
BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020 357

Design of an Enterprise Level Architecture Based on

Microservices
Araştırma Makalesi/Research Article

 Kenan CEBECİ, Ömer KORÇAK

Department of Computer Engineering, Marmara University, Istanbul, Turkey

kenancebeci@marun.edu.tr, omer.korcak@marmara.edu.tr,

(Geliş/Received:26.04.2019; Kabul/Accepted:21.07.2020)

DOI: 10.17671/gazibtd.558392

Abstract— Building or transformation of an enterprise software system is an onerous process which requires a precise

definition of business demands. Then to enable the satisfaction of business requirements, the well-thought-of and

convenient software architecture must be determined and designed. According to common sense, there are two methods

to be followed in order to find the right solution for a problem. One is to handle the problem as a whole; like the

traditional monolith architecture. The second method is to divide the problem into easily understandable and soluble

fine-grains. If the second path is chosen in the software world, microservices architecture can be shown. When the

entire enterprise-level system design is considered, to the best of our knowledge, there is no any leading empirical

research on the evaluation of software architectures, selection of communication protocol, data formats, and database.

In this paper, an easily scalable, maintainable, highly-available, reliable and observable software system is designed by

comparing variant architectures, communication methods, and data models that would help to choose the most

appropriate architecture or model for the right purpose. All the paper is about designing a backend API system. The

client types or technologies are out of scope.

Keywords— microservices, software architecture, queue-based communication

Kurumsal Ölçekte Mikroservis Tabanlı Bir Mimarinin

Tasarlanması

Özet— Kurumsal bir yazılım sisteminin oluşturulması veya dönüşümü, iş ihtiyaçlarının tam olarak tanımlanmasını

gerektiren meşakkatli bir işlemdir. İş gereksinimlerinin karşılanabilmesi için iyi düşünülmüş, uygun yazılım mimarisi

kararlaştırılmalı ve tasarlanmalıdır. Genel olarak sorunlara çözüm bulmak için takip edilebilecek iki yöntem vardır.

Birincisi geleneksel monolitik mimaride olduğu gibi problemi, doğru çözümü bulmak için bir bütün olarak ele almaktır.

İkincisi ise problemi daha kolay anlaşılabilen ve çözülebilen küçük parçalara ayırmaktır. Eğer yazılım dünyasında ikinci

yöntem takip edilecek olursa, mikroservis mimarisi gündeme gelmektedir. Kurumsal ölçekli yazılım sistemi

tasarlanmak istendiğinde, bildiğimiz kadarıyla yazılım mimarilerini değerlendiren, iletişim protokolü, veri modeli ve

veritabanının seçimi üzerine yol gösterici deneysel bir araştırma bulunmamaktadır. Bu makalede, kolay ölçeklenebilir,

bakım yapılabilir, erişilebilirliği yüksek, güvenilir ve gözlemlenebilir mikroservis tabanlı bir yazılım sistemi

tasarlanmıştır. Ayrıca amacına uygun yazılım mimarisi ve modellerini seçmeye yardımcı olabilecek şekilde farklı

mimarilerin, iletişim protokollerinin ve veri modellerinin karşılaştırıldığı deneysel çalışmalar sunulmuştur. Tüm makale

sadece sunucu servis tasarımı ile ilgili olup istemci tipi ve teknolojileri bu çalışmanın kapsamı dışındadır.

Anahtar Kelimeler— mikroservis, yazılım mimarisi, kuyruk-tabanlı iletişim

https://orcid.org/0000-0002-4131-3586
mailto:ikiniciyazar@universite.edu.tr
https://orcid.org/0000-0003-4419-556X

358 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020

1. INTRODUCTION

The passing years in software engineering forces us to

find better ways of developing and deploying software

applications. Every company in this sector has been

developing with the help of lessons learned, as well as

observing new generation technology companies like

Google, Amazon and Netflix to gain favor from their

useful and successful approaches. The spread of

technology usage provides opportunities, which can be

captured rarely and of which millions of people seek. In

general, the hardware and software architectural

limitations block old fashion, big and indolently evolving

companies to catch the trend of change. The software-

based products started to respond to customers’ demands

by improving their software development lifecycle

(SDLC), increasing release count and decreasing

deployment duration. In order to make development

faster, and to release resilient software products, the agile

software development methodologies emerged. Agile

development approach focuses on the development itself

by caring individuals and interactions, working software,

customer collaboration, and responding to change [1].

Agile approaches are supported with cloud computing and

DevOps principles in order to shorten time to market [2]

and to serve higher throughput and increased availability

[3]. With the integration of these terms, Continuous

Software Engineering (CSE) approach arises. CSE is

defined as constructing an automated pipeline which

permits aggressive increasing of the frequency of

successful deployment in enterprise-level applications,

provided with proper tooling [4, 5] and proper testing [6,

7]. CSE optimizes the SDLC as the five continuous

practices including continuous planning, continuous

integration, continuous testing, continuous deployment

and continuous monitoring [8].

To meet the customer’s sectoral expectations, the

successful and innovative companies must be facilitated

with a well-designed, strong, resilient and agile software

architecture and platform which centralizes core

architectural features and makes easy to develop software

products focusing barely the development of business

requirements itself. For this purpose, microservices

architecture (MSA) is proposed which is a brand-new

approach that separates domain-specific applications into

smaller deployable services to facilitate continuous

integration, scalability, and reliability. Each of these small

services runs in its own process and communicates

through lightweight mechanisms.

In this paper, we suggest and evaluate a flexible

microservices-based software design on the enterprise-

level that allows companies to come to the fore. We first

compare the features of our design with some of the

trendiest existing microservices frameworks and then

provide a thorough comparison of the performance of our

proposed microservices-based design and traditional

monolith architecture.

1.1. Related Work

In the literature, there exists a variety of research studies

in the context of micro-services architectures. Aderaldo et

al. [9] focus on selecting a community-owned architecture

benchmark to support repeatable microservices research.

Takanori et al. [10] analyze the behavior of two versions

of the benchmark, microservice and monolithic. Amaral

et al. [11] aim to compare the CPU usage and bandwidth

utilization benchmarks in the monolithic architectures

where the whole system runs inside a single container, or

inside a microservices architecture where one or few

processes run inside the containers. Hence, the two

models of microservices architecture provide a

benchmark analysis guidance for system designers.

Authors define the steps to construct microservice-based

service software [12,13]. However, the defined steps

include only some high-level suggestions for the

determination phase of the general software microservice

layers without giving detailed information about building

the entire design. Boner discusses strategies and

techniques to build scalable and resilient microservices

and design the communication model [14, 15]. In general,

while studies focus on microservices architecture (MSA),

they do not dig into the inner detail of architecture [15,

16, 17]. The given examples do not provide enough

information and comparison to develop the right solution

in MSA point of view. Söylemez and Tarhan mention the

pros and challenges of MSA and gives alternatives to the

ready tools and approaches to overcome the challenges

[18]. The researchers define a monolith application and a

microservices-based web application [19]. Then they just

compare the cost of the monolith and MSA from the

development and deployment perspectives. Yamuç and

Sürme design a microservice-based satellite ground

software system focusing on 12 factors and set the

migration strategies from monolith to MSA [20]. Tang et

al. [21] design a system architecture for the garment

sector using an asynchronous communication mechanism

focusing to decompose the asynchronous sectoral

business operations. Pinheiro and friends compare the

standard monolith and MSA from the point of enterprise

architecture governance and then define the governance

principles, responsibilities, and product scopes of the

MSA [22]. Huang et al. [23] build an MSA and defines

the common points of microservices. In this paper, they

focus specifically on the load balancer optimization and

they propose a dynamic scheduling algorithm based on

unary linear regression. Akbulut and Perros [24] analyze

the performance of MSA carrying on three different

microservice design patterns. They also describe when

asynchronous communication should be preferred, and

which design pattern should be used to increase the

hardware usage efficiency and contribution to green

computing while decreasing hosting costs.

There are also numerous practical microservices

frameworks such as Spring Boot team’s Spring Cloud

[25], Eclipse team’s Vert.x [26] and Alibaba’s Dubbo

[27]. All these frameworks are developed to simplify the

development of distributed software architecture like

microservices. Those preserve ready to use components

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020 359

including API gateway, load balancer, service registry

and discovery, security, fault tolerance and service

governance. They are all focusing on helping developers

code applications and presenting their documentation to

comfort the usage of their features without giving interior

detail about the implementation of the components.

1.2. Motivation

As a first step towards filling the gap of a detailed

enterprise-level microservice architecture design

documentation, this study proposes, compares, discusses

and illustrates the use of proper architecture, protocol,

data format, web server and deployment methods for a

green-field project implementation of an enterprise-level

application with the following design considerations:

• The system needs to be scalable. The system should

be able to grow horizontally up to 50 times of its

initial load.

• The system needs to be highly available. There

should be no single points of failure. The required

uptime is about 99.5%.

• The system must be maintainable in the following

sense: The impact of any change to the system must

be easily predictable and reversible; as such, risks

should be foreseeable and containable.

• The system should be resilient to failures in the

following sense: Any failures should not cause

unspecified operations, and the business state of the

system should always remain consistent.

• The response time to a user request is constrained to

be less than 600 ms time to first byte (TTFB).

• Business processes should be easy to implement,

modify, route, measure and report.

• The whole system should be monitored for

interactions, transaction times, and errors.

For the proposed architecture of this design problem,

various concepts, methodologies and patterns like MSA,

queue-based messaging, Representative State Transfer

(REST) services, message formats and conversion

methodologies, data persistence systems (RDBMS,

NoSQL) will be analyzed, compared and considered.

The rest of the paper is organized as follows: Section 2

presents the determination of technology stack for the

satisfaction of the paper motivations. Section 3 provides a

design of the proposed architecture in various aspects.

Section 4 exhibits the evaluation and comparison results.

Section 5 concludes the paper with the gained experience

and research topics that address the open points for

improvement.

2. METHODOLOGICAL CONSIDERATION

Creating a software product is always risky.

Unfortunately, there is no fitting solution for all cases.

Each initiative tries to create a product to figure out a

problem or run and orchestrate complex operation. Hence,

while you are building an enterprise-level application

from greenfield, you must assess the alternative

approaches of a sub-challenge from different aspects. In

this section, the possible tools, approaches and protocols

are reviewed in order to design an enterprise-level

software architecture which has the properties mentioned

in the previous section.

2.1. Architectural Evaluation

The market trends and technologies dominate IT systems.

The evolution of the digital ecosystems forces them to

react to the ever-changing context of the business models.

Adaptation is the only way for technology companies to

survive [17]. The enterprise architects work on

transforming their enterprise architecture (EA) to hold

their companies on to life. To be agile and pioneer, the

architecture of enterprise-level applications should

support promising initiatives.

Firstly, let us introduce basic definitions and prominent

properties of the monolith and MSA by referring to the

pros and cons of both approaches.

2.1.1. Monolithic Architecture

Traditional enterprise-level software systems are

commonly designed as monoliths—all-in-one, all-or-

nothing [14]. The monolith is defined as “a software

application whose modules cannot be executed

independently” [28]. The simplest form of the architecture

runs all the bundled functionalities on a single layer.

Essentially, the monolith approach is the style of

development applications in this way. The simplicity

which comes from the form of the single unit application

conforms many small startup teams, then they build self-

contained software applications. In most cases, the

components or services of the monolith are combined and

linked as a unified solution [29, 30]. However, the

traditional EA has essentially three different layers which

are shown as a combined monolith API component in

Figure 1. The presentation layer provides an interface of

so-called frontend to the client. The business logic layer

contains workflows to drive the procedural logic for

business purposes. The last one is the data access layer

which abstracts the database from the upper layers serving

the data access and control abilities. This segregation

somehow aims separation of concerns (SoC) principle to

work on parts of the monolith architecture [31, 32].

The monolithic architecture eases doing business when

the scale or complexity is out of context. It has been a

well-known structure for a long time. Therefore, there are

many tools and applications which can ease the

development. Besides its convenience, the core of

application runs in a single directory. This allows

developers to release easy and newly implemented

version at once. In addition to this, all software

infrastructural operations such as authorization, logging,

exception handling, and rate-limiting are integrated into a

single code base, which requires less effort to implement.

Its performance is better when it is compared with the

360 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020

service-based alternatives because the monolithic

application is being run on the same host and memory. By

this way, the communication overhead between

components which determines the response time is kept

minimum. The scalability concern can be handled simply

by running multiple instances of the monolith application

behind a load balancer [31].

Figure 1. A standard monolith architecture design

So long as the code size and complexity are relatively

small, the monolithic applications work quite well. The

problems arise when some feature of sets of the tightly

coupled domains need to be scaled up. Over time,

multiple developers can frequently develop on the same

codebase concurrently. The added new features make the

code more complex and establish new dependencies

between the code scopes. This extreme dependency of the

code blocks turns into the code spaghetti which becomes

too tough to understand how the current business flows

and makes harder to map relations among modules,

especially for new developers who join the development

team. By nature of the unified architecture of the

monolith, the developers could face difficulties to work

independently and they require much more collaboration

which decreases efficiency and productivity.

There are lots of tools and languages to develop software

applications. To extend the number of development team

members effectively is possible only by hunting talented

developers. Addition to the difficulty of reaching talented

candidates, their knowledge and/or experience level of the

programming language are other possible obstacles. If

you tend to use a new language or technology, you must

rewrite the whole application. Technology and language

dependencies might be considered as another drawback in

competitive environments.

The agility of the architecture may allow degrading the

time to market by using a variety of frameworks and

languages apart from the existing ones. Code merging,

building, unit and regression testing and deployment may

cause a considerable increase in deployment preparation

and deployment time. As we publish the monolithic

system as a complete, possible development or testing

mistakes may increase downtimes and failure cost [4].

Scaling is another obstacle and it costs systems in which

the number of transactions per hour fluctuates. Since the

monolith does not have a modular structure, the entire

application needs to be scaled rather than only the mostly

used parts of the application. Such a scaling process

requires more hardware resources.

All these negative effects of monoliths have been

catastrophic for companies. Hiring talented developers is

one of the key parameters affects the results of projects

and time-to-market. Typically, top talented developers do

not prefer struggling with architecture caused problems to

keep the legacy systems stable for a long time. Production

environment thrashing causes low morale. This may also

have high effects, from an increase of turnover rate to the

failure of a company [28].

Consequently, the monolithic architecture is not

completely useless. Due to the complications it holds, this

architecture is not proper for the model we design for mid

or big level enterprises.

2.1.2. Service-based Architecture

Software engineering always defies to the challenges of

software development that impact the future success of

digital solution providers and the created applications. In

the middle of 2000s, SOA concept [33] was defined as an

architectural style which supports service-orientation.

Service is a self-contained reusable representation of the

group of domain functions which are bundled according

to the extracted data from the results of services has a

well-defined interface. MSA and SOA are called as

service-based architectures. By these innovations, a lot of

cutting-edge technology companies started to transform

their EA to the first form of SOA. The adoption of new

architecture facilitated better-designed and reusable

business functionality service. SOA led to implementing

many development tools to help service modelling and

orchestration transform and develop. After a while, the

failed software architecture transformation projects

demonstrated how difficult to model services, settle inter-

services communications and implementation cost of

SOA [34]. Then, microservices became a popular topic.

With MSA, software architects started to change their

mind and spend more time to create decentralized sub-

domain of a product which is fully responsible for its

functionalities block of that sub-domain instead of

designing “not well-grained”, “too big domains” [35].

Although MSA and SOA are not the same EA, they have

the service contracts, service availability, security and

transaction management characteristics of the service-

based distributed design [35].

2.1.3. Microservices Architecture

As Object-Oriented programming has become the

dominant paradigm, an abstraction of the code block and

their business-oriented functionalities have started to be

provided by services. This approach encourages the

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020 361

adoption of Service Oriented Architecture (SOA) which

serves some business-specific functionalities via an

interface. Application of SOA in enterprise-level systems

is followed by Domain Driven Design (DDD) approach

[14]. As OO architecture and DDD were promoted by

Single Responsibility Principle (SRP) [36], microservice

alike architectures emerged.

Fowler and Lewis define the MSA as an approach for

developing a single application as a suite of small

services, each running in its own process and

communicating with lightweight mechanisms, often an

HTTP resource API [37]. MSA is built around domain-

specific business functionalities and employs a full-stack

implementation of software for its business area [38, 39].

As it is depicted in Figure 2, each of the services can be

run independently on its own environment by connecting

to a lightweight inter-service communications

infrastructure [40].

Figure 2. Microservices architecture design

2.2. Monolith and Microservices Comparison

Microservices is proposed as the opposite approach of the

monolith. If the simplicity is your focus, then monolith

may be the way you follow at the first stage. The

approach expedites simpler building and deployment.

When the size of an application is getting bigger, the

application’s development team must be enlarged. After

that, the complexity of the single application increases,

and the progress requires to run the parallel SDLC phases.

If the scaling is an issue which must be overcome,

running copies of the single large application concurrently

may cause the bottleneck to handle the high-volume

transactions. When the low understandability of the large

codebase and the low quality of code problems are added

to the existing ones, the monolithic approach blocks the

implementation of code independently and reduces the

productivity dramatically.

On the other hand, microservices is getting popular in

many companies in recent years. Transformation of the

software architecture leverages the opportunities of cloud

computing and X-as-a-services infrastructures. MSA

approach shines with its artifacts like developing and

deploying independently, allowing to change the business

management methodology through an agile-wise path.

Now, we mention about the common motivations that

drive several practitioners to embark architectural

transformation from monolith to microservices.

Popularity: Microservices is a cool trendy topic. Within

every technical conversation, MSA is touched upon at

least once with the microservices success stories of large

companies. In that case, several attempters of

microservices confessed that the popularity of the

microservices is the only reason to apply that in their

companies [41, 42]. In recent years, Internet-of-things

(IoT) has become another trending topic in the IT world.

Many of the requirements of IoT [35, 43] are addressed

by microservices. The relation between those topics also

contributes to spreading the popularity of the

microservices.

Scalability: Scalability would be one of the biggest

expenditures in mid-sized or bigger companies. Running

huge monolithic application entails large expenses, in

case an improvement of performance for a specific

function of the overall application is required. The

modular and relatively small service structure of

microservices allows scaling only the expected parts of

the big application requiring allocating less hardware to

be executed. Figure 3. SOA Scaling shows how the

monolith and MSA can be scaled.

When the scaling operation is automated over an on-

demand cloud platform supplier, test results show that a

specifically designed auto-scaled deployment mechanism

of microservices can reduce the infrastructure cost up to

70% in comparison the cost of monolith scaling [19].

a. Monolith Scaling b. Microservices Scaling

Figure 3. SOA Scaling

Reusability: Each service in MSA does not execute

domain or business-specific operations. Some of them are

responsible for running infrastructural operations like

authorization, authentication, logging, monitoring,

exception handling, rate limiting, load balancing. You can

reuse these services not only in a single product, but also

in all products a company develops.

Container and DevOps: Container is a host, where we

run the application by allocating the required resources

for the application. DevOps is the set of techniques to

integrate the phases of SDLC from implementation to

deployment. The granularity of microservices supports

the building of the proper environment to adapt DevOps

362 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020

principles. These facilities simplify the developer’s life

from the aspects of deployment, monitoring, managing,

and recovering services [44].

Resiliency: Fault tolerance is one of the most important

benefits of MSA. In case of failure of a component in

monolith architecture, all the functionalities terminate,

and the system is totally broken by the failed component.

In contrast, MSA embraces to build isolated environment

for each service. Hence, the failed part does not impact

the whole system. To prove more resiliency to the system,

the circuit breakers pattern [45] should be implemented

and additionally, auto restarting mechanism of the failed

service empowers fault tolerance.

Technology Stack: The hosted potential risk of using

new technologies is one of the biggest barriers to adopt

[46]. Within microservices, small components enable to

show how new advancements of technologies enhance the

current system. Thanks to the polyglot nature of

microservices, you can try new programming languages

or even new databases or newly released framework, as

well without affecting the whole system to observe the

improvements.

Time to Market: MSA shortens time-to-market of

developed products [47]. Small teams can be more

productive when they are working on a correspondingly

small code base due to their augmented mastering on the

specific business domain. They can develop

independently.

Replaceability: Microservices can be consumed via

predefines interfaces. So long as a service offers the same

defined interfaces, each service can be replaced with its

new version.

Maintainability: The granular structure of MSA leads to

a reduction in the complexity of code. If the code contains

just a few hundreds of lines, it will put across the flow of

business or the relations between code blocks. However,

the developers can understand easily and do not hesitate

to change the code when it is required. Otherwise, any

maintenance or change the developers perform could

cause unexpected failures.

In addition to the valuable benefits, MSA requires

inevitable extra cost by opening the door of complexities

in comparison to the monolith. Few of these issues are

related to architecture design, like dividing too large

systems into MSA style consistent sub-domains,

determination of combination business capabilities that

have to be served together, bounding data layer to make

the microservice completely isolated, service registration

and service discovery, message dispatching, event-based

communication, queueing, finding the right client instance

after asynchronous response fetched. The cost of MSA

does not remain limited to the above-mentioned design

time costs. Extra machinery, developers, tools, and

platforms bring extra cost so that MSA is not suggested

when you have fewer than about 60 people working on

your system [48].

3. PROPOSED DESIGN OF MICROSERVICES

ARCHITECTURE

The goal of this paper is to design a microservice-based

architecture that targets to create a scalable system to be

able to grow the system horizontally up to 50 times of its

initial load. Also, the required uptime is about 99.5%, so

no single point of failure is accepted. That means the

system needs to be highly available. Another important

point that should be emphasized is that the impact of any

change to the system must be easily predictable and

reversible. In another meaning, any failures should not

cause unspecified operations, and the business state of the

system should always remain consistent. The response

time to a user request is constrained to be less than 600

ms time to first byte (TTFB) and business processes

should be easy to implement, modify, route, measure, and

report. Finally, the whole system should be monitored for

any interactions, transaction times, and errors.

To transfer technology comparison results into practice,

we have implemented a prototype carrying out MSA with

a message-driven development approach as shown in

Figure 4.

Figure 4. Proposed Enterprise Software Architecture

Design

The outcomes and the real environment of the

implemented architecture are discussed in the following

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020 363

section. However, there are some possible complication

areas in the study, and they are grouped as

communication, service registry and discovery,

modularity, security, and database selection. They are

explicitly discussed to resolve possible problems.

3.1. Communication

Enterprise software systems are built for making the

operations of the organization easy by interacting with

lots of integration ends. Basically, these systems get

inputs, interpret, and process those values for giving them

meaning and share the result of the technical operations

throughout the interaction point.

Before giving detail about the efficient possible solutions,

it would be better to define the systematic communication

types. The interaction types can be split into two different

dimensions [49]. Each dimension invokes two options.

The options for the first type of interaction are one-to-one

and one-to-many transmission. These two options are

distinguished by the number of the processor instance of

the request. It is called one-to-one interaction if the

transferred request is processed by only one service

processor. If each request is processed by multiple service

instance, then we call the interaction as one-to-many. The

other dimension of communication contains synchronous

and asynchronous options. In synchronous

communication, when the client sends a request, the

interaction between the client and the server is blocked

until the service returns the corresponding response of the

incoming request. Conversely, the client is not blocked

while waiting for the reply in asynchronous

communication.

3.1.1. API Gateway

Each backend system must provide a common facade

regardless of the architecture of a system to make

accessibility and integration easy. There is no easy way to

manage the interaction points of the enterprise systems. In

compliance with the microservices approach and not to be

considered as an antipattern [24] of MSA, we minimize

the dependencies while creating the API gateway

proposed enterprise application. So, the proposed system

must have a common interface is called as API gateway to

serve the service method to the variant client-side

applications like mobile, web or other service

applications.

Two sides of our API gateway communicate on

request/response mechanism. The request involves the

parameters of the queried entities or the input data to

trigger a transaction to insert or update something. The

HTTP protocol is one of the most known protocols all

over the world and has well-defined standards evolved to

satisfy many kinds of demands. Due to the nature of

HTTP, request/response communication is carried on

synchronously. HTTP supplies such type of

communication through blocking and awake style.

REST is an architectural pattern to ease web service

development [50, 51]. Its popularity comes from its

simplicity and its capacity to be built in HTTP features.

Everyone who uses HTTP can easily use REST, as well.

REST-based web services can be implemented in all

programming languages which is capable to send and

receive HTTP requests. Due to the REST-based

framework which provides quick development of web

services, it is pervasive, and it is almost used as the

default communication protocol for MSA based

applications in the EA world. Although there is no reason

to do that, REST is widely used in a synchronous way.

REST provides a kind of resource-oriented

communication approach. The idea behind REST is to

store resource to the server-side and the to get, update or

delete this resource using HTTP methods. Unlike Simple

Object Access Protocol (SOAP), REST does not dictate a

descriptive document like Web Services Description

Language (WSDL) to define the input and output

parameters before calling web services. It is crucial that

REST lacks state management mechanisms. Since all the

operations must be stateless because the server-side does

not know anything about the state information between

requests and responses. The state management should be

handled on the client-side.

We design API gateway as a RESTful web service to ease

the use of service methods by providing an interface. We

aimed to keep the API gateway as simple as possible in

our design. For simplification purpose in development

and service calling from the client-side, we introduce

below restrictions for the usage of the API.

• HTTP POST is the only method our API accepts.

This enables us to isolate the gateway from the

business domain. Therefore, there is no need to

write code in the API gateway codebase while you

are developing the enterprise-centric tasks.

• The first part of the URL is kept fixed. Only the last

part of it can change regarding the action taken by

the client. We called the method name as the intent

of the client.

• Identification and authentication operations are

handled inside API.

Figure 5. Request lifecycle in API Gateway

As it is shown in Figure 5, the API runs identification and

authorization operation and API pushes the requester

364 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020

thread to a dictionary with a unique message ID to force it

sleep until it receives its response via response queue

while taking HTTP request timeout into account. Then

proceeds transformation of the transmitted data via HTTP

post-operation to a predefined system message with a

unique message ID and sets the message intent with the

posted method name. The final task of the API after the

invocation of the received event is writing the generated

JSON message to a queue.

3.1.2. Messaging Data Format Selection

In principle, REST does not care what the transferred data

format is. All the data formats which HTTP protocol can

transmit are allowed, such as XML, HTML, Protocol

Buffer and JSON (which is the most favorite). Protocol

buffer, JSON and XML can be alternatives for the data-

interchange format of message content transportation.

Protocol buffer is the fastest one to process and the size of

data with the same information is smaller than the others.

But decoding the encoded data is hard without the

schema. The formatted data is dense, and it cannot be

called as human-readable. XML is the most human-

readable one. Unfortunately, it contains superfluous

attribute beginning and termination tags causing an

unnecessary increase in the size of transferred data. JSON

is less verbose according to XML. It decreases the data

size by removing attribute tags. Instead, brackets and

curly braces are used to begin and halt a JSON

component.

We prefer to use JSON because the size of the JSON is

smaller and it is more human-readable. All the messages

travelling throughout the system are in JSON format.

3.1.3. Inter-service Communication

In MSA, all the microservices are applications that are

running on their own and they must have a messaging

network to communicate with internal or external

applications [49, 18]. In our proposed design, we offer a

synchronous RESTful-based API gateway to manage the

outer interactions. There are two options to handle inter-

process communication (IPC). The microservices can

communicate over a synchronous request/response

principle like our API gateway is doing. Alternatively,

IPC can be carried asynchronously out publish/subscribe

principle like Advanced Message Queueing Protocol

(AMQP).

Although HTTP is a simple, standardized, well-known

and widely used protocol which supports synchronous

request/response, most of the transactions in an enterprise

system do not require sets of fully synchronized

operations. The asynchronous messaging allows

processing a large volume of data when the client-side

does not expect an immediate response [24]. Just as a

well-designed asynchronous communication can pretend

to work as if it is synchronous. The vice-versa is not

possible. In this regard, the asynchronized queue-based

communications, which might be applicable, serves a

reliable platform and functionalities to establish a

buffered message-driven IPC between loosely-coupled

microservices.

Among the alternatives like Kafka, MSMQ, ActiveMQ,

we select the open-source RabbitMQ [52] as the message

broker since it is the most used one and it implements the

AMQP. Besides, taking responsibility for load balancing

with already implemented distribution algorithms, this

communication type makes the system more resilient to

failure by keeping messages in queues in downtimes of

the system. It also provides the state of the messages [24].

Furthermore, it eases scaling by supporting a publish-

subscribe messaging infrastructure.

In addition to all the mentioned advantages of the queue-

based message-driven communications, this method

causes higher communication latency in comparison to

that of HTTP. While it is easy to call a method from

another component in a monolithic application, one might

have difficulties on implementing a system to handle calls

from another microservice by distinguishing inter-service

messages from common bus messages with a private

queue as it is depicted in Figure 6. Private queue usage
for inter-microservices communication.

Figure 6. Private queue usage for inter-microservices

communication

3.2. Service Registry and Discovery

Despite all the benefits MSA offers, excessive

challenging development tasks are accompanied by these

benefits due to the dynamic nature of distributed systems

[14, 15, 20, 45, 53, 54]. While dividing the system into

smaller applications can ease the management of the

business, addressing of dynamically scaling service

instances is turning into expectedly a tremendous

obstacle. Unlike SOA, maybe the most compelling

challenge is service discovery in MSA. SOA often figures

this problem by implementing service discovery as a task

of Enterprise Service Bus (ESB).

Service registry is the first step of service discovery

operation. There must be an enterprise-level common

repository which is accessible by all the distributed

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020 365

services in MSA for storing information about the set of

instances of each microservice. This repository must be

kept up to date to present seamless service discovery.

Service discovery is the mechanism which determines the

current addresses of each microservice instance to the

requesters by looking up regarding the requested service

information in the system-level service registry

repository. This mechanism [39] is an obligation which is

revealed from the effort of microservices to keep the

dependencies of the services loosely coupled. Service

discovery fundamentally is an ability to find all the

services each other at run-time.

We implement a message router component with the

name of “Message Director”. The API gateway receives

and converts the requests from HTTP to AMQP protocol

and then writes the messages to the message director

queue. The message director is the only component that

manages all queue communications at the backend. This

includes forwarding all the messages to the relevant queue

by checking the intent property of the message. Message

director must keep an intent-to-queue routing table up to

date to transmit messages to the corresponding queues.

We store the mapping table in RAM and if it cannot find a

corresponding registry for an intent in its routing table

then it asks the intent-to-queue registry to a global cache

manager to achieve reliable message routing. When the

registry record of an unknown intent cannot be obtained

from the global cache manager, an exception is thrown to

inform the client about the situation.

Besides, bridging the client request and corresponding

microservice, it logs every request and response messages

while performing the routing process. If it is intended, this

module allows us to write specific rules to monitor the

state of the system or to generate alerts for specific

actions.

3.3. Modularity

The basic principle lies under MSA is “divide and

conquer” [14] by breaking the systems into bounded

subsystem contexts. The determination of boundaries for

each microservices states the artifacts of using

microservices. The performance of the designed system

depends on how the boundaries of microservices are

drawn to maximize the advantages and to avoid

downsides as much as possible. The study in [29]

suggests following the boundaries of the data model to

determine the boundaries of microservices. In this

approach, each microservice must have a private set of

tables or a private database schema or a private database

which are not able to be accessed directly by other

microservices.

While microservices are being modelled, loose coupling

and high cohesion [46] are two key points which should

be considered to maximize the upsides. These approaches

identify the way which makes the change of a

microservice easier and faster. In that way, any change of

a microservice should not need a change of any other

microservice. The high cohesion is the other goal which is

needed to be supplied with centralizing domain-centric

related operations in a service. This approach also keeps

related codes within a service and reduces coupling.

The microservice is a kind of small application to handle

a specific task or a set of tasks in a domain and the

architecture comes with mentioned coupling and cohesion

problems. To be able to design a successful MSA,

overwhelmingly Distributed Reactive System approach is

proposed. Reactive mechanism [15, 55] is a system that

focuses on asynchronous messaging for distributed

architectures to help build isolated and highly

collaborative services. It is a message-driven-based

architectural approach [46] which composes the results of

multiple calls together to run operations. The calls can be

synchronous or asynchronous and the principle idea under

this approach is to emit the required data from different

resources and push them asynchronously when the results

become ready.

In the proposed enterprise-level MSA design,

fundamentally the reactive programming is used to

decompose each request into multiple discrete steps. Each

microservice communication has been carried out over

AMQP protocol while it can be written in any

programming language. The microservice emits the

message by subscribing to the predefined queue and

extracts the intent of the message to decide the related

inner method to be invoked dynamically. This domain-

specific application generates a proper response to each

request and publishes the response message to the

message director queue.

Each microservice must register all the service methods

that are implemented in it on the global service registry

repository at its booting phase. By that way, the service

discovery operation is figured out. The service registry

record contains the name of the service method and the

queue name that the microservice subscribes. If there is a

registry record and if it requires an update, it is updated.

Then, the booting microservice informs the message

director module about the change to revise its intent-to-

queue routing table. After the service registration process,

all the related client request can be forwarded to the

correct microservice by message director.

3.4. Security

Security is a major challenge in distributed systems. The

key benefits of distributed systems or MSA such as

granularity, easy deployment, inter-service

communication result in new security gaps and

specifically, small pieces of MSA expand the security risk

surface [28, 56, 57, 58]. Each IT system promotes a

security layer according to the sensitivity of its content or

operations.

Though the security of an organizational system has been

combined as multiple security levels, protection efforts

366 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020

may be insufficient due to threat propagation from the

weakest layer to the others [59]. Standard hardware,

network and OS levels precautions may not be sufficient

for the protection of microservices-based enterprise

software architecture. However, the first three layers

(hardware, virtualization, cloud) are out of concern in this

work; therefore, rest three sub-layers will be observed

here.

All organizational systems should identify the client of an

incoming request and should control its access

permissions for the related resources of the request.

Authentication is the identification operation whereas

authorization is to check permissions of the identified

client. Authentication and authorization can be provided

easier in a single embodied application. However, the

complexity of identification or authority is not less in

microservices. Thanks to the abstraction layer of our

proposed design, API gateway is the entry point of

microservices-based software and it should be the first

defending layer.

Figure 7. Authentication and authorization flow

OAuth2 can be accepted as the standard for user

authorization [60]. OAuth 2.0 is the protocol used to

simplify security operations. It allows developers to

process user tokens and obtains user to access a resource.

The valid tokens can be used for access permission to the

resource up to their expiration times.

In the proposed design, API gateway is the point where

all requests are sent via HTTP and authorized with JSON

Web Token (JWT) [61] to prevent unauthorized access.

In Figure 7. Authentication and authorization flow, it is

demonstrated how the authentication and the

authorization can be obtained.

When API gateway starts up, gets all users and their

access rights from server-side. Afterwards, all kind of

authorization changes triggers data feeding to the API in

order to inform API about the change of users’ access

rights. Each HTTP request must be posted to the API

gateway with JWT token. The identity of the requester is

fetched from the token and then the access right is

controlled whether the user has permission to call this

method.

3.5. Resiliency

The health of the overall software system depends on the

health of the network, DNS, data storage, virtual or

physical hardware, the instances of services. When the

infrastructural outages are considered out of concern in

this paper, there are four best practices such as timeouts,

bounded retries, circuit breakers and bulkheads [62] to

achieve designing a reliable MSA.

Timeout is a determined duration in advance for every

API call to guarantee that every API request is going to be

replied in a specified duration. In our design, each API

request thread, which is slept in API gateway while

waiting for its response message, has a lifetime as the

timeout value. By that way, unless the sleeping request

gets the corresponding result up to the end of its lifetime,

it will be awakened by the API thread pool manager and

will be replied with a message declaring that the expected

response message cannot be received in the acceptable

duration.

Bounded retry is a pattern which retries the failed API

calls complying with a determined frequency strategy.

This pattern is applied to minimize the negative effects of

the transient outage of the backend services. In our MSA

design, this pattern is not implemented, and it is expected

that the clients take over this mission. On the other hand,

it is strongly recommended that the service method can be

coded by considering the possibility of retried calls.

Circuit breaker is a method which is designed to handle

the repeated failed calls of a microservice. Circuit breaker

tracks all the requests and their responses to detect a

problem regarding the health of a microservice. When a

problem is detected, the circuit breaker turns to open-

mode and tries to transfer the request calls of the

problematic microservice to any alternative microservice

if there is described one or generates a default response.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020 367

When the circuit breaker is in the open mode, it

periodically checks the status of the down microservice. If

its connection attempts are successful, then it turns to

close mode to settle the connection as its normal running

mode [45, 62].

For the sake of increasing resiliency, Circuit-Breaker

pattern is implemented as a component of Message

Director to forward messages automatically to a

predefined alternative handler when an integration point

is down until the basic service provider gets back into

circulation.

Bulkhead pattern is designed to tolerate failure and is

inspired from bulkheads of a ship’s hull [63]. The

principle aims to provide a partitioning over the isolated

access channels of the microservices. When a

microservices is down, the pattern ensures not to allow

any blockage in communication or a resource scarcity for

consuming services.

The purpose of this pattern is served partially with the

timeout operation that is taken places in the API gateway.

Besides, the time-to-live argument of RabbitMQ

messages is set to guarantee that the expired messages

will be removed from the queue of the down

microservices. So, RabbitMQ resources are not consumed

for dead messages.

3.6. Database Selection

Data persistency is one of the most important and

expensive tasks for any application. MSA allows each

microservice instance having an individual data

management solution such as fully supported

transactional databases, open-source and supported on-

demand databases, document-based databases or the

combinations of those in compliant with the requirements

of the task which microservice operates. One can decide

how to handle data persistency with regards to the

planned budget, development team experience, whether

business requirements must be operated transactional, the

amount of the data to be persisted and what the speed

expectation of querying time [64]. We have selected an

open-source transactional relational database management

system (DBMS) to run operational procedures due to the

project budget and NoSQL DBMS for logging.

When the cost of licensing, maintenance, official support

and infrastructure are considered, the selection of the

open-source may make sense. However, it would be

essential to hire a full-time staff, who is expert in the

open-source database product, for running maintenance,

tuning, performance monitoring, performance

improvement, backup automation, disaster and recovery

operations of an enterprise-level production environment.

The availability of staff or outsource consultancy solution

has to be taken into account while making a decision on

the enterprise-level database product.

3.7. Architectural Comparison

After designing the proposed enterprise microservices-

based software architecture, the features of the proposed

architecture are compared with the existing microservices

frameworks [27, 64] in Table 1.

The overall picture depicted from Table 1 shows that our

proposed design handles the cross-cutting concerns of

MSA. However, there are functionalities which are

covered by other frameworks need to be implemented in

our design such as service governance, remote

configuration and richer serialization support. In addition

to these, an advance level load balancer is required to

balance the heavy load over multiple instances of API

gateway.

Table 1. Microservices architecture comparison

Feature
Microservices Architecture

Dubbo Vert.x
Spring
Cloud

Our Design

Service

Interface

RPC

/RESTful
RESTful RESTful

RESTful/

AMQP

Automatic
Service

Registry-

Discovery

Security OAuth2 OAuth2 OAuth2 OAuth2

Load Balancer

(when

service-

bus

used)

(RabbitMQ

provides only

for

microservices)

Circuit Breaker
Service

Governance
 -

Remote
Configuration

 -
Distributed

Logging
 - -

Large Data
Handling

 - -

Containerization
Serialization JSON, AMQP

Reactive

Programming - -

4. EXPERIMENTAL RESULTS

4.1. Test Environment

After we implement a prototype microservices

architecture applying the selected technologies, we

compare and evaluate the performance of the system. We

used 11 identical virtual servers, with Windows Server

2016 OS, on the same network. 7 of these servers are used

for MSA tests and others are used for the infrastructure

components as shown in Error! Reference source not

found.2. Each equipped with Intel® Xeon® CPU E5-

2680 2.40 GHz double core VCPU, 8 GB RAM and 8MB

cache. The performance test is done with Apache JMeter

and the test results were deduced from JMeter

performance calculations. RabbitMQ server is used as a

message broker and Redis is used as a global cache

368 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020

manager. IIS 8 is the webserver at which the RestAPI is

deployed and served.

Table 2. Server Dedication Demonstration

Installed Application Server Count

RabbitMQ and Redis 1

Message Director 1

IIS Web Server 1

JMeter 1

Implemented Prototype 7

In the experiments, the results of the CPU usage

percentage, the average response time, the processed

message count per second are average values which are

computed or observed for at least 10 minutes for ensuring

to minimize the impacts of the instantly fluctuating values

to increase the accuracy of the test results. The average

CPU usage percentages are observed via the Microsoft

Resource Manager on the conducted servers. The average

response time results are computed using Apache JMeter

test tool by taking an average of the round-trip-times of

the clients who call the analyzed services.

Apart from the RestAPI and RabbitMQ test, the tests are

conducted with 100 simultaneous clients which are

defined as a configuration on the Apache JMeter. In the

RestAPI and RabbitMQ performance comparison test, the

client numbers vary from 100 to 300.

4.2. Performance of The Implemented Prototype

Application

The first outcome of the test result is that MSA has a

higher network delay in comparison to the monolith

architecture. As the additional latency of message director

and message broker is regarded, the reason for the delay

can be inferred. We measure that average round-trip time

is 25 ms for monolith and 30 ms for our MSA prototype.

The latency delta is about 5 ms per request.

Table 3. CPU Usage Percentage According to Concurrent

Thread Count

Concurrent Thread Count CPU Usage Percentage

1 42

2 56

4 78

8 86

16 91

32 99

64 99

128 Application Fails

Each MSA instance creates a new thread for handling

each received request. Therefore, thread count

management becomes even more significant for MSA

instances. Firstly, we run a load test on the MSA without

limiting the thread count, then we observed that the active

thread count may increase up to 110. From that point, the

CPU’s new thread creation cost blocks the running

threads to be processed in an idle or allocated CPU slot.

For that reason, the instance transforms to zombie and

cannot emit or reply to any request. To prevent emerging

zombie MSA instances, we tried to find the optimum

thread count for maximizing CPU utilization. In Error!

Reference source not found., it demonstrates how the

thread count affects CPU utilization. The CPU usage

percentage evaluation lead us to limit the concurrent

thread count as 32. With 32 threads, CPU usage is

maximized, and MSA instances are avoided from being

functionless.

We test the performance of the AMQP comparing with

the performance of the HTTP RestAPI. The results in

Error! Reference source not found. demonstrate that the

performance of the RestAPI which is hosted on IIS is

better so long as the concurrent client number is below the

simultaneous thread count limit of the IIS server. When

the concurrent client count reaches to 200, then IIS starts

to consume most of the time by struggling to manage the

running threads. We also check the client request rate

which cannot be provided with a response for one second

timeout duration. While the error rate of the RabbitMQ is

0, the error rate for the RestAPI is 42 percentage with 300

concurrent clients.

Figure 8. RabbitMQ and HTTP RestAPI performance

comparison

The scalability performance of the proposed software

architecture is observed stable and responsive in harmony

with the monolith architecture performance for sorting an

integer array of 10000 items with bubble sort algorithm

which requires excessive CPU utilization. We generate

the input integer arrays in reverse order to maximize the

requirement of the CPU utilization. From the results in

Error! Reference source not found., it is clearly seen

that, when the number of concurrently running instances

increase, the MSA allows a reduction in the response time

proportionally similar to the monolith architecture.

In order to foresee how we can scale our MSA, we check

the message reading and forwarding count of the message

director by sending messages containing a static character

without expecting any response. After 10 minutes of

observation, we saw that the message director can emit

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020 369

from message broker and forward up to 17240 messages

per second. It is required to be emphasized that the

message director is a point of failure module. For that

reason, it is crucial that it must be run as multiple

instances. This multiplication obligation also facilitates to

leverage the reading and forwarding message number per

second. In order to see the limits of the message handling

number for round-trip operations on the proposed design,

we run the prototype with a single message director and

an instance of microservices. Each request is replied with

a single specific character to minimize the network and

CPU processing latency. Under these conditions, 1120

messages are able to be replied in a second. Even if we

run 7 concurrent instances on the available 7 servers, this

number is multiplied by 7, we can only reach almost half

of the single message director processing capacity.

Figure 9. Bubble Sort Response time for an integer array

of 10000 items while instance count increase

We also measure the number of messages handled during

the execution of bubble sort operation. Error! Reference

source not found. shows a gradual increase in the

handled number of messages per second.

Figure 10. Message processing velocity for Figure 9 test

case

5. CONCLUSION AND FUTURE WORK

This study presents a software architecture design which

aims to satisfy the requirements such as scalability,

reliability, maintainability, resilience to failures and

simplicity. The shared design details cover more

microservices concerns, preserve clearer architectural

perspective according to previous related work. We

implement a prototype of designed architecture based on

microservices and give architectural data flow and control

mechanism details. As mentioned in some references

which are related to migration from monolith to MSA, the

easiest way to gauge the success of the migration project

is to compare the performance of the MSA with the

performance of former monolithic architecture to see

whether the microservices can meet or transcend. Thus,

we provide performance tests for evaluating the ability of

the model to satisfy demanded requirements and

comparing it to the traditional monolith architecture.

The experimental results show that the proposed system

provides almost similar performance compared to the

monolith one. Although it causes approximately 5 ms of

architectural delay, the proposed MSA system can be

scaled up to tens of times compared to the initial load

expectations, owing to the performance of the designed

message director. Thanks to the modularity of MSA, a

highly available system can be served by increasing

instance numbers of each component to accomplish better

response times. This modularity leads us to follow the

separation of concern approach while developing and

overcoming difficulties of building a system that is

maintainable and containable.

We use queue-based communication facilitates to keep

the system stable in case of failure. The queue-based

communication and our proposed message director

module simplify routing, monitoring the current state of

the system, measuring transaction times, capturing

business or infrastructure errors to report.

For future work, a rule-based or even a learning tracking

and monitoring tool can be designed using an existing

message broker to monitor availability and performance

of the system. In order not to be affected by message

broker crashes, a redundant monitoring tool can be built

over HTTP. A trained or a well-designed message

tracking and monitoring tool may allow taking

autonomous proactive actions in case an inconsistent state

of the MSA.

Service governance mechanism should be implemented

by preserving metrics and diagnostic data from each

component of the proposed MSA. The serialization

methods of the system can be enriched to support more

data formats. To leverage load balancing operation, a load

balancer can be developed at the API gateway level. The

designed architecture can only use AMQP for inter-

service communication. HTTP support should be done,

and a lightweight HTTP load balancer can be developed

in the message director component.

REFERENCES

[1] Internet: M. Fowler, J. Highsmith, The Agile Manifesto,

http://users.jyu.fi/~mieijala/kandimateriaali/Agile-Manifesto.pdf,

26.02.2020.

370 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020

[2] Internet: E. Mueller, The Agile Admin,

https://theagileadmin.com/what-is-devops/, 24.01.2020.

[3] Internet: M. Rose, Teach Target, https://searchcloudcomputing.

techtarget.com/definition/cloud-computing, 14.02.2020.

[4] R. V. O’Connor, P. Elger, P. M. Clarke, “Continuous software

engineering—A microservices architecture perspective”,

Software: Evolution and Process, 29(11), 1-12, 2017.

[5] J. Bosch, Continuous Software Engineering, Springer,

Switzerland, 2014.

[6] D. Saff, M. D. Ernst, “An Experimental Evaluation of Continuous

Testing During Development”, ACM SIGSOFT Software

Engineering Notes, 29(4), 76-85, 2004.

[7] D. Saff, M. D. Ernst, “Reducing wasted development time via

continuous testing”, 14th International Symposium on

Software Reliability Engineering, Denver, USA, 281-292, 17-

20 November, 2003.

[8] M. Virmani, “Understanding DevOps & Bridging the Gap from

Continuous Integration to Continuous Delivery”, Fifth

International Conference on the Innovative Computing

Technology, Pontevedra, Spain, 78-82, 20-22 September, 2015.

[9] C. M. Aderaldo, N. C. Mendonça, C. Pahl, P. Jamshidi,

“Benchmark Requirements for Microservices Architecture

Research”, 2017 IEEE/ACM 1st International Workshop on

Establishing the Community-Wide Infrastructure for

Architecture-Based Software Engineering (ECASE), Buenos

Aires, 8-13, 20-22 May, 2017.

[10] T. Ueda, T. Nakaike, M. Ohara, “Workload Characterization for

Microservices”, 2016 IEEE International Symposium on

Workload Characterization (IISWC), Providence USA, 1-10,

25-27 September, 2016.

[11] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, M.

Steinder, “Performance Evaluation of Microservices

Architectures Using Containers”, 2015 IEEE 14th International

Symposium on Network Computing and Applications,

Cambridge, USA, 27-34, 28-30 September, 2015.

[12] F. Wang, F. Fahmi, “Constructing a Service Software with

Microservices”, 2018 IEEE World Congress on Services

(SERVICES), San Francisco, USA, 43-44, 2-7 July, 2018.

[13] H. Knoche, W. Hasselbring, “Experience with Microservices for

Legacy Software Modernization”, Software Engineering and

Software Management, 292, 101-102, 2019.

[14] J. Bonér, Reactive Microservices Architecture Design

Principles for Distributed Systems, O’Reilly Media, USA,

2016.

[15] Internet: J. Bonér, D. Farley, R. Kuhn, M. Thompson, The

Reactive Manifesto, https://www.reactivemanifesto.org/,

20.02.2020.

[16] J. Bonér, Reactive Microsystems The Evolution of

Microservices at Scale, Lightbend, USA, 2017.

[17] J. Bogner, A. Zimmermann, “Towards Integrating Microservices

with Adaptable Enterprise Architecture”, 2016 IEEE 20th

International Enterprise Distributed Object Computing

Workshop (EDOCW), Vienna, Austria, 1-6, 5-9 September,

2016.

[18] M. Söylemez, A. Tarhan, “Mikroservis Mimarisi ve Mimari

Faktörleri Üzerine Endüstriyel Bir İnceleme”, Proceedings of the

12th Turkish National Software Engineering Symposium,

Istanbul, Turkey, 1-13, 10-12 September, 2018.

[19] Y. Yu, H. Silveira, M. Sundaram, “A microservice based

reference architecture model in the context of enterprise

architecture”, 2016 IEEE Advanced Information Management,

Communicates, Electronic and Automation Control

Conference , China, 1856-1860, 3-5 October, 2016.

[20] A. Yamuç, U. M. Sürme, “Uydu Yer Yazılım Sistemleri için

Servis-yönelimli Mimari’den Mikroservis Mimarisine Geçiş

Stratejisi”, Proceedings of the 7th Turkish National Software

Architecture Conference (UYMK 2018), Istanbul, Turkey, 1-

12, 29-30 November, 2018.

[21] W. Tang, L. Wang, G. Xue, “Design of Information System

Architecture of Garment Enterprises Based on Microservices”,

Journal of Physics: Conference Series, 1168(3), 32128-32135,

2019.

[22] C. Pinheiro, A. Vasconcelos, S. Guerreiro, “Microservice

Architecture from Enterprise Architecture Management

Perspective”, Lecture Notes in Business Information Processing

(LNBIP), 356, 236-245, 2019.

[23] L. Huang, C. Zhang, Z. Zeng, “Design of a public services

platform for university management based on microservice

architecture”, Microsyst Technologies, 1-6, 2019.

[24] A. Akbulut, H. G. Perros, “Performance Analysis of Microservice

Design Patterns”, IEEE Internet Computing, 23(6), 19-27, 2019.

[25] Internet: Spring, Spring Cloud, https://spring.io/projects/spring-

cloud, 27.04.2020.

[26] Internet: Vert.x, Eclipse Vert.x is a tool-kit for building reactive

applications on the JVM, https://vertx.io/, 29.04.2020.

[27] Internet: Dubbo, A high performance Java RPC framework,

https://dubbo.apache.org/en-us/, 30.04.2020.

[28] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F.

Montesi, R. Mustafin, L. Safina, “Microservices: Yesterday,

Today, and Tomorrow”, Present and Ulterior Software

Engineering, M. Mazzara, B. Meyer, Springer International

Publishing, Zurich, Switzerland, 195-216, 2017.

[29] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M.

Verano, R. Casallas, S. Gil, C. Valencia, A. Zambrano, M. Lang,

“Infrastructure Cost Comparison of Running Web Applications in

the Cloud Using AWS Lambda and Monolithic and Microservice

Architectures”, 16th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid), Cartagena,

Colombia, 179-182, 16-19 May, 2016.

[30] A. Messina, R. Rizzo, P. Storniolo, A. Urso, “A Simplified

Database Pattern for the Microservice Architecture”, The Eighth

International Conference on Advances in Databases,

Knowledge, and Data Applications, Lisbon, Portugal, 35-40,

26-30 June, 2016.

[31] Internet: A. Nadalin, On monoliths, service-oriented architectures

and microservices, https://odino.org/on-monoliths-service-

oriented-architectures-and-microservices/, 13.03.2020.

[32] Internet: D. Anastasia, Monolith, SOA, Microservices, or

Serverless?, https://rubygarage.org/blog/monolith-soa-

microservices-serverless, 01.03.2020.

https://searchcloudcomputing/
https://iopscience.iop.org/journal/1742-6596
https://iopscience.iop.org/volume/1742-6596/1168
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4236

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 13, SAYI: 4, EKİM 2020 371

[33] Internet: S. Arshed, Monolithic vs SOA vs Microservices — How

to Choose Your Application Architecture,

https://medium.com/@saad_66516/monolithic-vs-soa-vs-

microservices-how-to-choose-your-application-architecture-

1a33108d1469,18.03.2020.

[34] Internet: The Open Group, Service-Oriented Architecture What Is

SOA, http://www.opengroup.org/soa/source-

book/soa/p1.htm#soa_definition, 23.04.2020.

[35] M. Richards, Microservices vs. Service-Oriented Architecture,

O’Reilly Media, CA, USD, 2016.

[36] Internet: E. Evans, GOTO 2015 - DDD & Microservices: At Last,

Some

Boundaries!,https://www.youtube.com/watch?v=yPvef9R3k-M,

23.04.2020.

[37] Internet: J. Lewis, M. Fowler, Microservices,

https://martinfowler.com/articles/microservices.html, 26.04.2020.

[38] Internet: R. C. Martin, The Clean Code Blog,

https://blog.cleancoder.com/uncle-

bob/2014/05/08/SingleReponsibilityPrinciple.html, 24.04.2020.

[39] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Malavolta, L.

Iovino, A. D. Salle, “Towards Recovering the Software

Architecture of Microservice-Based Systems”, 2017 IEEE

International Conference on Software Architecture

Workshops, Gothenburg, Sweden, 46-53, 5-7 April, 2017.

[40] W. Hasselbring, G. Steinacker, “Microservice Architectures for

Scalability, Agility and Reliability in E-Commerce”, 2017 IEEE

International Conference on Software Architecture

Workshops (ICSAW), Gothenburg, Sweden, 243-246, 5-7 April,

2017.

[41] D. Shadija, M. Rezai, R. Hill, “Towards an Understanding of

Microservices”, 2017 23rd International Conference on

Automation and Computing (ICAC), Huddersfield, UK, 1-6, 7-

8 September, 2017.

[42] O. Zimmermann, “Microservices tenets”, Computer Science -

Research and Development, 32(3), 301-310, 2017.

[43] D. Taibi, V. Lenarduzzi, C. Pahl, “Processes, Motivations, and

Issues for Migrating to Microservices Architectures: An

Empirical Investigation”, IEEE Cloud Computing, 4(5), 22-32,

2017.

[44] H. Kang, M. Le, S. Tao, “Container and Microservice Driven

Design for Cloud Infrastructure DevOps”, 2016 IEEE

International Conference on Cloud Engineering (IC2E),

Berlin, Germany, 202-211, 4-8 April, 2016.

[45] B. Butzin, F. Golatowski, D. Timmermann, “Microservices

approach for the internet of things”, 2016 IEEE 21st

International Conference on Emerging Technologies and

Factory Automation (ETFA), Berlin, Germany, 1-6, 6-9

Semtember, 2016.

[46] Internet: F. Montesi, J. Weber, Circuit Breakers Discovery and

API Gateways in Microservices, http://arxiv.org/abs/1609.05830,

30.04.2020.

[47] S. Newman, Building Microservices Designing Fine-Grained

Systems, O’Reilly Media, Sebastopol, CA, 2015.

[48] D. Namiot, M. Sneps-Sneppe, “On Micro-services Architecture”,

International Journal of Open Information Technologies, 2(9),

24-27, 2014.

[49] E. Wolff, Microservices-Flexible Software Architecture,

Crawfordsville, Pearson Education, Indiana, USA, 2017.

[50] Internet: C. Richardson, Building Microservices: Inter-Process

Communication in a Microservices Architecture,

https://www.nginx.com/blog/building-microservices-inter-

process-communication, 30.04.2020.

[51] Internet: D. Jacobson, Why REST Keeps Me Up At Night,

https://www.programmableweb.com/news/why-rest-keeps-me-

night/2012/05/15, 30.04.2020.

[52] Internet: M. Rouse, REST (REpresentational State Transfer),

https://searchmicroservices.techtarget.com/definition/REST-

representational-state-transfer, 30.04.2020.

[53] Internet: RabbitMQ, RabbitMQ is the most widely deployed open

source message broker, https://www.rabbitmq.com/, 30.04.2020.

[54] Internet: C. Richardson, Service Discovery in a Microservices

Architecture, https://www.nginx.com/blog/service-discovery-in-a-

microservices-architecture, 30.04.2020.

[55] S. Sobernig, U. Zdun, “Inversion-of-Control Layer”, Proceedings

of the 15th European Conference on Pattern Languages of

Programs (EuroPLoP'10), Irsee, Germany, 1-22, 7-11 July,

2010.

[56] Internet: R. Chandramouli, Security Strategies for Microservices-

based Application Systems,

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.80

0-204-draft.pdf, 30.04.2020.

[57] Y. Sun, S. Nanda, T. Jaeger, “Security-as-a-Service for

Microservices-Based Cloud Applications”, 2015 IEEE 7th

International Conference on Cloud Computing Technology

and Science (CloudCom), Vancouver, Canada, 50-57, 30

November-3 December, 2015.

[58] Internet: D. Yu, Y. Jin, Y. Zhang, X. Zheng, A survey on security

issues in services communication of Microservices‐enabled fog

applications,https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.

4436, 30.04.2020.

[59] Internet: Sumo Logic, Improving Security in Your Microservices

Architecture, https://www.sumologic.com/insight/microservices-

architecture-security/, 30.04.2020.

[60] Internet: OAuth, OAuth 2.0, https://oauth.net/2/, 30.04.2020.

[61] Internet: Auth0, Introduction to JSON Web Tokens,

https://jwt.io/introduction, 30.04.2020.

[62] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, V.

Sekar, “Gremlin: Systematic Resilience Testing of

Microservices”, 2016 IEEE 36th International Conference on

Distributed Computing Systems (ICDCS), Nara, Japan, 57-66,

27-30 June, 2016.

[63] Internet: Microsoft, Bulkhead Pattern,

https://docs.microsoft.com/en-

us/azure/architecture/patterns/bulkhead, 28.04.2020.

[64] E. Edling, E. Östergen, An analysis of microservice

frameworks, Bachelor, Linköping University, Department of

Computer and Information Science, 2017.

http://www.opengroup.org/soa/source-book/soa/p1.htm#soa_
http://www.opengroup.org/soa/source-book/soa/p1.htm#soa_
https://ieeexplore.ieee.org/xpl/conhome/7529829/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7529829/proceeding

