The Quantum Codes over F_q and Quantum Quasi-cyclic Codes over F_p

Yasemin Cengellenmis and Abdullah Dertli*

Abstract

In this paper, the quantum codes over F_q are constructed by using the cyclic codes over the finite ring $R = F_q + vF_q + ... + v^{m-1}F_q$, where p is prime, $q = p^s$, m - 1|p - 1 and $v^m = v$. The parameters of quantum error correcting codes over F_q are obtained. Some examples are given. Morever, the quantum quasi-cyclic codes over F_p are obtained, by using the self dual basis for F_{p^s} over F_p .

Keywords: Cyclic codes; Quasi-cyclic codes; Quantum codes.

AMS Subject Classification (2010): 94B05; 94B15.

*Corresponding author

1. Introduction

The theory quantum error correcting codes has differences from the theory classical error correcting codes. But Calderbank et al. gave a way to construct quantum error correcting codes from classical error correcting codes in [4].

Many good quantum codes has been constructed by using the classical cyclic codes over F_q with self orthogonal (or dual containing) properties. Recently, some authors have constructed quantum the codes by using the linear codes over some finite ring in [1-4,8-10,12-18].

In 2015, Gao constructed the quantum codes over F_q from the cyclic codes over a finite non chain ring $F_q + vF_q + v^2F_q + v^3F_q$, where $q = p^r$, p is an odd prime, 3|p-1 and $v^4 = v$ in [8]. In 2016, Sari and Siap constructed the quantum codes over F_p from the cyclic codes of arbitrary length over $F_p + vF_p + ... + v^{p-1}F_p$, where $v^p = v$ and p is a prime in [13].

In [11], Qian et al. gave a method for constructing the self orthogonal quasi-cyclic codes and obtained a large number of new quantum quasi-cyclic codes by CSS construction.

Our aim in this paper is firstly to construct the quantum codes over F_q by using the cyclic codes over the finite ring $R = F_q + vF_q + ... + v^{m-1}F_q$, where p is a prime, $q = p^s$, m - 1|p - 1, $v^m = v$ and later to obtained the parameters of the quantum quasi-cyclic codes over F_p , by using the self dual basis for F_{p^s} over F_p .

This paper is organized as follows. In section 2, some properties of the finite ring R are given. In section 3, a sufficient and necessary condition for the cyclic codes over R that contains its dual is given. The parameters of quantum error correcting codes are obtained from the cyclic codes over R and some examples are given. In section 4, by taking m = 3, the parameters of the quantum quasi-cyclic codes over F_p are determined.

2. Preliminaries

In [12], Shi and Yao give the following properties of the finite ring $R = F_q + vF_q + ... + v^{m-1}F_q = F_q[v]/\langle v^m - v \rangle$, where p is a prime $q = p^s$, m - 1|p - 1 and $v^m = v$.

As m-1|p-1, this shows that $v^m - v = v(v - v_1)(v - v_2)....(v - v_{m-1})$ with all v_i 's in F_q . Let $f_i = v - v_i$ and $\hat{f}_i = (v^m - v)/f_i$ where i = 0, ..., m-1, then there exist $a_i, b_i \in F_q[v]$ such that $a_i f_i + b_i \hat{f}_i = 1$. Let $e_i = b_i \hat{f}_i$, then $e_i^2 = e_i$, and $e_i e_j = 0$, $\sum_{i=0}^{m-1} e_i = 1$, where i, j = 0, 1, ..., m-1 and $i \neq j$. So

$$R = e_0 R \oplus e_1 R \oplus \ldots \oplus e_{m-1} R = e_0 F_q \oplus \ldots \oplus e_{m-1} F_q$$

and

$$R \cong R/\langle v \rangle \times \dots \times R/\langle v - v_{m-1} \rangle \cong F_q \times \dots \times F_q$$

They express any $r \in R$ uniquely as

$$r = e_0 r_0 + \dots + e_{m-1} r_{m-1},$$

where $r_i \in F_q$ for i = 0, ..., m - 1 in [12].

Example 2.1. For q = p = 3 and m = 3, the three idempotents are $e_0 = 1 - v^2$, $e_1 = 2v^2 + 2v$, $e_2 = 2v^2 + v$.

A linear code *C* over *R* length *n* is an *R*-submodule of R^n . An element of *C* is called a codeword. By defining the set

$$C_i = \{x_i \in F_q^n | \exists x_0, \dots, x_{i-1}, x_{i+1}, \dots, x_{m-1} \in F_q^n, e_0 x_0 + \dots + e_{m-1} x_{m-1} \in C\}$$

where i = 0, 1, ..., m - 1, they represent the linear code C of length n over R as

$$C = e_0 C_0 \oplus \dots \oplus e_{m-1} C_{m-1}$$

where C_i are the linear codes over F_q , for i = 0, ..., m - 1 in [12].

If G is a generator matrix of C over R, then the generator matrix G is expressed as

$$\mathbf{G} = \left(\begin{array}{c} e_0 G_0\\ \dots\\ e_{m-1} G_{m-1} \end{array}\right)$$

where $G_0, ..., G_{m-1}$ are the generator matrices of $C_0, ..., C_{m-1}$ in [12].

For any $x = (x_0, x_1, \dots, x_{n-1})$, $y = (y_0, y_1, \dots, y_{n-1}) \in \mathbb{R}^n$, the inner product is defined as

$$x.y = \sum_{i=0}^{n-1} x_i y_i$$

If $x \cdot y = 0$, then x and y are said to be orthogonal. Let C be a linear code of length n over R, the dual code of C

$$C^{\perp} = \{ x : \forall y \in C, x.y = 0 \}$$

which is also a linear code over R of length n. A code C is self orthogonal if $C \subseteq C^{\perp}$ and self dual if $C = C^{\perp}$.

A code *C* over *R* is a linear code with the property that if every $c = (c_0, c_1, ..., c_{n-1}) \in C$, then $\sigma(c) = (c_{n-1}, c_0, ..., c_{n-2}) \in C$. A subset *C* of R^n is a linear cyclic code of length *n* iff its polynomial representation is an ideal of $R[x] / \langle x^n - 1 \rangle$.

Proposition 2.1. [12] Let $C = e_0 C_0 \oplus ... \oplus e_{m-1} C_{m-1}$ be a linear code of length n over R. Then

$$C^{\perp} = e_0 C_0^{\perp} \oplus \dots \oplus e_{m-1} C_{m-1}^{\perp}$$

Morever C is a self dual code over R if and only if $C_0, ..., C_{m-1}$ are all self dual codes over F_q .

In [12], they give a special class of Gray maps, which preserves the property of self dual of linear codes from the ring R to the finite field F_q , by using the group of invertible matrices of size m.

In [12], the Gray map Φ is defined as follows

$$\Phi : R \to F_q^m$$

$$r = (r_0, ..., r_{m-1}) \mapsto \Phi((r_0, ..., r_{m-1})) = (r_0, ..., r_{m-1})M = rM$$

for any matrix $M \in GL_m(F_q)$, where $GL_m(F_q)$ is the group of invertible matrices of size m and Φ is an F_q -module isomorphism.

The Gray map is extended as follows

$$\Phi : R^n \to F_q^{mn}$$

$$c = (c_0, ..., c_{m-1}) \mapsto \Phi((c_0, ..., c_{m-1})) = (c_0 M, ..., c_{m-1} M)$$

Let *C* be a code over F_q of length *n* and $\dot{c} = (\dot{c}_0, \dot{c}_1, ..., \dot{c}_{n-1})$ be a codeword of *C*. The Hamming weight of \dot{c} is defined as $w_H(\dot{c}) = \sum_{i=0}^{n-1} w_H(\dot{c}_i)$ where $w_H(\dot{c}_i) = 1$ if, $\dot{c}_i \neq 0$ and $w_H(\dot{c}_i) = 0$ if, $\dot{c}_i = 0$. The Hamming distance of *C* is defined as $d_H(C) = \min d_H(c, \dot{c})$, where for any $\dot{c} \in C$, $c \neq \dot{c}$ and $d_H(c, \dot{c})$ is the Hamming distance between two codewords with $d_H(c, \dot{c}) = w_H(c - \dot{c})$.

In [12], the Gray weight $w_G(r)$ of $r = (r_0, ..., r_{m-1}) \in R$ is defined as the Hamming weight of the vector rM. For any vector $c = (c_0, ..., c_{n-1}) \in R^n$, the Gray weight of c is defined to be the rational sum of Gray weight of its components. For any elements $c_1, c_2 \in R^n$, the Gray distance between c_1 and c_2 is given by

$$d_G(c_1, c_2) = w_G(c_1 - c_2)$$

The minimum Gray weight of *C* is the smallest nonzero Gray weight among all codewords. If *C* is a linear code, then the minimum Gray distance is the same as the minimum Gray weight.

Lemma 2.1. [12] If C is a linear code of length n over R, then $\Phi(C)$ is a linear code of length mn over F_q . Morever, the Gray map Φ is a distance-preserving map from C to $\Phi(C)$.

Proposition 2.2. [12] Let M be an invertible matrix of size m over F_q , let C be a linear code of length n with the minimum Gray distance d over R. If C has the generator matrix G as above and $|C| = p^{\sum_{i=0}^{m-1} k_i}$, then $\Phi(C)$ is a $[mn, \sum_{i=0}^{m-1} k_i, d]$ linear code over F_q , where k_i 's are the respective dimensions of the C_i 's.

Proposition 2.3. [12] Let C be a linear code of length n over R. Let $M \in GL_m(F_q)$ and $M.M^T = \lambda I_m$, where $\lambda \in F_q \setminus \{0\}$ and I_m be the identity matrix of size m over F_q . If C is a self dual code, then $\Phi(C)$ is a self dual code of length mn over F_q .

Example 2.2. Let q = p = 3 and m = 3. By taking

$$\mathbf{M} = \left(\begin{array}{c} 111\\012\\011\end{array}\right)$$

the Gray map can is defined as follows

$$\Phi: \qquad F_3 + vF_3 + v^2F_3 \to F_3^3$$

$$a + bv + cv^2 \quad \longmapsto \quad \Phi(a + bv + cv^2) = (a, a + b + c, a - b + c)$$

It is easily seen that if *C* is self dual, so is $\Phi(C)$.

3. Quantum codes from the cyclic codes over *R*

Theorem 3.1. [5](CSS Construction) Let $C_1 = [n, k_1, d_1]_q$ and $C_2 = [n, k_2, d_2]_q$ be linear codes over GF(q) with $C_2 \subseteq C_1$. Then there exists a quantum error-correcting code $C = [[n, k_1 - k_2, min\{d_1, d_2^{\perp}\}]]_q$, where d_2^{\perp} denotes the minimum Hamming distance of the dual code C_2^{\perp} of C_2 . Further, if $C_1^{\perp} = C_2$, then there exists a quantum error-correcting code $C = [[n, 2k_1 - n, d_1]]$.

Proposition 3.1. Let $C = e_0 C_0 \oplus \oplus e_{m-1} C_{m-1}$ be a linear code of length n over R, where C_i are the codes over F_q of length n, for i = 0, ..., m - 1. Then C is a cyclic code over R iff C_i are the cyclic codes over F_q , for i = 0, ..., m - 1.

Proof. Let $(a_0^i, ..., a_{n-1}^i) \in C_i$, for i = 0, 1, ..., m-1. Assume that $m_j = e_0 a_j^0 + e_1 a_j^1 + ... + e_{m-1} a_j^{m-1}$, for j = 0, ..., n-1. Then $(m_0, ..., m_{n-1}) \in C$. Since C is a cyclic code, so $(m_{n-1}, m_0, ..., m_{n-2}) \in C$. Note that $(m_{n-1}, m_0, ..., m_{n-2}) = e_0(a_{n-1}^0, ..., a_{n-2}^0) + e_1(a_{n-1}^1, ..., a_{n-2}^1) + ... + e_{m-1}(a_{m-1}^{m-1}, ..., a_{n-2}^{m-1})$. Hence $(a_{n-1}^i, a_0^i, ..., a_{n-2}^i) \in C_i$, for i = 0, 1, ..., m-1. So C_i are the cyclic codes over F_q for i = 0, 1, ..., m-1. Conversely, suppose that C_i are the cyclic codes over F_q , for i = 0, 1, ..., m - 1. Let $(m_0, ..., m_{n-1}) \in C$, where $m_j = e_0 a_j^0 + e_1 a_j^1 + ... + e_{m-1} a_j^{m-1}$, for j = 0, ..., n - 1. Then $(a_{n-1}^i, a_0^i ..., a_{n-2}^i) \in C_i$, for i = 0, 1, ..., m - 1. Note that $(m_{n-1}, ..., m_{n-2}) = e_0(a_{n-1}^0, ..., a_{n-2}^0) + e_1(a_{n-1}^1, ..., a_{n-2}^1) + ... + e_{m-1}(a_{n-1}^{m-1}, ..., a_{n-2}^{m-1}) \in C = e_0C_0 \oplus \oplus e_{m-1}C_{m-1}$. Hence C is a cyclic code over R.

Proposition 3.2. If $C = e_0C_0 \oplus e_1C_1 \oplus e_2C_2 \oplus ... \oplus e_{m-1}C_{m-1}$ is a cyclic code of length *n* over *R*, then

$$C = \langle e_0 g_0(x), \dots, e_{m-1} g_{m-1}(x) \rangle$$

and $|C| = q^{mn - (\deg g_0(x) + \deg g_1(x) + + \deg g_{m-1}(x))}$ where $g_0(x), ..., g_{m-1}(x)$ are the generator polynomials of $C_0, ..., C_{m-1}$ respectively.

Proposition 3.3. Let $C = e_0C_0 \oplus e_1C_1 \oplus e_2C_2 \oplus ... \oplus e_{m-1}C_{m-1}$ be a cyclic code of length n over R, then there exists a unique polynomial g(x) such that $C = \langle g(x) \rangle$ and $g(x) | x^n - 1$, where $g(x) = e_0g_0(x) + ... + e_{m-1}g_{m-1}(x)$ and $g_i(x)$ are the generator polynomials of cyclic codes C_i , for i = 0, 1, ..., m - 1.

Lemma 3.1. [5] A cyclic code C over F_q with generator polynomial g(x) contains its dual code iff

$$x^n - 1 \equiv 0 \left(modg(x)g^*(x) \right)$$

where $g(x)^*$ is the reciprocal polynomial of g(x).

Theorem 3.2. Let $C = e_0 C_0 \oplus e_2 C_2 \oplus ... \oplus e_{m-1} C_{m-1}$ be a cyclic code of length n over R and $C = \langle g(x) \rangle$. Then $C^{\perp} \subseteq C$ iff

$$x^n - 1 \equiv 0 \left(modg_i(x)g_i^*(x) \right)$$

for i = 0, 1, 2, 3, ..., m - 1.

Proof. Let $x^n - 1 \equiv 0 \pmod{g_i(x)g_i^*(x)}$ for i = 0, 1, 2, 3, ..., m - 1. From the Lemma 2.1, we have $C_0^{\perp} \subseteq C_0, C_1^{\perp} \subseteq C_1, ..., C_{m-1}^{\perp} \subseteq C_{m-1}$. This shows that $e_i C_i^{\perp} \subseteq e_i C_i$, for i = 0, 1, ..., m-1. We have $C^{\perp} = e_0 C_0^{\perp} \oplus ... \oplus e_{m-1} C_{m-1}^{\perp} \subseteq C$, by using the Proposition 1.1.

Conversely, if $C^{\perp} \subseteq C$, then we have $e_i C^{\perp} = e_i C_i^{\perp} \subseteq e_i C = e_i C_i$, for any i = 0, ..., m - 1. So $C_i^{\perp} \subseteq C_i$, for i = 0, ..., m - 1. So from the Lemma 2.1, we get $x^n - 1 \equiv 0 \pmod{g_i(x)g_i^*(x)}$, for i = 0, 1, 2, 3, ..., m - 1.

Theorem 3.3. Let $C = e_0C_0 \oplus ... \oplus e_{m-1}C_{m-1}$ be a cyclic code of length n over R and let the parameters of $\Phi(C)$ be [mn, k, d], where d is the minimum Gray distance of C. If $C^{\perp} \subseteq C$, then there exists a quantum error correcting code with parameter [[mn, 2k - mn, d]] over F_q .

4. The Quantum Quasi-cyclic codes from the self orthogonal Quasi-cyclic codes over F_{p^s}

In this section, we take m as 3.

In [6], they focus on codes over the finite ring $S = F_q + vF_q + v^2F_q$, where $v^3 = v$ and q is a prime power. A Gray map ϕ from S^n to F_q^{3n} is defined as follows;

$$\phi : S \to F_q^3$$
$$x = a_0 + va_1 + v^2 a_2 \mapsto \phi(x) = (a_0, a_0 + a_2, a_1)$$

where $x = a_0 + va_1 + v^2 a_2$, for $a_i \in F_q$, i = 0, 1, 2.

In [6], the Lee weight of the element of *S* is defined. They shown that the Gray map is a weight preserving map and if *C* is a linear code over *S*, the minimum Lee weight of *C* is the same as the minimum Hamming weight of $\phi(C)$ and if *C* is a self orthogonal code, so it $\phi(C)$.

Proposition 4.1. Let σ be a cyclic shift. Then $\phi \sigma = \sigma^{\otimes 3} \phi$.

Proof. Let $z = (z_0, z_1, ..., z_{n-1})$ be in S^n . Let $a_i, b_i, c_i, d_i \in F_q$, for $0 \le i \le n-1$ such that $z_i = a_i + b_i v + c_i v^2$. Then, $\sigma(z) = (z_{n-1}, z_0, z_1, ..., z_{n-2})$. From the definition of Gray map, we get $\phi\sigma(z) = (a_{n-1}, a_0, ..., a_{n-2}, a_{n-1} + c_{n-1}, a_0 + c_0, ..., a_{n-2} + c_{n-2}, b_{n-1}, b_0, ..., b_{n-2})$.

On the other hand, since $\phi(z) = (a_0, ..., a_{n-1}, a_0 + c_0, ..., a_{n-1} + c_{n-1}, b_0, ..., b_{n-1})$, by applying $\sigma^{\otimes 3}$, we have $\sigma^{\otimes 3}\phi(z) = (a_{n-1}, a_0, ..., a_{n-2}, a_{n-1} + c_{n-1}, a_0 + c_0, ..., a_{n-2} + c_{n-2}, b_{n-1}, b_0, ..., b_{n-2})$.

Theorem 4.1. If *C* is a cyclic code of length *n* over *S*, then $\phi(C)$ is a quasi-cyclic code of index 3 with length 3*n* over F_q . *Proof.* Let *C* be a cyclic code over *S*. Then $\sigma(C) = C$, so $\phi(\sigma(C)) = \phi(C)$. It follows from the Proposition 3.1, that

 $\sigma^{\otimes 3}(\phi(C)) = \phi(C)$, which means that $\phi(C)$ is a quasi-cyclic code of index 3 with length 3n over F_q .

In [11], they give a sufficient and necessary condition for a one generator l-quasi-cyclic codes over F_q contains its dual. Morever, they give the following theorem.

Theorem 4.2. [11] Let C be an [n, k, d] quasi-cyclic code over F_q with generator of the form

$$g(x) = (f_1(x)g_1(x), ..., f_l(x)g_l(x))$$

where $g_i(x)|x^n - 1$ and $(f_i(x), (x^m - 1)/g_i(x)) = 1$ for all i = 1, 2, ..., l, and for all i = 1, 2, ..., l,

$$x^m - 1 \equiv 0(modg_i(x)g_i^*(x))$$

Then $C^{\perp} \subseteq C$ and there exists a quantum QC code with [[n, 2k - n, d]].

In order to obtain the parameters of the quantum quasi-cyclic codes over F_p via self dual basis, we give necessary some knowledges about self dual basis from [7].

Let p be a prime number and $q = p^s$, where s is a positive integer. The trace $Tr(\alpha)$ over F_p of an element $\alpha \in F_q$ is defined as

$$Tr(\alpha) = \sum_{i=0}^{s-1} \alpha^p$$

A basis $B = \{\alpha_1, ..., \alpha_s\}$ of F_q over F_p is trace-orthogonal basis if

$$Tr(\alpha_i \alpha_j) = \begin{cases} \text{nonzero, } i = j \\ 0, \quad i \neq j \end{cases}$$

A trace-orthogonal basis is called a self dual basis if $Tr(\alpha_i^2)=1$, for i = 1, ..., s. In [7], it is shown that a self-dual basis exist if and only if p is even or p and s are both odd.

In this work, we take $q = p^s$, where p and s are both odd.

Let $B = \{\alpha_1, ..., \alpha_s\}$ be a self dual basis of F_{p^s} over F_p . Let C be a quasi-cyclic code over F_{p^s} of index 3 with length 3n. For any $c = (c_1, ..., c_n) \in C$,

$$\begin{array}{lll} \psi & : & F_{p^s}^{3n} \to F_p^{3ns} \\ c = (c_1,...,c_n) \mapsto \psi(c) & = & (c_{11},c_{12},...,c_{(3n)1},c_{12},...,c_{(3n)2},...,c_{1s},...c_{(3n)s}) \end{array}$$

where $c_i = \sum_{j=1}^{s} c_{ij} \alpha_j$ and $c_{ij} \in F_p$, for i = 1, ..., n.

Lemma 4.1. If C is a quasi-cyclic code of index 3 over F_{p^s} of length 3n, then $\psi(C)$ is a quasi-cyclic code of index 3s.

Lemma 4.2. If C is a self orthogonal code over F_{p^s} of length 3n, so is $\psi(C)$.

Theorem 4.3. If C is a self orthogonal quasi-cyclic code over F_{p^s} with the parameter [3n, k, d], the $\psi(C)$ is also a self orthogonal quasi-cyclic code over F_p with the parameter $[3ns, sk, d' \ge d]$.

Theorem 4.4. Let C be a quasi-cyclic code over F_{p^s} with the parameter [3n, k, d] and $C^{\perp} \subseteq C$. Then there exists a quantum quasi-cyclic code with the parameter $[[3ns, 2sk - 3ns, d' \ge d]]$ over F_p .

Example 4.1. Let n = 10, q = 3 and $R = F_3 + vF_3 + v^2F_3$. The Gray image of the code is a [30, 15, 9]. The $\psi(C)$ is also a self orthogonal quasi-cyclic code over F_3 with the parameter $[30, 15, d' \ge 9]$. Hence, there exists a quantum quasi-cyclic code with the parameter $[[30, 0, d' \ge 9]]$ over F_3 .

Example 4.2. Let n = 28 and $R = F_5 + vF_5 + ... + v^4F_5$. We have

$$\begin{array}{lll} x^{28}-1 &=& (x+1)(x+2)(x+3)(x+4)(x^6-x^5+x^4-x^3+x^2-x+1)\\ && (x^6-2x^5-x^4-3x^3+x^2-2x-1)(x^6+x^5+x^4+x^3+x^2+x+1)\\ && (x^6-3x^5-x^4-2x^3+x^2-3x-1)\\ &=& f_1f_2...f_8 \end{array}$$

in F_5 . Let $f(x) = e_0 f_6 + e_1 f_6 + e_2 f_6 + e_3 f_8 + e_4 f_8$ and C = (f(x)) be a cyclic code over R. Clearly $x^{28} - 1$ is divisible by $f_6 f_6^*, f_8 f_8^*$. Hence we have $C^{\perp} \subseteq C$. Also, $\Phi(C)$ is a linear code over F_5 with the parameters [140, 110, 4]. Then a quantum code with the parameters [[140, 80, 4]] is obtained.

n	q	m	$\Phi(C)$	[[N, K, D]]
3	19	7	[21, 14, 2]	[[21, 7, 2]]
3	19	10	[30, 20, 2]	[[30, 10, 2]]
11	5	3	[33, 18, 7]	$\left[\left[33,3,7\right] \right]$
20	9	3	[60, 48, 4]	[[60, 36, 4]]
27	3	3	[81, 63, 2]	[[81, 45, 2]]
30	2	2	[60, 34, 6]	[[60, 8, 6]]
30	5	5	[150, 145, 2]	[[150, 140, 2]]

Quantum codes from cyclic codes

5. Conclusion

The quantum codes over F_q are constructed by using the cyclic codes over the finite ring $R = F_q + vF_q + ... + v^{m-1}F_q$, where p is a prime, $q = p^s$, m - 1|p - 1 and $v^m = v$. The parameters of quantum error correcting codes over F_q and the quantum quasi-cyclic codes over F_p are obtained.

By finding a Gray map over R which satisfies self orthogonal property and by taking p is even or p and s are both odd, the parameters of quantum QC codes over F_p can be obtained, similarly.

References

- [1] Dertli, A., Cengellenmis, Y. and Eren, S., Quantum codes over $F_2 + uF_2 + vF_2$. *Palestine Journal of Math.* (2015), 1-6.
- [2] Dertli, A., Cengellenmis, Y. and Eren, S., Some results on the linear codes over the finite ring $F_2+v_1F_2+...+v_rF_2$. *International Journal of Quantum Information* 14(2016), 1650012.
- [3] Dertli, A., Cengellenmis, Y. and Eren, S., On quantum codes obtained from cyclic codes over A₂. *Int. J. Quantum Inform.* 13 (2015), 1550031.
- [4] Dertli, A., Cengellenmis, Y. and Eren, S., Quantum codes over the ring $F_2 + uF_2 + u^2F_2 + ... + u^mF_2$. Int. Journal of Alg. 9(2015), 115 121.

- [5] Calderbank, A.R., Rains, E.M., Shor, P.M. and Sloane, N.J.A., Quantum error correction via codes over GF (4). IEEE Trans. Inf. Theory 44(1998), 1369-1387.
- [6] Melakheso, A. and Guenda, K., The dual and the Gray image of codes over $F_q + vF_q + v^2F_q$, arXiv:1504.08097v1.
- [7] Seroussi, G. and Lempel, A., Factorization of Symmetric Matrices and Trace-Orthogonal Bases in Finite Fields, SIAM. *Journal Comput.* 9(1980), 758-767.
- [8] Gao, J., Quantum codes from cyclic codes over $F_q + vF_q + v^2F_q + v^3F_q$. Int. Journal of Quantum Information, 2015.
- [9] Qian, J., Quantum codes from cyclic codes over $F_2 + vF_2$. Journal of Inform.& computational Science 10(2013), 1715-1722.
- [10] Qian, J., Ma, W. and Gou, W., Quantum codes from cyclic codes over finite ring. *Int. J. Quantum Inform.* 7(2009), 1277-1283.
- [11] Qian, J., Ma, W. and X. Wang, Quantum error correcting codes from quasi-cyclic codes over finite ring. *Int. J. Quantum Inform.* 6(2008), 1263-1269.
- [12] Shi, M. and Yao, T., Skew cyclic codes over $F_q + vF_q + v^2F_q + \dots + v^{m-1}F_q$, 2016.
- [13] Sari, M and Siap, I., On Quantum codes from cyclic codes over a class of non chain rings. Bull Korean Math. Soc. 53(2016), 617-1628.
- [14] Ashraf, M. and Mohammad, G., Quantum codes from cyclic codes over $F_3 + vF_3$. International Journal of *Quantum Information* 12(2014), 1450042.
- [15] Ashraf, M. and Mohammad, G., Construction of quantum codes from cyclic codes over $F_p + vF_p$. International *Journal of Information and Coding Theory* 2(2015), 137-144.
- [16] Ashraf, M. and Mohammad, G., Quantum codes from cyclic codes over $F_q + uF_q + vF_q + uvF_q$. Quantum *Information Processing* 10(2016), 4089-4098.
- [17] Kai, X. and Zhu, S., Quaternary construction of quantum codes from cyclic codes over $F_4 + uF_4$. Int. J. Quantum Inform. 9(2011), 689-700.
- [18] Yin, X. and Ma, W., Gray Map and Quantum Codes Over The Ring $F_2 + uF_2 + u^2F_2$. International Joint Conferences of IEEE TrustCom-11, 2011.

Affiliations

YASEMIN CENGELLENMIS **ADDRESS:** Trakya University, Department of Mathematics, 22000, Edirne-Turkey. **E-MAIL:** ycengellenmis@gmail.com **ORCID ID:** 0000-0002-8133-9836

ABDULLAH DERTLI **ADDRESS:** Ondokuz Mayis University, Department of Mathematics, 55139, Samsun-Turkey. **E-MAIL:** abdullah.dertli@gmail.com **ORCID ID:** 0000-0001-8687-032X