Corrigendum to Translation Surfaces in the 3-Dimensional Simply Isotropic $\mathbb{1}_{3}^{1}$ Satisfying $\Delta^{I I I} x_{i}=\lambda_{i} x_{i}$

Konuralp Journal of Mathematics, 4(1) (2016), 275-281

Bahaddin Bukcu ${ }^{1}$, Dae Won Yoon ${ }^{2}$ and Murat Kemal Karacan ${ }^{3 *}$
${ }^{1}$ Gazi Osman Pasa University, Faculty of Sciences and Arts, Department of Mathematics,60250,Tokat-Turkey
${ }^{2}$ Department of Mathematics Education and RINS, Gyeongsang National University Jinju 660-701,South Korea
${ }^{3}$ Uşak University, Faculty of Sciences and Arts, Department of Mathematics, 1 Eylul Campus, 64200,Usak-Turkey
*Corresponding author E-mail: murat.karacan@usak.edu.tr

Abstract

In [1], there is a mistake in Theorem 4.2 that appered in the paper. We here provide a correct theorem.

Keywords: Simply isotropic space, translation surfaces, laplace operator.
2010 Mathematics Subject Classification: 53A35,53B30

In previous paper [1], the coefficients and the Laplacian operator $\Delta^{\text {III }}$ of the third fundamental form are not correct. The third fundamental form and the Laplacian operator $\Delta^{\mathbf{I I I}}$ with respect to non-degenerate third fundamental form $\mathbf{I I I}$ on \mathbf{M} in simply isotropic 3-space are defined by
$\mathbf{I I I}=R d u^{2}+2 T d u d v+S d v^{2}$
and
$\Delta^{\text {III }} \mathbf{x}=-\frac{1}{\sqrt{R S-T^{2}}}\left(\partial_{u}\left(\frac{S \mathbf{x}_{u}-T \mathbf{x}_{v}}{\sqrt{R S-T^{2}}}\right)-\partial_{v}\left(\frac{T \mathbf{x}_{u}-R \mathbf{x}_{v}}{\sqrt{R S-T^{2}}}\right)\right)$,
where
$R=L^{2}+M^{2}, T=M(L+N), S=N^{2}+M^{2}$,
respectively [2, 3]. In fact, the third fundamental form III is expressed in terms of the first fundamental form I and the second fundamental form II in simply isotropic 3-space, that is,
$\mathbf{K}(\mathbf{I})+\mathbf{I I I}-2 \mathbf{H}(\mathbf{I I})=0$,
where \mathbf{K} and \mathbf{H} are the Gaussian curvature and the mean curvature, respectively $[2,3]$. Now following the similar type of steps as in section 4 and section 5 , we can easily find out:
$\Delta^{\mathbf{I I I}} \mathbf{x}_{\mathbf{x}}=\left(\Delta^{\text {III }} \mathbf{x}_{1}, \Delta^{\text {III }} \mathbf{x}_{2}, \Delta^{\text {III }} \mathbf{x}_{3}\right)=\left(\frac{f^{\prime \prime \prime}}{f^{\prime \prime}}, \frac{g^{\prime \prime \prime}}{g^{\prime / 3^{\prime}}},-\frac{1}{f^{\prime \prime}}-\frac{1}{g^{\prime \prime}}+\frac{f^{\prime} f^{\prime \prime \prime}}{f^{\prime \prime 3}}+\frac{g^{\prime} g^{\prime \prime \prime}}{g^{\prime \prime 3}}\right)$
The equation in (4.2) gives rise to the following system of differential equations
$\frac{f^{\prime \prime \prime}}{f^{\prime / 3}}=\lambda_{1} u$,
$\frac{g^{\prime \prime \prime}}{g^{\prime \prime 3}}=\lambda_{2} v$,
$-\frac{1}{f^{\prime \prime}}-\frac{1}{g^{\prime \prime}}+\frac{f^{\prime} f^{\prime \prime \prime}}{f^{\prime \prime 3}}+\frac{g^{\prime} g^{\prime \prime \prime}}{g^{\prime \prime 3}}=\lambda_{3}(f+g)$,
where $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$. Combining equations (4.3), (4.4) and (4.5), we get
$-f^{\prime \prime}-g^{\prime \prime}+\left(\lambda_{1} u f^{\prime}+\lambda_{2} v g^{\prime}-\lambda_{3}(f+g)\right) f^{\prime \prime} g^{\prime \prime}=0$.
Since the differential equation (4.6) cannot be solved analytically, therefore apart from the harmonic case, the cases with respect to non-zero constants λ_{1}, λ_{2} and λ_{3} does not exists. Supposing $f^{\prime \prime}=0$ and $g^{\prime \prime}=0$. This implies that the third fundamental form in this case is degenerate, which is a contradiction. Now Suppose that \mathbf{M} is III-harmonic, i.e., $\lambda_{1}=\lambda_{2}=\lambda_{3}$, then from (4.6), we get
$-f^{\prime \prime}=g^{\prime \prime}$.
Therefore for some $p \in \mathbb{R} \backslash\{0\}$, we obtain
$-f^{\prime \prime}=g^{\prime \prime}=p$,
and
$f(u)=-\frac{p u^{2}}{2}+c_{1} u+c_{2}, g(v)=\frac{p v^{2}}{2}+c_{3} v+c_{4}$,
where $c_{i} \in \mathbb{R}$. In this case \mathbf{M} is parameterized by
$\mathbf{x}(u, v)=\left(u, v,\left(-\frac{p u^{2}}{2}+c_{1} u+c_{2}\right)+\left(\frac{p v^{2}}{2}+c_{3} v+c_{4}\right)\right)$.
Therefore, we have the following:
Theorem 4.2. Let \mathbf{M} be a translation surface with non-degenerate the third fundamental form in the three dimensional simply isotropic space \mathbb{I}_{3}^{1}. Then, the surface \mathbf{M} satisfying the condition $\Delta^{\mathbf{I I I}} \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}$ is only III-harmonic and is parameterized by (4.8)

References

[1] B. Bukcu, M. K. Karacan and D. W. Yoon, Translation Surfaces of Type 2 in the three Dimensional Simply Isotropic Space \mathbb{I}_{3}^{1}, Bull. Korean Math. Soc. 54 (2017), no. 3, 953-965

2] H. Sachs, Isotrope geometrie des raumes, Vieweg Verlag, Braunschweig, 1990.
[3] J. Telke and J. M. Wills, Contributions to Geometry, Proceedings of the Geometry-Symposium held in Siegen, 1978

