
Introduction
Neurological impairments are fast becoming common
global causes of disabilities.[1] Maulik et al.[2] observed that
prevalence of mental disabilities is higher in developing
countries compared to those in developed countries.
Environmental factors, such as environmental pollution,
can influence the prevalence of these mental disabilities.[2]

Poor health quality and high contamination level of heavy
metals in developing countries may also contribute to
these prevalence rates.[3] In recent times, the continual
heavy metal contamination in waterways has been a glob-
al issue due to its persistence and resultant toxicity.[4,5] Poor
waste management and disposal, especially electronic

waste (e-waste) disposal and recycling in developing coun-
tries were reported to enhance the elevated levels of heavy
metal contamination in these regions.[3,6–8]

E-waste is defined as used electronics intended for
reuse, resale, salvage, recycling, or disposal.[9] Osibanjo and
Nnorom[10] reported that electronic waste devices are usu-
ally stored for a while for a perceived value - physical or
emotional - before disposal with municipal waste in
Nigeria. Because of the absence of a special framework for
the separate collection and management of e-waste in
Nigeria, these devices are disposed with Municipal Solid
Waste (MSW) at open dumpsites and/or into water-
ways.[9–12] Informal disassembling and recycling of e-waste
in backyards was also reported in Nigeria where primitive
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methods were used in recovering materials from e-
waste.[13–15] The recovered materials are processed to
reusable components and the unused portions are also
stockpiled or dumped and landfilled.[13,16] E-wastes contain
more than a thousand different substances, of which many
are toxic, heavy metals inclusive.[17,18] These complex toxic
substances, if not properly handled during recycling or dis-
posal, adversely impact the environment.[13,19] Corrosion of
e-waste components after disposal result in mobility of
incorporated heavy metals which travel with leachate to
contaminate the environment.[20] Leaching of these toxic
heavy metals eventually contaminates the ground and sur-
face water.[6] The resultant effect is the high levels of heavy
metals above the permissible limit recorded in Nigeria
waterways.[5,21,22]

Lead is a soft, ductile, flexible and malleable metal with
high thermal expansion and electrical conductivity.[23]

Being the 5th most widely used metal,[24] it is toxic and
found in substantial amount in e-waste.[25] Lead is com-
monly found in e-waste such as cathode ray tubes (CRTs)
in computers monitors and televisions, fluorescent tubes,
solder in printed circuit boards, as well as in liquid crystal
displays (LCDs) and batteries.[11,26–29] In Nigeria, the popu-
lation is at risk of lead exposure because of the intense use
of leaded gasoline, the poor recovery and recycling of
automotive lead-acid batteries, and the uncontrolled e-
waste disposal and recycling.[30,31] Lead is not biodegrad-
able. It stores faster in the human body than metabolized
or excreted, and hence tends to bio-accumulate in concen-
trations above that found in the environment.[32] It is a
potent neurotoxin that disrupts the functional integrity of
the neurons with resultant negative implication on memo-
ry and intelligence and cognitive deterioration.[23,33–35]

This study aimed at investigating the neurodegenera-
tive impact of lead concentration obtained from the water-
ways in Kwara State, Nigeria on Wistar rats as the experi-
mental model.

Materials and Methods
This study was carried out in Kwara State, Nigeria in
2017. Experimental procedures used in this study were
approved by the College of Medicine Research Ethics
Committee, University of Nigeria, Enugu State
(approval number: 025/02/2017) in line with the
National Institute of Health (NIH) “Guide to the Care
and Use of Animals in Research and Teaching”.

The lead (II) acetate trihydrate (Pb(CH3CO2).3H2O)
salt used was obtained from the Department of
Biochemistry, College of Pure and Applied Science, Kwara
State University, Malete, Kwara State, Nigeria. 0.009 g of

Pb(CH3CO2).3H2O was weighed and dissolved in 1 liter
of double distilled demineralized water to form 0.009 mg
of Pb(CH3CO2).3H2O per liter to form the final concen-
tration of 0.009 mg of Pb(CH3CO2).3H2O per milliliter
solution. This was based on the empirical measurement
of heavy metals obtained in the waterways of the Kwara
Nigeria in 2016 and reported by Adeniyi et al.[5]

Twenty (20) first filial (F1) generation inbred adult
male Wistar rats (Rattus norvegicus) with an average
weight of about 150–180 g were procured from the ani-
mal facility of Institute for Advance Medical Research
and Training (IAMRAT), College of Medicine,
University of Ibadan and employed in this study. Rats
were allowed to acclimatize for 14 days and fed pelletized
rat feed and water ad libitum throughout acclimatization
before use. Plastic cages containing wood shaving bed-
ding were used to house the rats. The bedding was
changed once a day. They were kept in standard labora-
tory conditions under natural light-dark cycle at room
temperature and maintained on standard laboratory rat
pellets and given water ad libitum. These rats were divid-
ed at random into two groups of ten animals using the
method of Daniel et al.[36] The animals in the first group
had access to diet and double distilled demineralized
water ad libitum while those in the second group had
access to diet and lead-contaminated water ad libitum.
The duration of treatment lasted over a period of 65
days, a long-term standard for rats.[37] The animals were
sacrificed by cervical dislocation. The skulls of the sacri-
ficed animals were opened using bone forceps to expose
the brain. The skull was opened from the posterior part
to leave the tissue intact.[38] The prefrontal cortex was
obtained from the anterior cerebral cortex. The harvest-
ed tissues were fixed in 10% buffered formol saline,
grossed and processed for paraffin tissue embedding fol-
lowing Drury and Wellington[39] technique. The processed
sections were stained for histological, histochemical and
immunohistochemical evaluation. Neuromorphological
and histochemical analysis were carried out using haema-
toxylin and eosin (H&E) staining technique[40] and
Bielschowsky’s silver impregnation technique,[41] respec-
tively. Immunohistochemical evaluation was carried out
using glial fibrillary acidic protein (GFAP)[42,43] and
inducible nitric oxide synthase (iNOS)[44] immunostain-
ing techniques.

The stained sections were viewed and photographed
with an Olympus U-D03 microscope (Olympus, Lake
Success, NY, USA) captured with Olympus DP21.
Photomicrographs of stained sections were obtained and
reported.
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Results
There was no account of death recorded in the two groups
throughout the 65 days of lead administration. The gener-
al neuronal morphology of the prefrontal cortex in adult
male Wistar rats following administration with lead-con-
taminated water demonstrated by haematoxylin and eosin
staining is shown in Figure 1. Sections from the prefrontal
cortex of the control Wistar rats (Figure 1a) revealed intact
and normal sized neurons with clear perikarya, centrally
placed nucleus and small-sized neuroglia interspersed with-
in normal neuropil stained slightly eosinophilic; whereas
sections from the prefrontal cortex from the treatment
group (Figure 1b) depicted numerous neurons with dis-
torted morphology with different features of neurodegen-
eration, which includes red neuron, shrunken neurons with
karyolitic nuclei, gliosis with focal neuropil vacuolation
degeneration.

The neuronal membrane was demonstrated using
Bielschowsky’s silver impregnation stain (Figure 2). The
section from the control group revealed normal neurons
with well-outlined neuronal membrane and axons sur-
rounding a clear cytoplasm (Figure 2a). The treatment
group showed numerous neurons with various degenera-
tive features characterized by pyknotic neurons with con-
densed chromatin, nuclear shrinkage; with some neuron
having no nuclei and neuropil vacuolation (Figure 2b).

Glial fibrillary acidic protein (GFAP) immunostaining
was used to demonstrate reactive glial immunoreactivity
(Figure 3). The treatment groups showed strong astrocyt-

ic immunoreactivity (Figure 3b) compared with the con-
trol group (Figure 3a). Inducible nitric oxide synthase
(iNOS) immunostaining (Figure 4) was used for the
demonstration of oxidative stress. iNOS reactivity was
intensely expressed in the treatment groups (Figure 4b) in
comparison to the control group (Figure 4a). 

Discussion 
Several parameters were employed in this study to observe
the morphology of the neurons in the prefrontal cortex of
rats following lead contaminated water consumption.
Based on the higher functions of cognitive abilities associ-
ated with prefrontal cortex of the brain,[45] the morpholo-
gy of the neurons located in this region was investigated to
compare potential differences following lead exposure.

The results obtained with haematoxylin and eosin
staining method (Figure 1) showed features of neurode-
generation in the treatment group (Figure 1b). The
degeneration pattern of the neuron was apoptotic. These
apoptotic neuronal cells are characterized by pyknotic
nuclei involving irreversible condensation of chromatin in
the nucleus and shrinkage of the cells.[46,47] Changes
observed in neurons from the treatment group suggested
that neuronal cell death occurred in the apoptotic mode.
The excessive neuronal cell shrinkage is the result of the
tightly packed cells that are smaller in size compared with
the control in accordance with the findings of Olajide et
al.[48] Stefanis et al.[49] described neuronal apoptotic cells
with tightly packed with or without fragment which fur-
ther supports our observation.

Figure 1. (a) Control group had intact neurons (red arrow), normal blood vessel (yellow arrow) in the neuropil area that stained slightly eosinophilic
(blue arrow) and glial cells interspersed within this region (green arrow). (b) The cortical sections of rats from lead-contaminated group showed
features of neurodegeneration including red-colored neurons (red arrow), shrunken neurons with karyolysis nuclei (green arrows), gliosis (yellow
arrow) and focal neuropil vacuolation (blue arrow) (×400 magnification, haematoxylin and eosin stain). [Color figure can be viewed in the online
issue, which is available at www.anatomy.org.tr]

a b
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The neuronal membrane and presence of neurodegen-
erative features in the prefrontal cortex of the experimental
animals throughout the 65 days of exposure are demonstrat-
ed using Bielschowsky’s silver staining method as seen in
Figure 2. Sections from the control group revealed normal

neurons with a well-outlined neuronal membrane (Figure
2a). The treatment group showed neurons with different
degenerative features (Figure 2b). The distinct morpholog-
ical features observed in the treatment group also define
apoptotic neuronal cell death in pathological condition.[50]

Figure 2. (a) The control group appeared normal with intact neurons (red arrows). (b) Group with administration of water contaminated with lead
showed features of neurodegeneration in the cortex characterized by the presence of degenerate neurons with no nuclei (red arrows) and some
with pyknotic nuclei (blue arrows) (×400 magnification, Bielschowsky’s silver impregnation staining). [Color figure can be viewed in the online
issue, which is available at www.anatomy.org.tr]

a b

Figure 3. (a) Control group showed mild astrocytic immunoreactivity with specific and uniform staining for glial fibrillary acidic protein (GFAP) (blue
arrows). (b) Group with water contaminated with lead administration depicted strong GFAP immunoreactivity with numerous intensely stained astrocytes
(blue arrows) (×400 magnification, GFAP immunostaining). [Color figure can be viewed in the online issue, which is available at www.anatomy.org.tr]

a b
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Immunohistochemical expression of glial fibrillary
acidic protein (GFAP) (Figure 3) immunostaining
revealed GFAP-immunoreactive astroglia-like cells were
increased in proportion, forming gliosis in the treatment
group when compared with the control. GFAP uniquely
marks for astrocytes which provide structural support and
strength to the surrounding neurons in the central nerv-
ous system.[51,52] The immunoreactivity of GFAP increased
during reactive gliosis characterized by astrocyte hyper-
plasia and hypertrophy as observed in Figure 3b.[52]

Microglial and astrocytes are effectors of neuroinflamma-
tion.[32] Neuroinflammation involving astrogliosis and
microglial activation is common to several neurodegener-
ative disorders.[53] The long-term impact of neuroinflam-
mation-induced cell death is engendered by increased
production of reactive oxygen and nitrogen species
(RONS).[54–56] Excessive generation of RONS during
oxidative stress is the major mechanism for the patholog-
ical effect of heavy metals, lead inclusive.[32,57–59] RONS are
principally involved in arousing apoptotic cell death by
nitrosative or irreversible oxidative damage to neuronal
elements.[55,56]

The demonstration of oxidative stress was also shown
by immunohistochemical expression of induced nitric
oxide synthase (iNOS) (Figure 4). iNOS immunoreactiv-
ity revealed increased immunointensity in treatment
groups (Figure 4b) when compared with control groups

(Figure 4a). Nitric oxide (NO) is mainly synthesized by
nitric oxide synthase (NOS) through the conversion of L-
arginine to NO and L-citrulline in mammals.[60] NO
plays a vital role in both physiological and pathological
processes in humans. Excessive production of NO as
invoked by neuroinflammation is implicated as one
major causative agent for several neurodegenerative dis-
orders pathogenesis.[56] Neuronal NO synthase is docu-
mented to be the main NOS isoform in the brain.[61,62] On
the contrary, iNOS is not normally expressed or comes
with minimal expression in the brain.[63,64] Nevertheless,
increased iNOS expression in neuroglia and invading
macrophages in response to brain injuries is revealed in
pathological conditions.[65,66] Acute injury and iNOS
upregulation may result in cell death.[67,68] All the same,
chronic neurodegenerative disorders will ensue when a
large amount of NO is produced over a prolonged peri-
od of time.[69] 

Conclusion
The findings of this study show that lead, obtained from
the three geographical zones of Kwara Nigeria, may have
a possible pathogenic role in development of neurodegen-
erative disorders and emphasize the effects of exposure to
this environmental pollutant.

Figure 4. (a) Control group showed mild NOS immunostaining (red arrows). (b) Group administered with lead contaminated water revealed
strong iNOS immunoreactivity (×400 magnification, iNOS immunostaining). [Color figure can be viewed in the online issue, which is available at
www.anatomy.org.tr]

a b
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