The Quantum Codes over F_{q} and Quantum Quasi-cyclic Codes over F_{p}

Yasemin Cengellenmis and Abdullah Dertli*

Abstract

In this paper, the quantum codes over F_{q} are constructed by using the cyclic codes over the finite ring $R=F_{q}+v F_{q}+\ldots+v^{m-1} F_{q}$, where p is prime, $q=p^{s}, m-1 \mid p-1$ and $v^{m}=v$. The parameters of quantum error correcting codes over F_{q} are obtained. Some examples are given. Morever, the quantum quasi-cyclic codes over F_{p} are obtained, by using the self dual basis for $F_{p^{s}}$ over F_{p}.

Keywords: Cyclic codes; Quasi-cyclic codes; Quantum codes. AMS Subject Classification (2010): 94B05; 94B15.

1. Introduction

The theory quantum error correcting codes has differences from the theory classical error correcting codes. But Calderbank et al. gave a way to construct quantum error correcting codes from classical error correcting codes in [4].

Many good quantum codes has been constructed by using the classical cyclic codes over F_{q} with self orthogonal (or dual containing) properties. Recently, some authors have constructed quantum the codes by using the linear codes over some finite ring in [1-4,8-10,12-18].

In 2015, Gao constructed the quantum codes over F_{q} from the cyclic codes over a finite non chain ring $F_{q}+$ $v F_{q}+v^{2} F_{q}+v^{3} F_{q}$, where $q=p^{r}, p$ is an odd prime, $3 \mid p-1$ and $v^{4}=v$ in [8]. In 2016, Sari and Siap constructed the quantum codes over F_{p} from the cyclic codes of arbitrary length over $F_{p}+v F_{p}+\ldots+v^{p-1} F_{p}$, where $v^{p}=v$ and p is a prime in [13].

In [11], Qian et al. gave a method for constructing the self orthogonal quasi-cyclic codes and obtained a large number of new quantum quasi-cyclic codes by CSS construction.

Our aim in this paper is firstly to construct the quantum codes over F_{q} by using the cyclic codes over the finite ring $R=F_{q}+v F_{q}+\ldots+v^{m-1} F_{q}$, where p is a prime, $q=p^{s}, m-1 \mid p-1, v^{m}=v$ and later to obtained the parameters of the quantum quasi-cyclic codes over F_{p}, by using the self dual basis for $F_{p^{s}}$ over F_{p}.

This paper is organized as follows. In section 2, some properties of the finite ring R are given. In section 3, a sufficient and necessary condition for the cyclic codes over R that contains its dual is given. The parameters of quantum error correcting codes are obtained from the cyclic codes over R and some examples are given. In section 4 , by taking $m=3$, the parameters of the quantum quasi-cyclic codes over F_{p} are determined.

2. Preliminaries

In [12], Shi and Yao give the following properties of the finite ring $R=F_{q}+v F_{q}+\ldots+v^{m-1} F_{q}=F_{q}[v] /\left\langle v^{m}-v\right\rangle$, where p is a prime $q=p^{s}, m-1 \mid p-1$ and $v^{m}=v$.

As $m-1 \mid p-1$, this shows that $v^{m}-v=v\left(v-v_{1}\right)\left(v-v_{2}\right) \ldots .\left(v-v_{m-1}\right)$ with all v_{i} 's in F_{q}. Let $f_{i}=v-v_{i}$ and $\hat{f}_{i}=\left(v^{m}-v\right) / f_{i}$ where $i=0, \ldots, m-1$, then there exist $a_{i}, b_{i} \in F_{q}[v]$ such that $a_{i} f_{i}+b_{i} \hat{f}_{i}=1$. Let $e_{i}=b_{i} \hat{f}_{i}$, then $e_{i}^{2}=e_{i}$, and $e_{i} e_{j}=0, \sum_{i=0}^{m-1} e_{i}=1$, where $i, j=0,1, \ldots, m-1$ and $i \neq j$. So

$$
R=e_{0} R \oplus e_{1} R \oplus \ldots \oplus e_{m-1} R=e_{0} F_{q} \oplus \ldots \oplus e_{m-1} F_{q}
$$

and

$$
R \cong R /\langle v\rangle \times \ldots \times R /\left\langle v-v_{m-1}\right\rangle \cong F_{q} \times \ldots \times F_{q}
$$

They express any $r \in R$ uniquely as

$$
r=e_{0} r_{0}+\ldots+e_{m-1} r_{m-1}
$$

where $r_{i} \in F_{q}$ for $i=0, \ldots, m-1$ in [12].
Example 2.1. For $q=p=3$ and $m=3$, the three idempotents are $e_{0}=1-v^{2}, e_{1}=2 v^{2}+2 v, e_{2}=2 v^{2}+v$.
A linear code C over R length n is an R-submodule of R^{n}. An element of C is called a codeword.
By defining the set

$$
C_{i}=\left\{x_{i} \in F_{q}^{n} \mid \exists x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{m-1} \in F_{q}^{n}, e_{0} x_{0}+\ldots e_{m-1} x_{m-1} \in C\right\}
$$

where $i=0,1, \ldots, m-1$, they represent the linear code C of length n over R as

$$
C=e_{0} C_{0} \oplus \ldots \oplus e_{m-1} C_{m-1}
$$

where C_{i} are the linear codes over F_{q}, for $i=0, \ldots, m-1$ in [12].
If G is a generator matrix of C over R, then the generator matrix G is expressed as

$$
\mathbf{G}=\left(\begin{array}{c}
e_{0} G_{0} \\
\ldots \\
e_{m-1} G_{m-1}
\end{array}\right)
$$

where G_{0}, \ldots, G_{m-1} are the generator matrices of C_{0}, \ldots, C_{m-1} in [12].
For any $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right), y=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right) \in R^{n}$, the inner product is defined as

$$
x . y=\sum_{i=0}^{n-1} x_{i} y_{i}
$$

If $x . y=0$, then x and y are said to be orthogonal. Let C be a linear code of length n over R, the dual code of C

$$
C^{\perp}=\{x: \forall y \in C, x \cdot y=0\}
$$

which is also a linear code over R of length n. A code C is self orthogonal if $C \subseteq C^{\perp}$ and self dual if $C=C^{\perp}$.
A code C over R is a linear code with the property that if every $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C$, then $\sigma(c)=$ $\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C$. A subset C of R^{n} is a linear cyclic code of length n iff its polynomial representation is an ideal of $R[x] /\left\langle x^{n}-1\right\rangle$.

Proposition 2.1. [12] Let $C=e_{0} C_{0} \oplus \ldots \oplus e_{m-1} C_{m-1}$ be a linear code of length n over R. Then

$$
C^{\perp}=e_{0} C_{0}^{\perp} \oplus \ldots \oplus e_{m-1} C_{m-1}^{\perp}
$$

Morever C is a self dual code over R if and only if C_{0}, \ldots, C_{m-1} are all self dual codes over F_{q}.
In [12], they give a special class of Gray maps, which preserves the property of self dual of linear codes from the ring R to the finite field F_{q}, by using the group of invertible matrices of size m.

In [12], the Gray map Φ is defined as follows

$$
\begin{aligned}
\Phi & : \quad R \rightarrow F_{q}^{m} \\
r=\left(r_{0}, \ldots, r_{m-1}\right) \mapsto \Phi\left(\left(r_{0}, \ldots, r_{m-1}\right)\right) & =\quad\left(r_{0}, \ldots, r_{m-1}\right) M=r M
\end{aligned}
$$

for any matrix $M \in G L_{m}\left(F_{q}\right)$, where $G L_{m}\left(F_{q}\right)$ is the group of invertible matrices of size m and Φ is an F_{q}-module isomorphism.

The Gray map is extended as follows

$$
\begin{array}{rll}
\Phi & : \quad R^{n} \rightarrow F_{q}^{m n} \\
c=\left(c_{0}, \ldots, c_{m-1}\right) \mapsto \Phi\left(\left(c_{0}, \ldots, c_{m-1}\right)\right) & =\left(c_{0} M, \ldots, c_{m-1} M\right)
\end{array}
$$

Let C be a code over F_{q} of length n and $\dot{c}=\left(\dot{c}_{0}, \dot{c}_{1}, \ldots, \dot{c}_{n-1}\right)$ be a codeword of C. The Hamming weight of \dot{c} is defined as $w_{H}(\dot{c})=\sum_{i=0}^{n-1} w_{H}\left(\dot{c}_{i}\right)$ where $w_{H}\left(\dot{c}_{i}\right)=1$ if, $\dot{c}_{i} \neq 0$ and $w_{H}\left(\dot{c}_{i}\right)=0$ if, $\dot{c}_{i}=0$. The Hamming distance of C is defined as $d_{H}(C)=\min d_{H}(c, \dot{c})$, where for any $\dot{c} \in C, c \neq \dot{c}$ and $d_{H}(c, \dot{c})$ is the Hamming distance between two codewords with $d_{H}(c, \dot{c})=w_{H}(c-\bar{c})$.

In [12],the Gray weight $w_{G}(r)$ of $r=\left(r_{0}, . ., r_{m-1}\right) \in R$ is defined as the Hamming weight of the vector $r M$. For any vector $c=\left(c_{0}, \ldots, c_{n-1}\right) \in R^{n}$, the Gray weight of c is defined to be the rational sum of Gray weight of its components. For any elements $c_{1}, c_{2} \in R^{n}$, the Gray distance between c_{1} and c_{2} is given by

$$
d_{G}\left(c_{1}, c_{2}\right)=w_{G}\left(c_{1}-c_{2}\right)
$$

The minimum Gray weight of C is the smallest nonzero Gray weight among all codewords. If C is a linear code, then the minimum Gray distance is the same as the minimum Gray weight.

Lemma 2.1. [12] If C is a linear code of length n over R, then $\Phi(C)$ is a linear code of length mn over F_{q}. Morever, the Gray map Φ is a distance-preserving map from C to $\Phi(C)$.
Proposition 2.2. [12] Let M be an invertible matrix of size m over F_{q}, let C be a linear code of length n with the minimum Gray distance d over R. If C has the generator matrix G as above and $|C|=p^{\sum_{i=0}^{m-1} k_{i}}$, then $\Phi(C)$ is a $\left[m n, \sum_{i=0}^{m-1} k_{i}, d\right]$ linear code over F_{q}, where k_{i} 's are the respective dimensions of the C_{i} 's.

Proposition 2.3. [12] Let C be a linear code of length n over R. Let $M \in G L_{m}\left(F_{q}\right)$ and $M . M^{T}=\lambda I_{m}$, where $\lambda \in F_{q} \backslash\{0\}$ and I_{m} be the identity matrix of size m over F_{q}. If C is a self dual code, then $\Phi(C)$ is a self dual code of length mn over F_{q}.

Example 2.2. Let $q=p=3$ and $m=3$. By taking

$$
\mathbf{M}=\left(\begin{array}{l}
111 \\
012 \\
011
\end{array}\right)
$$

the Gray map can is defined as follows

$$
\begin{aligned}
\Phi: & F_{3}+v F_{3}+v^{2} F_{3} \rightarrow F_{3}^{3} \\
a+b v+c v^{2} \longmapsto & \Phi\left(a+b v+c v^{2}\right)=(a, a+b+c, a-b+c)
\end{aligned}
$$

It is easily seen that if C is self dual, so is $\Phi(C)$.

3. Quantum codes from the cyclic codes over R

Theorem 3.1. [5](CSS Construction) Let $C_{1}=\left[n, k_{1}, d_{1}\right]_{q}$ and $C_{2}=\left[n, k_{2}, d_{2}\right]_{q}$ be linear codes over $G F(q)$ with $C_{2} \subseteq C_{1}$. Then there exists a quantum error-correcting code $C=\left[\left[n, k_{1}-k_{2}, \min \left\{d_{1}, d_{2}^{\perp}\right\}\right]\right]_{q}$, where d_{2}^{\perp} denotes the minimum Hamming distance of the dual code C_{2}^{\perp} of C_{2}. Further, if $C_{1}^{\perp}=C_{2}$, then there exists a quantum error-correcting code $C=\left[\left[n, 2 k_{1}-n, d_{1}\right]\right]$.
Proposition 3.1. Let $C=e_{0} C_{0} \oplus \ldots \oplus e_{m-1} C_{m-1}$ be a linear code of length n over R, where C_{i} are the codes over F_{q} of length n, for $i=0, \ldots, m-1$. Then C is a cyclic code over R iff C_{i} are the cyclic codes over F_{q}, for $i=0, \ldots, m-1$.
Proof. Let $\left(a_{0}^{i}, \ldots, a_{n-1}^{i}\right) \in C_{i}$, for $i=0,1, \ldots, m-1$. Assume that $m_{j}=e_{0} a_{j}^{0}+e_{1} a_{j}^{1}+\ldots+e_{m-1} a_{j}^{m-1}$, for $j=0, \ldots, n-1$. Then $\left(m_{0}, \ldots, m_{n-1}\right) \in C$. Since C is a cyclic code, so $\left(m_{n-1}, m_{0}, \ldots, m_{n-2}\right) \in C$. Note that $\left(m_{n-1}, m_{0}, \ldots, m_{n-2}\right)=$ $e_{0}\left(a_{n-1}^{0}, \ldots, a_{n-2}^{0}\right)+e_{1}\left(a_{n-1}^{1}, \ldots, a_{n-2}^{1}\right)+\ldots+e_{m-1}\left(a_{n-1}^{m-1}, \ldots, a_{n-2}^{m-1}\right)$. Hence $\left(a_{n-1}^{i}, a_{0}^{i} \ldots, a_{n-2}^{i}\right) \in C_{i}$, for $i=0,1, \ldots, m-1$. So C_{i} are the cyclic codes over F_{q} for $i=0,1, \ldots, m-1$.

Conversely, suppose that C_{i} are the cyclic codes over F_{q}, for $i=0,1, \ldots, m-1$. Let $\left(m_{0}, \ldots, m_{n-1}\right) \in C$, where $m_{j}=e_{0} a_{j}^{0}+e_{1} a_{j}^{1}+\ldots+e_{m-1} a_{j}^{m-1}$, for $j=0, \ldots, n-1$. Then $\left(a_{n-1}^{i}, a_{0}^{i} \ldots, a_{n-2}^{i}\right) \in C_{i}$, for $i=0,1, \ldots, m-1$. Note that $\left(m_{n-1}, \ldots, m_{n-2}\right)=e_{0}\left(a_{n-1}^{0}, \ldots, a_{n-2}^{0}\right)+e_{1}\left(a_{n-1}^{1}, \ldots, a_{n-2}^{1}\right)+\ldots+e_{m-1}\left(a_{n-1}^{m-1}, \ldots, a_{n-2}^{m-1}\right) \in C=e_{0} C_{0} \oplus \ldots . \oplus e_{m-1} C_{m-1}$. Hence C is a cyclic code over R.

Proposition 3.2. If $C=e_{0} C_{0} \oplus e_{1} C_{1} \oplus e_{2} C_{2} \oplus \ldots \oplus e_{m-1} C_{m-1}$ is a cyclic code of length n over R, then

$$
C=<e_{0} g_{0}(x), \ldots, e_{m-1} g_{m-1}(x)>
$$

and $|C|=q^{m n-\left(\operatorname{deg} g_{0}(x)+\operatorname{deg} g_{1}(x)+\ldots .+\operatorname{deg} g_{m-1}(x)\right)}$ where $g_{0}(x), \ldots, g_{m-1}(x)$ are the generator polynomials of C_{0}, \ldots, C_{m-1} respectively.

Proposition 3.3. Let $C=e_{0} C_{0} \oplus e_{1} C_{1} \oplus e_{2} C_{2} \oplus \ldots \oplus e_{m-1} C_{m-1}$ be a cyclic code of length n over R, then there exists a unique polynomial $g(x)$ such that $C=\langle g(x)\rangle$ and $g(x) \mid x^{n}-1$, where $g(x)=e_{0} g_{0}(x)+\ldots+e_{m-1} g_{m-1}(x)$ and $g_{i}(x)$ are the generator polynomials of cyclic codes C_{i}, for $i=0,1, \ldots, m-1$.

Lemma 3.1. [5] A cyclic code C over F_{q} with generator polynomial $g(x)$ contains its dual code iff

$$
x^{n}-1 \equiv 0\left(\operatorname{modg}(x) g^{*}(x)\right)
$$

where $g(x)^{*}$ is the reciprocal polynomial of $g(x)$.
Theorem 3.2. Let $C=e_{0} C_{0} \oplus e_{2} C_{2} \oplus \ldots \oplus e_{m-1} C_{m-1}$ be a cyclic code of length n over R and $C=\langle g(x)\rangle$. Then $C^{\perp} \subseteq C$ iff

$$
x^{n}-1 \equiv 0\left(\bmod g_{i}(x) g_{i}^{*}(x)\right)
$$

for $i=0,1,2,3, \ldots, m-1$.
Proof. Let $x^{n}-1 \equiv 0\left(\operatorname{modg}_{i}(x) g_{i}^{*}(x)\right)$ for $i=0,1,2,3, \ldots, m-1$. From the Lemma 2.1, we have $C_{0}^{\perp} \subseteq C_{0}, C_{1}^{\perp} \subseteq$ $C_{1}, \ldots, C_{m-1}^{\perp} \subseteq C_{m-1}$. This shows that $e_{i} C_{i}^{\perp} \subseteq e_{i} C_{i}$, for $i=0,1, . ., m-1$. We have $C^{\perp}=e_{0} C_{0}^{\perp} \oplus \ldots \oplus e_{m-1} C_{m-1}^{\perp} \subseteq C$, by using the Proposition 1.1.

Conversely, if $C^{\perp} \subseteq C$, then we have $e_{i} C^{\perp}=e_{i} C_{i}^{\perp} \subseteq e_{i} C=e_{i} C_{i}$, for any $i=0, \ldots, m-1$. So $C_{i}^{\perp} \subseteq C_{i}$, for $i=0, \ldots, m-1$. So from the Lemma 2.1, we get $x^{n}-1 \equiv 0\left(\operatorname{modg} g_{i}(x) g_{i}^{*}(x)\right)$, for $i=0,1,2,3, \ldots, m-1$.

Theorem 3.3. Let $C=e_{0} C_{0} \oplus \ldots \oplus e_{m-1} C_{m-1}$ be a cyclic code of length n over R and let the parameters of $\Phi(C)$ be $[m n, k, d]$, where d is the minimum Gray distance of C. If $C^{\perp} \subseteq C$, then there exists a quantum error correcting code with parameter $[[m n, 2 k-m n, d]]$ over F_{q}.

4. The Quantum Quasi-cyclic codes from the self orthogonal Quasi-cyclic codes over $F_{p^{s}}$

In this section, we take m as 3 .
In [6], they focus on codes over the finite ring $S=F_{q}+v F_{q}+v^{2} F_{q}$, where $v^{3}=v$ and q is a prime power. A Gray map ϕ from S^{n} to $F_{q}^{3 n}$ is defined as follows;

$$
\begin{aligned}
\phi & : S \rightarrow F_{q}^{3} \\
x=a_{0}+v a_{1}+v^{2} a_{2} \mapsto \phi(x) & =\left(a_{0}, a_{0}+a_{2}, a_{1}\right)
\end{aligned}
$$

where $x=a_{0}+v a_{1}+v^{2} a_{2}$, for $a_{i} \in F_{q}, i=0,1,2$.
In [6], the Lee weight of the element of S is defined. They shown that the Gray map is a weight preserving map and if C is a linear code over S, the minimum Lee weight of C is the same as the minimum Hamming weight of $\phi(C)$ and if C is a self orthogonal code, so it $\phi(C)$.

Proposition 4.1. Let σ be a cyclic shift. Then $\phi \sigma=\sigma^{\otimes 3} \phi$.

Proof. Let $z=\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)$ be in S^{n}. Let $a_{i}, b_{i}, c_{i}, d_{i} \in F_{q}$, for $0 \leq i \leq n-1$ such that $z_{i}=a_{i}+b_{i} v+c_{i} v^{2}$. Then, $\sigma(z)=\left(z_{n-1}, z_{0}, z_{1}, \ldots, z_{n-2}\right)$. From the definition of Gray map, we get $\phi \sigma(z)=\left(a_{n-1}, a_{0}, \ldots, a_{n-2}, a_{n-1}+c_{n-1}, a_{0}+\right.$ $\left.c_{0}, \ldots, a_{n-2}+c_{n-2}, b_{n-1}, b_{0}, \ldots, b_{n-2}\right)$.

On the other hand, since $\phi(z)=\left(a_{0}, \ldots, a_{n-1}, a_{0}+c_{0}, \ldots, a_{n-1}+c_{n-1}, b_{0}, \ldots, b_{n-1}\right)$, by applying $\sigma^{\otimes 3}$, we have $\sigma^{\otimes 3} \phi(z)=\left(a_{n-1}, a_{0}, \ldots, a_{n-2}, a_{n-1}+c_{n-1}, a_{0}+c_{0}, \ldots, a_{n-2}+c_{n-2}, b_{n-1}, b_{0}, \ldots, b_{n-2}\right)$.

Theorem 4.1. If C is a cyclic code of length n over S, then $\phi(C)$ is a quasi-cyclic code of index 3 with length $3 n$ over F_{q}.
Proof. Let C be a cyclic code over S. Then $\sigma(C)=C$, so $\phi(\sigma(C))=\phi(C)$. It follows from the Proposition 3.1, that $\sigma^{\otimes 3}(\phi(C))=\phi(C)$, which means that $\phi(C)$ is a quasi-cyclic code of index 3 with length 3n over F_{q}.

In [11], they give a sufficient and necessary condition for a one generator l-quasi-cyclic codes over F_{q} contains its dual. Morever, they give the following theorem.

Theorem 4.2. [11] Let C be an $[n, k, d]$ quasi-cyclic code over F_{q} with generator of the form

$$
g(x)=\left(f_{1}(x) g_{1}(x), \ldots, f_{l}(x) g_{l}(x)\right)
$$

where $g_{i}(x) \mid x^{n}-1$ and $\left(f_{i}(x),\left(x^{m}-1\right) / g_{i}(x)\right)=1$ for all $i=1,2, \ldots, l$, and for all $i=1,2, \ldots, l$,

$$
x^{m}-1 \equiv 0\left(\bmod g_{i}(x) g_{i}^{*}(x)\right)
$$

Then $C^{\perp} \subseteq C$ and there exists a quantum QC code with $[[n, 2 k-n, d]]$.
In order to obtain the parameters of the quantum quasi-cyclic codes over F_{p} via self dual basis, we give necessary some knowledges about self dual basis from [7].

Let p be a prime number and $q=p^{s}$, where s is a positive integer. The trace $\operatorname{Tr}(\alpha)$ over F_{p} of an element $\alpha \in F_{q}$ is defined as

$$
\operatorname{Tr}(\alpha)=\sum_{i=0}^{s-1} \alpha^{p^{i}}
$$

A basis $B=\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$ of F_{q} over F_{p} is trace-orthogonal basis if

$$
\operatorname{Tr}\left(\alpha_{i} \alpha_{j}\right)= \begin{cases}\text { nonzero, } & i=j \\ 0, & i \neq j\end{cases}
$$

A trace-orthogonal basis is called a self dual basis if $\operatorname{Tr}\left(\alpha_{i}^{2}\right)=1$, for $i=1, \ldots, s$. In [7], it is shown that a self-dual basis exist if and only if p is even or p and s are both odd.

In this work, we take $q=p^{s}$, where p and s are both odd.
Let $B=\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$ be a self dual basis of $F_{p^{s}}$ over F_{p}. Let C be a quasi-cyclic code over $F_{p^{s}}$ of index 3 with length $3 n$. For any $c=\left(c_{1}, \ldots, c_{n}\right) \in C$,

$$
\begin{aligned}
\psi & : \quad F_{p^{s}}^{3 n} \rightarrow F_{p}^{3 n s} \\
c=\left(c_{1}, \ldots, c_{n}\right) \mapsto \psi(c) & =\left(c_{11}, c_{12, \ldots}, c_{(3 n) 1}, c_{12}, \ldots c_{(3 n) 2}, \ldots, c_{1 s}, \ldots c_{(3 n) s}\right)
\end{aligned}
$$

where $c_{i}=\sum_{j=1}^{s} c_{i j} \alpha_{j}$ and $c_{i j} \in F_{p}$, for $i=1, \ldots, n$.
Lemma 4.1. If C is a quasi-cyclic code of index 3 over $F_{p^{s}}$ of length $3 n$, then $\psi(C)$ is a quasi-cyclic code of index $3 s$.
Lemma 4.2. If C is a self orthogonal code over $F_{p^{s}}$ of length $3 n$, so is $\psi(C)$.
Theorem 4.3. If C is a self orthogonal quasi-cyclic code over $F_{p^{s}}$ with the parameter $[3 n, k, d]$, the $\psi(C)$ is also a self orthogonal quasi-cyclic code over F_{p} with the parameter $\left[3 n s, s k, d^{\prime} \geq d\right]$.

Theorem 4.4. Let C be a quasi-cyclic code over $F_{p^{s}}$ with the parameter $[3 n, k, d]$ and $C^{\perp} \subseteq C$. Then there exists a quantum quasi-cyclic code with the parameter $\left[\left[3 n s, 2 s k-3 n s, d^{\prime} \geq d\right]\right]$ over F_{p}.
Example 4.1. Let $n=10, q=3$ and $R=F_{3}+v F_{3}+v^{2} F_{3}$. The Gray image of the code is a $[30,15,9]$. The $\psi(C)$ is also a self orthogonal quasi-cyclic code over F_{3} with the parameter $\left[30,15, d^{\prime} \geq 9\right]$. Hence, there exists a quantum quasi-cyclic code with the parameter $\left[\left[30,0, d^{\prime} \geq 9\right]\right]$ over F_{3}.

Example 4.2. Let $n=28$ and $R=F_{5}+v F_{5}+\ldots+v^{4} F_{5}$. We have

$$
\begin{aligned}
x^{28}-1= & (x+1)(x+2)(x+3)(x+4)\left(x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\right) \\
& \left(x^{6}-2 x^{5}-x^{4}-3 x^{3}+x^{2}-2 x-1\right)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right) \\
& \left(x^{6}-3 x^{5}-x^{4}-2 x^{3}+x^{2}-3 x-1\right) \\
= & f_{1} f_{2} \ldots f_{8}
\end{aligned}
$$

in F_{5}. Let $f(x)=e_{0} f_{6}+e_{1} f_{6}+e_{2} f_{6}+e_{3} f_{8}+e_{4} f_{8}$ and $C=(f(x))$ be a cyclic code over R. Clearly $x^{28}-1$ is divisible by $f_{6} f_{6}^{*}, f_{8} f_{8}^{*}$. Hence we have $C^{\perp} \subseteq C$. Also, $\Phi(C)$ is a linear code over F_{5} with the parameters $[140,110,4]$. Then a quantum code with the parameters $[[140,80,4]]$ is obtained.

Quantum codes from cyclic codes

n	q	m	$\Phi(C)$	$[[N, K, D]]$
3	19	7	$[21,14,2]$	$[[21,7,2]]$
3	19	10	$[30,20,2]$	$[[30,10,2]]$
11	5	3	$[33,18,7]$	$[[33,3,7]]$
20	9	3	$[60,48,4]$	$[[60,36,4]]$
27	3	3	$[81,63,2]$	$[[81,45,2]]$
30	2	2	$[60,34,6]$	$[[60,8,6]]$
30	5	5	$[150,145,2]$	$[[150,140,2]]$

5. Conclusion

The quantum codes over F_{q} are constructed by using the cyclic codes over the finite ring $R=F_{q}+v F_{q}+\ldots+$ $v^{m-1} F_{q}$, where p is a prime, $q=p^{s}, m-1 \mid p-1$ and $v^{m}=v$. The parameters of quantum error correcting codes over F_{q} and the quantum quasi-cyclic codes over F_{p} are obtained.

By finding a Gray map over R which satisfies self orthogonal property and by taking p is even or p and s are both odd, the parameters of quantum QC codes over F_{p} can be obtained, similarly.

References

[1] Dertli, A., Cengellenmis, Y. and Eren, S., Quantum codes over $F_{2}+u F_{2}+v F_{2}$. Palestine Journal of Math. (2015), 1-6.
[2] Dertli, A., Cengellenmis, Y. and Eren, S., Some results on the linear codes over the finite ring $F_{2}+v_{1} F_{2}+\ldots+v_{r} F_{2}$. International Journal of Quantum Information 14(2016), 1650012.
[3] Dertli, A., Cengellenmis, Y. and Eren, S., On quantum codes obtained from cyclic codes over A_{2}. Int. J. Quantum Inform. 13 (2015), 1550031.
[4] Dertli, A., Cengellenmis, Y. and Eren, S., Quantum codes over the ring $F_{2}+u F_{2}+u^{2} F_{2}+\ldots+u^{m} F_{2}$. Int. Journal of Alg. 9(2015), 115-121.
[5] Calderbank, A.R., Rains, E.M., Shor, P.M. and Sloane, N.J.A., Quantum error correction via codes over GF (4). IEEE Trans. Inf. Theory 44(1998), 1369-1387.
[6] Melakheso, A. and Guenda, K., The dual and the Gray image of codes over $F_{q}+v F_{q}+v^{2} F_{q}$, arXiv:1504.08097v1.
[7] Seroussi, G. and Lempel, A., Factorization of Symmetric Matrices and Trace-Orthogonal Bases in Finite Fields, SIAM. Journal Comput. 9(1980), 758-767.
[8] Gao, J., Quantum codes from cyclic codes over $F_{q}+v F_{q}+v^{2} F_{q}+v^{3} F_{q}$. Int. Journal of Quantum Information, 2015.
[9] Qian, J., Quantum codes from cyclic codes over $F_{2}+v F_{2}$. Journal of Inform.\& computational Science 10(2013), 1715-1722.
[10] Qian, J., Ma, W. and Gou, W., Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inform. 7(2009), 1277-1283.
[11] Qian, J., Ma, W. and X. Wang, Quantum error correcting codes from quasi-cyclic codes over finite ring. Int. J. Quantum Inform. 6(2008), 1263-1269.
[12] Shi, M. and Yao, T., Skew cyclic codes over $F_{q}+v F_{q}+v^{2} F_{q}+\ldots+v^{m-1} F_{q}, 2016$.
[13] Sari, M and Siap, I., On Quantum codes from cyclic codes over a class of non chain rings. Bull Korean Math. Soc. 53(2016), 617-1628.
[14] Ashraf, M. and Mohammad, G., Quantum codes from cyclic codes over $F_{3}+v F_{3}$. International Journal of Quantum Information 12(2014), 1450042.
[15] Ashraf, M. and Mohammad, G., Construction of quantum codes from cyclic codes over $F_{p}+v F_{p}$. International Journal of Information and Coding Theory 2(2015), 137-144.
[16] Ashraf, M. and Mohammad, G., Quantum codes from cyclic codes over $F_{q}+u F_{q}+v F_{q}+u v F_{q}$. Quantum Information Processing 10(2016), 4089-4098.
[17] Kai, X. and Zhu, S., Quaternary construction of quantum codes from cyclic codes over $F_{4}+u F_{4}$. Int. J. Quantum Inform. 9(2011), 689-700.
[18] Yin, X. and Ma, W., Gray Map and Quantum Codes Over The Ring $F_{2}+u F_{2}+u^{2} F_{2}$. International Joint Conferences of IEEE TrustCom-11, 2011.

Affiliations

Yasemin Cengellenmis

Address: Trakya University, Department of Mathematics, 22000, Edirne-Turkey.
E-MAIL: ycengellenmis@gmail.com
ORCID ID: 0000-0002-8133-9836

Abdullah Dertli
Address: Ondokuz Mayis University, Department of Mathematics, 55139, Samsun-Turkey.
E-MAIL: abdullah.dertli@gmail.com
ORCID ID: 0000-0001-8687-032X

