\mathcal{A} = \left| \frac{p(p-a)(p-b)(p-c)}{4} \right|^{1/2},
\]
which is known as Heron’s formula. In this section, we give an m-generalized taxicab version of this formula in terms of m-generalized taxicab distance, similar to the one given in [14]. We need following modified definitions given in [14] to give an m-generalized taxicab version of Heron’s formula:

Definition 3.1. Let ABC be any triangle in the m-generalized taxicab plane. Clearly, there exists a pair of lines passing through every vertex of the triangle, each of which is parallel to lines mx − y = 0 or x + my = 0. A line \(l \) is called a m-base line of ABC if and only if

(1) \(l \) passes through a vertex,
(2) \(l \) is parallel to lines mx − y = 0 or x + my = 0,
(3) \(l \) intersects the opposite side (as a line segment) of the vertex in (1).

Clearly, at least one of vertices of the triangle always has one or two m-base lines. Such a vertex of the triangle is called an m-basic vertex. An m-base segment is a line segment on an m-base line, which is bounded by an m-basic vertex and its opposite side.

Now, we give the m-generalized taxicab version of Heron’s formula:

Theorem 3.2. Let ABC be a triangle, and \(a = d_{T_m}(B,C) \), \(b = d_{T_m}(A,C) \), \(c = d_{T_m}(A,B) \), \(p = (a+b+c)/2 \), and let \(\alpha \) denote the m-generalized taxicab length of a m-base segment of the triangle. Then the area \(\mathcal{A} \) of the triangle is

\[
\mathcal{A} = \left\{ \begin{array}{ll}
\frac{1}{4} \alpha \left(p - (\alpha + \alpha') \right), & \text{if there exists only one m-base line} \\
\frac{1}{4} \alpha \left(p - (\alpha + \alpha' + \alpha'') \right), & \text{if there exist two m-base lines}
\end{array} \right.,
\]
(3.1)

where \(\alpha' = d_{T_m}(D,H) \), \(\alpha'' = d_{T_m}(\text{basic vertex}, H') \), \(D \) is intersection point of the m-base line and the opposite side, \(H \) is point of orthogonal projection of one of the remaining two vertices on the m-base line which is an endpoint of the m-base segment or not on the m-base segment, \(H' \) is point of orthogonal projection of the third vertex on the same m-base line which is an endpoint of the m-base segment or not on the m-base segment.
Proof. Let ABC be a triangle with m-base vertex C, without loss of generality. Let H'' be the point of orthogonal projection of one of the two remaining vertices which is on the m-base segment. Two cases are:

(i) Let ABC has only one m-base line passing through C. Figure 3 and Figure 4 represent all such triangles. Let $h = d_{T(m)}(A, H)$, $h' = d_{T(m)}(B, H'')$, $c_a = d_{T(m)}(A, D)$, and $c_b = d_{T(m)}(B, D)$. Since $c_a + \alpha = b$ and $c_b + a = a + 2h'$, one gets $h' = p - b$. We also have $h = b - (\alpha + \alpha')$. Therefore, $h + h' = p - (\alpha + \alpha')$. Besides, $\mathcal{A} = \frac{1}{2uv} \alpha(h + h')$ by Corollary 2.1. Hence, $\mathcal{A} = \frac{1}{2uv} \alpha(p - (\alpha + \alpha'))$.

(ii) Let ABC has two m-base lines passing through C. Figure 5 represents all such triangles. Choose an m-base line to determine the point D. Let $h = d_{T(m)}(B, H)$ and $h' = d_{T(m)}(A, H'')$. Since $a = h + \alpha + \alpha'$, $b = h' + \alpha''$, and $a + b = c$ one gets $h + h' = a + b - (\alpha + \alpha' + \alpha'') = p - (\alpha + \alpha' + \alpha'')$. Besides, $\mathcal{A} = \frac{1}{2uv} \alpha(h + h')$ by Corollary 2.1. Hence, $\mathcal{A} = \frac{1}{2uv} \alpha(p - (\alpha + \alpha' + \alpha''))$.

The following two corollaries give the m-generalized taxicab versions of Heron’s formula for some special cases:

Corollary 3.1. If one side of a triangle ABC, say BC, is parallel to one of lines $mx - y = 0$ or $x + my = 0$ and none of the angles B and C is an obtuse angle, then for the area \mathcal{A} of ABC,

$$\mathcal{A} = \frac{1}{2uv} a(p - a).$$ (3.2)

Proof. Let ABC be a triangle with BC is parallel to one of lines $mx - y = 0$ or $x + my = 0$ and none of the angles B and C is an obtuse angle. Then, there is only one m-base line passing through B or C, so B and C are m-basic vertices and BC is the m-base segment. Then, $\alpha = a, \alpha' = 0$, hence we have $\mathcal{A} = \frac{1}{2uv} a(p - a)$.

Corollary 3.2. If one side of a triangle ABC, say BC, is parallel to one of lines $mx - y = 0$ or $x + my = 0$ and one of the angles B and C is not an acute angle, then for the area \mathcal{A} of ABC,

$$\mathcal{A} = \frac{1}{2uv} a(p - (a + \alpha''))$$ (3.3)

where $\alpha'' = d_{T(m)}(\text{basic vertex}, H')$ and H' is the point of orthogonal projection of A on the same m-base line which is an endpoint of the m-base segment or not on the m-base segment.

Proof. Let ABC be a triangle with BC is parallel to one of lines $mx - y = 0$ or $x + my = 0$ and one of the angles B and C, let us say C, is not an acute angle. Then, there are two m-base lines passing through C, so C is m-basic vertex and BC is an m-base segment. Then, $\alpha = a, \alpha' = 0$, hence we have $\mathcal{A} = \frac{1}{2uv} a(p - (a + \alpha''))$.

Note that since the generalized taxicab and so the taxicab distances are special cases of the m-generalized taxicab distance, conclusions given here are also true for the generalized taxicab and so the taxicab geometry.
References