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Keywords Abstract: Let (X,>, ) be a o -finite measure space, f be a complex-valued
Grand Lorentz space, )

Multiplication operator, measurable function defined on X and U:X 5[ be a measurable function such
Compact operator that u- f e M (X,X) whenever f e M (X,X) where M (X,X) is the set of all

measurable functions defined on X . This gives rise to a linear transformation
M,:M(X,2)—>M(X,X) defined byM (f)=u-f, where the product of
functions is pointwise. In case if M (X,X)is a topological vector space and M, is

a continuous (bounded) operator, then it is called a multiplication operator induced
by u. In this paper, multiplication operators on grand Lorentz spaces are defined
and the fundamental properties such as boundedness, closed range, invertibility,
compactness and closedness of these are characterized.

Biiyiik Lorentz Uzaylarinda Carpim Operatorleri

Anahtar Kelimeler

Biiyiik Lorentz uzaylari,
Carpim Operatdrd, olciilebilir fonksiyonlar ve U:X =1 blciilebilir bir fonksiyon olsun. X izerinde
Kompakt(tikiz) operator tammli  kompleks degerli olgiilebilir herhangi bir f  fonksiyonu igin

Oz: (X,=,u) o -sonlu bir dl¢im uzay, M (X,X), X' iizerinde tammli tim

u-f eM(X,X) oldugundan u fonksiyonu M (X,x) Uzerinde Mu(f): u-f ,
M, :M(X,X)— M (X,X) seklinde bir lineer operator tanimlar. Eger M (X,X) bir
topolojik vektor uzay1 ve M, operatoriide stirekli(sinirl) bir operator ise M, ’ya

u tarafindan indirgenen bir ¢arpim operatdrii denir. Bu ¢alismada biiylik Lorentz
uzaylarinda c¢arpim operatorleri tanimlandi ve smirhilik, kapali goriintd,
terslenebilirlik, kompaktlik ve kapalilik gibi temel 6zellikleri karakterize edildi.

1. Introduction

Let(X,>, x)be a o -finite measure space and f be a complex-valued measurable function defined on X .The

distribution function of f is defined by

Dy (4)=({xe X:|f (x)|> 2} )forall 220.
By f*, we mean the non-increasing rearrangement of given function f as

f*(t)=inf{2>0:D (4) <t} =sup{A>0:D; (1) >}, t>0.
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Also, the average function of f is defined by

1t
f**(t)=fjf*(s)ds,t>0.
0

Note that Df (), f*() and f**( ) are non-increasing and right continuous functions on (O,OO) [2]. For

p.q e (0,0), we define

1 1
1 q q 1 q q
| — dt qoo P dt
AP | | <o “[ItPtT | | a<e
. p0 t pO t
”f"p,q = and "f”p,q =
1 1
supt P £*(t) ,q =00 supt P 7 (1) q=c0
t>0 t>0

For 0< p,q <o , the Lorentz spaces are denoted by L(p,q)(X,x) (orinshort, L(p,q)(Xx)) is defined to be the

vector space of all (equivalence classes of) measurable functions f on X such that | f ||’; q<= [2] . We know

that ”flrfoq:"f"p and so Lp(X):L(p, p)(X,x) where Lp(X) is the usual Lebesgue space. Also,

L(p,og)(X,2) = L(p,a2)(X,x) for gy < .In particular,

L(p.a)(X)cL(p,p)(X)=LP(X)cL(p.dz)(X)

for 0<qg; < p<0y <o ([26]).Itisalso known thatif 1< p<oo and 1<q<oo, then
* p *
”f"p,q S”f"pq SE_"f"p,q
foreach f el (p,q)(X) and (L(p,q)(X),||~||p q) is a Banach space [2].

The construction of the Lorentz space L( p, q)( X ) seems to be inspired by the Lebesgue space LP (X ) , where f

is replaced by its non-increasing rearrangement and a suitable weight is multiplied. In [3], Iwaniec and Sbordone

generalized the notion of Lebesgue space and introduced the so-called grand Lebesgue space denoted by Lp) ,
which for 1< p <o consists of all measurable functions f defined on (0,1) for which

1

1 . p—e
fll.y= sup ef|f(x)|P7¢ dx <o,
P)
O<e<p-1{ ¢

The space Lp) is a rearrangement invariant Banach function space for 0<&< p—1and LP LP) = LP~¢ holds [4]

. For a measurable function f on X = (0, 1), " f ||p’q) is defined as
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q et g-s E%
sup jtp (fr()"dt| :;l<g<oo
" " — O<e<q-1 0

1
suptP f* (1) ;g =00

O<t<1

The grand Lorentz spaces L, consists of those complex-valued measurable functions defined on X= (0, 1) such
that || f ||p’q) <oo.Cleary, if p=q,then Lp‘q) is equal to grand Lebesgue space Lp) .To see this if one takes p e (l,oo) ,

then

" f "p p) - Sup

pl[—ejtp )" dtJ g_ofggl(ﬂ(gx)i(f*(t))psdtjp
- sup <f} (0 d] -1,

O<e<p-1

Now, let’s compare the norms of the classical Lorentz space with grand Lorentz spaces.

For 1<p,q<co, let’s take a function f € L, - Then we get
L 1/ 1 ¢ ¢ Q%S
_ x - q o f 'S
11, = Ofgg)l(—gjtp ()" dt} Soili?l[ﬁgﬂtpf (t)] te dt}
1 1
and using tpf**(t)ﬁ(pJ " " it can be obtained that
1
11 e, o
1..<sp 0]
) 1 AR (2% 1
a ay e ay
< sup p'f{[(pj ||f||pq] 0 dt s[pj I
1 1
In case of q =00, we get ||f||pyw)=§<tﬂ£)lt"f ()<Suptp —|| "p»@

Example1.1. If E is a finite measurable set in 3 with characteristic function y.,then y."(t)= Xo.ue) (t) and

1
14 q—¢

lzel, o = Ogggl(%s [ (e (t))“‘dt]“’g ~(@-D(u(E)’

0

1 1
for 1< p,q <co. On the other hand, if q =0, then||z, ||pm) =supt® z."(t) =(u(E))p . Therefore
! O<t<l

(q—l)(#(E))% l<q<oo
"ZE"PJI) - 1
(#(E))» ,q =00
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Let U: X =[] be a measurable function such thatu- f e M (X,X) whenever feM (X,X). This gives rise to a
linear transformation M, 1M (X,X)— M (X,X)defined by Mu( f ) =u- f , where the product of functions is

pointwise. In case if M (X ,Z) is a topological vector space and M, is a continuous (bounded) operator, then it is

called a multiplication operator induced by u .

Multiplication operators have been studied on various function spaces by various authors such as [1, 5-

8]. Along the line of their arguments we will study the multiplication operators on the grand Lorentz spaces L,

. For this purpose, we will characterize the invertibility of M, on L, and find necessary and sufficient conditions

for Compact multiplication operators.

2. Bounded and Invertible Multiplication Operators

In this section boundedness and invertibility of multiplication operator M will be characterized in the

terms of the boundedness and invertibility of the measurable function u respectively.

Example 2.1. Consider the complex-valued square integrable functions on the interval [—3,1]. For eachk >3,
1 -
- k k=2

define a sequence ( fk)ker by f.:[-31] >0, f (x)=x¥.Since || fk"2 :n[l-(-?:) k }<00 for all k >3, we can

say that f el ([-3,1]) for all k>3. Let U:[-31]—[ be a measurable function and define
M, L, ([-3,1]) - L, ([-3,1]) as Mu( f ): u-f forall fel, ([-3,1]) . If we examine the example, then we have

that u must be invertible for M, is invertible. It can also be observed that M, is one to one (injective) on the set

supp(u)={xe X : u(x)=0}.

Remark 2.2. In general, the multiplication operators on measurable spaces is not injective. Indeed, for a
measurable space (X, #),let G= X -supp(u) with z(G)>0.Thenwe have (5 -u)(x)= x5 (x)-u(x)=0 forall

x € X . This implies that M, (;)=0and KerM, = {0}.Hence M, is not injective.

On the contrary, if M, is injective, then y(X -supp(u)) must be zero. On the other hand, if
(X -supp(u))=0 and # isa complete measure, then M ( f)=0 implies that f(x)-u(x)=0forall xe X and
so {xeX: f(x)=0}< X -supp(u) and f =0 (ae)onX.

Proposition 2.3. M, is injective on K=L_ (supp(u)) :{ f Xsupp(u) feL (X )} )

Proof. To show that the operator M, is injective, it is enough to show that KerM, ={0} . Indeed, if M, (?) =0
with f e K, then ?(X)-u(x): f (x)-;(supp(u)(x)-u(x)zo for all xe X . From this, we get f(x)-u(x)=0 for all

x e supp(u)and so f (x)=0.Therefore f =0 and KerM, ={0} .

Theorem 2.4. The linear transformation M, :f —U-f on grand Lorentz spaces L, is bounded for

1< p,g<oo ifand only if U is essentially bounded. Moreover |||\/|u|| :||u||w.

Proof. Suppose that u is essentially bounded i.e. U€ L, (x)and f el .Since |u(x)|<[ul, forall xe X, itcan

be written that |(U f )(X)|S||u||m|f (X)| and{x eX: |(U - f )(X)| >/1} c {X eX: ||u||w|f (X)| >ﬂ,} . Therefore
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D, (4)=Dy1)(4) <Dy [ﬁj

and
220:D,| A |st e [250:D,  (A)<t].150.
Ol )* =10 P A=ty

By using the definition of rearrangement, we have (Mu (f )) <Juf, f*(t)and

O<e<q-1

IM,(f)]. = sup (%git‘;—l((Mu( o (t))q‘gdtJ“

1
q-¢

< sup [ eftr " (Jul, ()" d
<sup{p8jt (Jul, £(v) t]

O<e<q-1 0

1
149, . q-¢
_Jul, sup [ﬂsjtp () dt} f] .

0<e<q-l\ P %

Consequently |||\/|u (f )" <Jul, || f ||p'q) .Also for q =, we have

p.q)
1 1

ML(£)],,, =supt? (M, (£)) () <supt’ul, () =[ul, | ],

O<t<l

Thus, forany f eL, ), forall 1< p,q<cowe obtain

M. ()], <l A £,

Conversely, suppose that M is a bounded operator on grand Lorentz spaces for 1<(<oo.Ifuis not an

essentially bounded function, then we can write a set Gk = {x eX: |u(x)| > k} which has a positive measure for all

k €[] . Since the non-increasing rearrangement of the characteristic function ZG, is (ZG ) (t) = ;([
k

can get

{XGX:k-;(Gk(x)>/‘t}g{XGX:(U~ZGK)(X)>/1}

(/1) . Therefore

{}t>0: DMu[lej(ﬂ)st}g{/1>0: Dk%GK (ﬂ)st}

k

forall t >0 and inf {ﬂ>0: Dk
2

(ﬂ)st}sinf {,1>0: DMU(ZGk)(ﬂ)st}.
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As aresult, (l\/lu (ZGk ))* (t)=k '()(Gk ) (t) and so

1
p.0) - ofig.l(ﬂpgj-tp_l((l\/l u (?(Gk ))* (t)j dt}q

> sup (%gj-tg_l((kwek )* (t)jq_gdthg = k”;(Gk

0<e<g-1

M. ()

Q)

Besides these, for g =« we have

:SUpt'l’(Mu(;(Gk))*(t)

p.a)  0<t<l

> suptik(zek ) (t)=k “ZG “

O<t<l

M. ()

PO

This contradicts the boundedness of M,. Henceu must be essentially bounded. Now for any &>0, let

S= {x e X :|u(x)|2||u||w —5} Then

{XE X 5("“”00 ‘5)7(5 (x)>/1}g{XE X :(u.;(s)(x)>/1}

and D ()< D“‘Zs (A). Therefore

(Iulo-6) 25
{/1 >0:Dy 4 (A)< t} c {,1 >0: D(HUHOO-5)1’S (A)< t}.

By using the infimum property, we get
inf {,1 >0: Dy, (1)< t} > inf {/1 >0:D, 5, (A)= t}

and (M (z5)) (0)(Jul, ~)(zs ) (t) so IM,|=(Jul, ~&). Asaresult, [M,|>|u], and |M,|=|u], with2.1.

We already know that if X and Y are Banach spaces and F € B(X,Y), then F is bounded below if and only if

F is 1-1 and has closed range. According to this knowledge, we can give the following corollary.
Corollary 2.5. M, L, (supp(u)) —> L, (supp(u)) has closed range if and only if M is bounded below on
Lp,q) (SUpp(U))

This result is clear. Since M, is 1-1 on Log (supp(u)) by Proposition 2.3. Moreover, if x is a complete measure

and U#0 a.e.on X ,then we have the following result.

Corollary 2.6. If u is a complete measure and u #0a.e.on X ,then M, : L, (X,X ) > L, (X, %, ) has closed
range if and only if M, is bounded below on L, ., (X, X, ) .

Theorem 2.7. The set of all multiplication operators on the grand Lorentz spaces L__, forl< p,q<oisa maximal

p.q)

abelian subalgebra of B ( Loay Loa ), Banach algebra of all bounded linear operatorson L, .
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Proof. Let H={M, :ueL,}. Then H is a vector space under operations +Z( HXI\'/T') —)MH , o F)ls/ll-; —H and
u,Vlv) = WMyty u) P NV

where MM, e H.

Letu,vel,. Then|u(x)|£||u||w and|v(x)|£||v||w implies that |juv| <|u| |v|, and so the product is an inner

a subalgebra of B(L L ) Consider the composition of operators suchas M,-M, =M

p.a)’ —p.q) w’

operation, moreover the composition is associative, commutative and distributive respect to the sum and the

scaler product, thus we can conclude that H is a subalgebra of B( LpayL ) Let T be any operatoron L__, such

' =p.a) p.q)

that T oM, =M, oT for everyU e L, (x).Consider the unit function €:X —>[] defined by €(X)=1 for all
Xe X and V=Te. Then T(;(E)ZT(MZEG)Z M, (T(€))= fev=M, ¢z for all measurable set EeX..

Consequently T = M, . Now, let us check that V& L, () or not. If possible, the set G, = {X ex: |v(x)| > k} has a

positive measure for each k €[] . Then

ey

Therefore T isan unbounded operator that is a contradiction to the fact that T is bounded. Therefore Ve L, (y)
and (s,)

2k |

=M.z

p.q) p.q) p.q) '

and M is bounded by Theorem 2.4.Now, let f eL be a nondecreasing sequence of measurable

p.q) nel

simple functions such that lims, - f. Then T(f):T(Iimsn)zlimT(sn):Iiva(sn):leim(sn):Mv(f).

n—x nN—

Therefore, we can conclude that T e H = {Mu = Lw}

Corollary 2.8. The multiplication operator M, on L, for 1< p,q<is invertible if and only ifu is invertible in

L.

Proof. Let M, be invertible. Then there exists a T € B(L, L, )such that ToM, =M, oT=1.Let M,eH.
Then M,oM, =M, oM, and

ToMyo(MyoT)=(TeMy)oMyoT =T oMy =M oT.

Therefore, we can conclude that T commute with H andso T € H by Theorem 2.7. Then there existsa We L,
suchthat T=M_, and M, oM, =M, oM, = | . This implies that uw = wu =1 a.e, which means thatu is invertible

on L..On the other hand, assume that u is invertible on L, that is %e L. Then My o Ml/u = M]/u oMy =1

which means that M is invertible on B ( Lo prq)) .

3. Compact Multiplication Operators

In this section we will characterize the compact multiplication operators. A compact operator is a linear operator
L from a Banach space X to another Banach space Y , such that the image under L of any bounded subset of

X is arelatively compact subset (has compact closure) of Y . Such an operator is necessarily a bounded operator,
and so continuous

Definition 3.1. Let T be an operator. A subspace K of a normed space X is said to be invariant under T (or
simply T -invariant) whenever T (K) < K.

Lemma 3.2. Let T: A— A be an operator. If T is compact and N is a closed T -invariant subspace of A, then
T|N is also compact.
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Proof. Let (gk )ke be a bounded sequence in N — A. Then compactness property of T implies that there exists a
subsequence(gkn )n of (9y),., such that (T (gkn )) converges in. A. .Since(gkn )n <N and (T (gkn )) =T(N)

nel

, then (T(gkn )) _ converges on N . Hence T|N is compact.

Theorem3.3. Let M, be a compact operator. Let Gg(u)= {x eX: |u (x)| > 5} and
Loo (Gg(u)) = { f oy fe Lp’q)} forany 6 >0.Then L, (G5 (u)) is closed invariant subspace of L, under

M, . Moreover M, is a compact operator on vaq)(G(s (u))

Proof. We first show that prq)(G(S(u)) is a subspace ofL,, . Let f,g €el,, (G(s(u)) and a,beld . Since
f=f 2. and §=09x, forany f,geL,,, wehave af +bg=af y, , +bgx. = (af +bg);(GJ(u). By the
definition of M, : L, , (65 (u)) — L, (X,X, 4), wehave Mu( f ) =u-f=u- f;(Gﬁ(u) . ThereforelL, (G5 (u)) isan
invariant subspace of L . under M,. Now, let us show that L, (Ga( )) cl,g (G (u )) Let § be in

m. Then there exists a sequence g in m such that §,—§ where g, €L, and
Gk = ngGO_(u) fOI‘ eaCh k ED .

Since §, is a Cauchy sequence in L G.(u)), it can be written that for all £ >0, there exists a k, €[] such that
K y seq pa) \ s )

||Gk _Gr p.a)

<¢ forall k,r>Kk,.Hence forall k,r >k,, we can finda & >0 such that

5(gk_gr)g(gk_gr)l(5d(u) and §(gk_gr) S(g g ) Z[O/JGA

Then "gk _gr”pyq) Sa"g.’k _Gr p.a)

for any constant « . Therefore {gk}ke‘ is also a Cauchy sequence in L, . Since

L, is a Banach space, we can write that ¢, — ( foranelementg el . Thus
”gkleo gZGo o) < "gk - g"p,q)
and §, > 0. Consequently J €L, (G (u )) and M | (6, 1S @ compact operator by Lemma 3.2.
PQ) )

Theorem 3.4. A multiplication operator M, onL__, is compactifand only if Loo (G§ (u)) is finite dimensional for

p.q)
each 6 >0, where

Gg(u):{XeX:|u( |>5} and L, , (G, (u )):{f;(GO_(u): f eLp,q)}.
Proof. If M, is a compact operator, then vaq)(Gg(u))is a closed invariant subspace of L, under M, and

is a compact operator by Theorem 3.3. Let’s take any X € X.If X & G (u) then for each feL

Mu |Lp‘q)(G§(u)) p.q)’

* *

can obtain [Mu|qu)[65(u)j(f)j :(u.f;(Ga(u)J =0. Therefore M | —O IfxeG ( ), then |u(X)|26

and note that ‘(U f)(Gd(u))(X)‘ > 5‘( f;(eﬁ(u))(x)‘, Dflsd(u) [%) < D(U-szJ(uﬂ (4). Therefore

2>0:D (A)<ticq1>0:D, A <t; forall t > 0.By using this inclusion, we have
(-t 650 %5 | 5

5'( f Ao, ) (t)< (u -f Aosu) ) (t)

and
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1

&

M(f Ze0)

)‘p,q) o<g<q_1[ Itp (( (fleﬁ(u>))*(t)qudth
- 30 [ el (5 (120 0]

> 5” f Xew

has a closed range in L, (G5 (u)) and invertible. Being compact implies that

pa)

Thus, in either case Mu| (G5(u))
Lo.o)(Gs

Lo (G5 (u)) is finite dimensional.

Conversely, suppose that L (G§ (u)) is finite dimensional for each 6 >0 .In particular, L, (Gl/n (u))

is finite dimensional for each N €[] . Define a sequence u, : X —[] as

[0, ol
”(X){ (%)

0, |u x|<1/n

forall Nell .Since uel,,it’s easy to see that u, € L for each Nl Moreover for any fe Lo

Dy, oy (A)=({x € X 5|((u, = u) F)(x)|> 2})

and

((u,—u) f) (t)=inf{2>0:D, ,, (4)<t}.

For any A>0, if XEGl/n(U) then ((un—u)f)*(t):o and (un—u)f =0. IerEGl/n(u), then we get

((u,~u) f) () <2 £°(t) and M, ()]

1
< —|| f || .This implies that M, convergesto M uniformly.Since
n n p.q) Up u

p.q)

Loo (Gl/n (u)) is finite dimensional so M,, is finite rank operator. Therefore, M, is a compact operator and so

M is.

u
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