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Abstract

This paper is devoted to study the existence of solutions for a class of fractional differential inclusions with
non instantaneous impulses involving the Caputo fractional derivative in a Banach space. The arguments
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1. Introduction

The theory of fractional differential equations is an important branch of differential equation theory,
which has an extensive physical, chemical, biological, and engineering background, and hence has been
emerging as an important area of investigation in the last few decades; see the monographs of Abbas et al.
[3, 4, 5], Kilbas et al. [25], Podlubny [30], and Zhou [35], and the references therein. On the other hand,
the theory of impulsive differential equations has undergone rapid development over the years and played a
very important role in modern applied mathematical models of real processes rising in phenomena studied
in physics, population dynamics, chemical technology, biotechnology and economics; see for instance the
monographs by Bainov and Simeonov [15], Benchohra et al. [16], Lakshmikantham et al. [21], and Samoilenko
and Perestyuk [31] and references therein. Moreover, fractional differential equations and inclusions present
a natural framework for mathematical modeling of several real-world problems. Some interesting results
about impulsive fractional differential equations are given in the papers [32, 33, 34].
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In pharmacotherapy, instantaneous impulses cannot describe the dynamics of certain evolution processes.
For example, when one considers the hemodynamic equilibrium of a person, the introduction of the drugs
in the bloodstream and the consequent absorption for the body are a gradual and continuous process. In
[1, 2, 6, 23, 29] the authors initially studied some new classes of fractional differential equations with non
instantaneous impulses in Banach spaces.

However, the theory for fractional differential equations in Banach spaces has yet been sufficiently devel-
oped. Recently, Benchohra et al. [17] applied the measure of noncompactness to a class of Caputo fractional
differential equations of order r ∈ (0, 1] in a Banach space. Let E be a separable Banach space with norm ‖·‖.

In this paper, we study the following fractional differential inclusions with non instantaneous impulses

cDry(t) ∈ F (t, y(t)), for a.e. t ∈ (sk, tk+1], k = 0, . . . ,m, 0 < r ≤ 1, (1.1)

y(t) = gk(t, y(t)), t ∈ (tk, sk], k = 1, . . . ,m, (1.2)

y(0) = y0, (1.3)

where cDr is the Caputo fractional derivative, F : [0, T ]×E → P(E) is a multivalued map, gk : (tk, sk]×E →
E, k = 1, . . . ,m, is a given function, and y0 ∈ E, 0 = s0 < t1 < s1 < · · · < tm < sm < tm+1 = T .

To our knowledge no paper has been considered for impulsive fractional differential inclusions in abstract
spaces. This paper fills the gap in the literature. To investigate the existence of solutions of the problem
above, we use analogie Mönch’s fixed point theorem combined with the technique of measures of noncom-
pactness, which is an important method for seeking solutions of differential equations. See Akhmerov et al.
[8], AlvÃărez [9], Banaś et al. [12, 13, 14], Guo et al. [20], MÂĺonch [26], Mönch and Von Harten [28].

2. Preliminaries

In this section, we first state the following definitions, lemmas and some notation. By C(J,E) we denote
the Banach space of all continuous functions from J into E with the norm

‖y‖∞ = sup{‖y(t)‖ : t ∈ J}.

Let L1(J,E) be the Banach space of measurable functions y : J → E which are Bochner integrable,
equipped with the norm

‖y‖L1 =

∫ T

0
‖y(t)‖dt.

Let L∞(J,E) be the Banach space of measurable functions y : J → E which are essentially bounded.

PC(J,E) = {y : J → E : y ∈ C([0, t1] ∪ (tk, sk] ∪ (sk, tk+1], E), k = 1, . . . ,m and there
exist y(t−k ), y(t+k ), y(s−k ) and y(s+

k ) k = 1, . . . ,m with y(t−k ) = y(tk) and y(s−k ) = y(sk)}.

PC(J,E) is a Banach space with the norm

‖y‖PC = sup
t∈J
‖y(t)‖.

Set
J ′ = [0, T ] \ ∪mk=1(tk, sk].

Moreover, for a given set V of functions v : J → E let us denote by

V (t) = {v(t), v ∈ V }, t ∈ J

and
V (J) = {v(t), v ∈ V, t ∈ J}.

AC1(J,E) is the space of continuously differentiable functions whose first derivative is absolutely contin-
uous. We use the notations P(E) is the collection of all nonempty subsets of E.
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PC (E) = {A ⊂ E : A is nonempty, convex},
PKC (E) = {A ⊂ E : A is nonempty, compact, convex}.

Let X,Y be two sets, N : X → Y a set-valued map, and A→ Y . We define

graph(N) = {(x, y) : x ∈ X, y ∈ N(X)} (the graph of N).

Let R > 0, and let
B = {x ∈ E : |x| ≤ R},

and
U = {x ∈ C(J,E) : ‖x‖∞ < R}.

Clearly Ū = C(J,B).

For more details on multi-valued maps see [10, 11, 18, 19, 27].

Now let us recall some fundamental facts of the notion of Kuratowski measure of noncompactness.

Definition 2.1. ([12]). Let X be a Banach space and ΩX the bounded subsets of X. The Kuratowski
measure of noncompactness is the map α : ΩX → [0,∞] defined by

α(B) = inf{ε > 0 : B ⊆ ∪ni=1Bi and diam(Bi) ≤ ε};hereB ∈ ΩX .

Properties: The Kuratowski measure of noncompactness satisfies the following properties (for more
details see [12])

(a) α(B) = 0⇔ B is compact (B is relatively compact).

(b) α(B) = α(B).

(c) A ⊂ B ⇒ α(A) ≤ α(B).

(d) α(A+B) ≤ α(A) + α(B).

(e) α(cB) = |c|α(B); c ∈ R.

(f) α(convB) = α(B).

For completeness we recall the definition of Caputo derivative of fractional order.

Definition 2.2. ([25]). The fractional (arbitrary) order integral of the function
h ∈ L1([0, T ], E) of order r ∈ R+ is defined by

Irh(t) =
1

Γ(r)

∫ t

0
(t− s)r−1h(s)ds,

where Γ is the Euler gamma function defined by Γ(r) =

∫ ∞
0

tr−1e−tdt, r > 0.

Definition 2.3. ([25]). For a function h ∈ ACn(J,E), the Caputo fractional-order derivative of order r of
h is defined by

(cDr
0h)(t) =

1

Γ(n− r)

∫ t

0
(t− s)n−r−1h(n)(s)ds,

where n = [r] + 1.
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We need the following auxiliary lemmas [25].

Lemma 2.4. Let r > 0 and h ∈ ACn(J,E). Then the differential equation

cDr
0h(t) = 0, for a.e. t ∈ J

has solutions h(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [r] + 1.

Lemma 2.5. Let r > 0 and h ∈ ACn(J,E). Then

IrcDr
0h(t) = h(t) + c0 + c1t+ c2t

2 + · · ·+ cn−1t
n−1, for a.e. t ∈ J

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [r] + 1.

Definition 2.6. . A multivalued map F : J × E → P(E) is said to be Carathéodory if

i t→ F (t, u) is measurable for each u ∈ E

ii u→ F (t, u) is upper semicontinuous for almost all t ∈ J .

For each y ∈ C(J,E), define the set of selections of F by

SF,y = {f ∈ L1(J,E), f(t) ∈ F (t, y(t)) a.e. t ∈ J}.

For our purpose we will only need the following fixed point theorem, and the important Lemma.

Theorem 2.7. ([7, 26]). Let E be a Banach space and f ∈ L1(J,E) countable with |u(t)| ≤ h(t) for
a.e.t ∈ J, and each u ∈ C; where h ∈ L1(J,R+) then the function φ(t) = α(C(t)) belongs to L1(J,R+) and
satisfies

α

({∫ T

0
u(s)ds : u ∈ C

})
≤ 2

∫ T

0
α(C(s)ds.

Theorem 2.8. ([7, 26]) (the set-valued analog of Mönch’s fixed point theorem).
Let K be a closed, convex subset of a Banach space E ; U a relatively open subset of K, and N : U →
PC (K). Assume graph (N) is closed, N maps compact sets into relatively compact sets, and that for some
0 ∈ U ; the following two conditions are satisfied:(

M ⊂ U,M ⊂ conv({0}
⋃
N(M))

and M = C with C ⊂M countable

)
⇒Mcompact. (2.1)

x /∈ λN(x)for all x ∈ U\U, λ ∈ (0, 1) (2.2)

Then there exists x ∈ U with x ∈ N(x).

Lemma 2.9. [22] Let J be a compact real interval. Let F be a multivalued be a Carathéodory multivalued
map and let Θ be a linear continuous map from L1(J,E)→ C(J,E). Then the operator

Θ ◦ SF,y : C(J,E)→ PKC (C(J,E)), y 7→ (Θ ◦ SF,y)(y) = Θ(SF,y)

is a closed graph operator in C(J,E)× C(J,E).
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3. Existence of Solutions

First of all, we define what we mean by a solution of the problem (1.1)-(1.3).

Definition 3.1. A function y ∈ PC(J,E)∩AC(J ′, E) is said to be a solution of (1.1)-(1.3) if there exists a
function f ∈ L1(J,E) with f(t) ∈ F (t, y(t)), for a.e. t ∈ J , such that

cDry(t) = f(t), for a.e. t ∈ J, 0 < r ≤ 1,

and the function y satisfies conditions (1.2)-(1.3).

To prove the existence of solutions to (1.1)-(1.3), we need the following auxiliary lemma.

Lemma 3.2. Let 0 < r ≤ 1 and let h : J → E be integrable. Then linear problem

cDry(t) = h(t), t ∈ Jk, k = 0, . . . ,m, (3.1)

y(t) = gk(t), t ∈ J ′
k, k = 1, . . . ,m, (3.2)

y(0) = y0, (3.3)

has a unique solution given by :

y(t) =


y0 + 1

Γ(r)

∫ t
0 (t− s)r−1h(s)ds if t ∈ [0, t1],

gk(t), if t ∈ J ′k := (tk, sk],

gk(sk) + 1
Γ(r)

∫ t
sk

(t− s)r−1h(s)ds, if t ∈ Jk := (sk, tk+1].

(3.4)

We are now in a position to state and prove our existence result for the problem (1.1)–(1.3) based on
Mönch’s fixed point. Let us list the following conditions.

(H1) F : J × E → Pkc(E) is a Carathéodory multi-valued map.

(H2) There exists a function p ∈ L∞(J,R+) such that

‖F (t, y)‖P = sup{‖v‖∞ : v(t) ∈ F (t, y)} ≤ p(t), for each (t, y) ∈ J × E.

(H3) For each bounded and measurable set B ⊂ C(J,E) and for each t ∈ J , we have

α(F (t, B(t)) ≤ p(t)α(B(t)),

where B(t) = {u(t) : u ∈ B} .

(H4) gk are uniformly continuous functions and there exists ck ∈ C(J,R+) such that

‖gk(t, y)‖ ≤ ck(t)‖y‖, for each y ∈ E and t ∈ J, k = 1, . . . ,m.

(H5) The function φ ≡ 0 is the unique solution in PC(J ;E) of the inequality

Φ(t) ≤ 2p∗

1− c∗

∫ t

sk

Φ(s)ds, k = 0, . . . ,m.

(H6) For each bounded set B ⊂ E we have

α(gk(t, B)) ≤ ck(t)α(B), t ∈ J.
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Let
p∗ = esssupt∈Jp(t),

c∗ = max{sup
t∈J

ck(t) : k = 1, . . . ,m} < 1. (3.5)

Remark 3.3. In (H3) and (H6), α is the Kuratowski measure of noncompactness on the space E.

Theorem 3.4. Assume that assumptions (H1) - (H6) hold. Then the problem (1.1)–(1.3) has at least one
solution J .

Proof. Transform the problem (1.1)–(1.3) into a fixed point problem. Consider the multi-valued map
N : PC(J,E)→ P (PC(J,E)) defined by

N(y)(t) = {h ∈ PC(J,E) :

h(t) =


y0 + 1

Γ(r)

∫ t
0 (t− s)r−1f(s)ds if t ∈ [0, t1],

gk(t, y(t)), if t ∈ J ′k := (tk, sk],

gk(sk, y(sk)) + 1
Γ(r)

∫ t
sk

(t− s)r−1f(s))ds, if t ∈ Jk := (sk, tk+1].

f ∈ SF,y}

Clearly, the fixed points of operator N are solutions of problem (1.1)–(1.3). The proof will be given in a
couple of steps.

Step 1: N is convex for each y ∈ PC(J,E).
If h1, h2 belong to N(y), then there exist f1, f2 ∈ SF,y such that for each t ∈ J we have

hi(t) =


y0 + 1

Γ(r)

∫ t
0 (t− s)r−1fi(s)ds if t ∈ [0, t1],

gk(t, y(t)), if t ∈ J ′k := (tk, sk],

gk(sk, y(sk)) + 1
Γ(r)

∫ t
sk

(t− s)r−1fi(s))ds, if t ∈ Jk := (sk, tk+1].

i = 1, 2

Let 0 ≤ λ ≤ 1. For each t ∈ J, we have
(λh1 + (1− λ)h2)(t) =

y0 + 1
Γ(r)

∫ t
0 (t− s)r−1(λf1 + (1− λ)f2)(s)ds if t ∈ [0, t1],

gk(t, y(t)), if t ∈ J ′k,
gk(sk, y(sk)) + 1

Γ(r)

∫ t
sk

(t− s)r−1(λf1 + (1− λ)f2)(s))ds, if t ∈ Jk.

Since SF,y is convex (because F has convex values), we have

(λh1 + (1− λ)h2) ∈ N(y).

Step 2: For each compact M ∈ Ū , N(M) is relatively compact.
To prove this, let M ∈ Ū be a compact set and let (hn) be any sequence of elements N(M). We show that
(hn) has a convergent subsequence by using Arzela-Ascoli criterion of noncompactness in PC(J,E) . Since
(hn) ∈ N(M) there exist (yn) ∈M and (fn) ∈ SF,yn such that

hn(t) =


y0 + 1

Γ(r)

∫ t
0 (t− s)r−1fn(s)ds if t ∈ [0, t1],

gk(t, yn(t)), if t ∈ J ′k := (tk, sk],

gk(sk, yn(sk)) + 1
Γ(r)

∫ t
sk

(t− s)r−1fn(s))ds, if t ∈ Jk := (sk, tk+1].

Using Theorem 2.7, the properties of measure of α and (H5), we obtain that

α({hn(t)}) = α



y0 + 1

Γ(r)

∫ t
0 (t− s)r−1fn(s)ds if t ∈ [0, t1],

gk(t, yn(t)), if t ∈ J ′k := (tk, sk],

gk(sk, yn(sk)) + 1
Γ(r)

∫ t
sk

(t− s)r−1fn(s))ds, if t ∈ Jk := (sk, tk+1].
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If t ∈ [0, t1]

α({hn(t)}) ≤ 2
Γ(r)

∫ t
0 α{(t− s)

r−1fn(s)ds}

= 2
Γ(r)

∫ t
0 (t− s)r−1α{fn(s)ds}.

(3.6)

If t ∈ Jk, we have

α({hn(t)}) ≤ α{gk(sk, yn(sk))}+ 2
Γ(r)

∫ t
sk
α{(t− s)r−1fn(s)}ds

≤ ck(t)α{yn(sk)}+ 2
Γ(r)

∫ t
sk

(t− s)r−1α{fn(s)}ds

≤ c∗α{yn(t)}+ 2
Γ(r)

∫ t
sk

(t− s)r−1α{fn(s)}ds.

(3.7)

If t ∈ J ′k
α({hn(t)}) = α(gk(t, yn(t))

≤ ck(t)α{yn(t)}

≤ c∗α{yn(t)}.

(3.8)

On the other hand, since M is compact in U , the sets {fn(s), n ≥ 1}, {yn(t), n ≥ 1} are compact.
Consequently, α{fn(s), n ≥ 1} = 0 for a.e. s ∈ J and α{yn(t), n ≥ 1} = 0 for a.e. t ∈ J . we conclude that
{hn(t), n ≥ 1} is relatively compact in E , for each t ∈ J . In addition let τ1 and τ2 from J with τ1 < τ2.
Then, for τ1, τ2 ∈ Jk, we have

‖hn(τ2)− |hn(τ1)‖ = ‖ 1
Γ(r)

∫ τ2
τ1

((τ2 − s)r−1 − (τ1 − s)r−1)fn(s)‖ds

≤ 1
Γ(r)

∫ τ2
τ1
|(τ2 − s)r−1 − (τ1 − s)r−1|p(s)ds,

(3.9)

for τ1, τ2 ∈ [0, t1], we have

‖hn(τ2)− |hn(τ1)‖ = ‖ 1
Γ(r)

∫ τ2
τ1

((τ2 − s)r−1 − (τ1 − s)r−1)fn(s)‖ds,

≤ 1
Γ(r)

∫ τ2
τ1
|(τ2 − s)r−1 − (τ1 − s)r−1|p(s)ds,

(3.10)

and for τ1, τ2 ∈ J ′k, we have

‖hn(τ2)− |hn(τ1)‖ = ‖gk(τ2, yn(τ2))− gk(τ1, yn(τ1))‖. (3.11)

As τ2 → τ2 , the right hand side of the above inequality tends to zero. This shows that {hn(t), n ≥ 1} is
equicontinuous. Consequently, {hn, n ≥ 1} is relatively compact in PC(J,E).

Step 3: N has a closed graph.
Let (yn, hn) ∈ graph(N), n ≥ 1}, with ‖yn − y‖, ‖hn − h‖ → 0 as n → ∞. We must show that (y, h) ∈
graph(N). (yn, hn) ∈ graph(N) means that hn ∈ N(yn) which means that there exists fn ∈ SF,yn , such
that for each t ∈ J ,

hn(t) =


y0 + 1

Γ(r)

∫ t
0 (t− s)r−1fn(s)ds if t ∈ [0, t1],

gk(t, yn(t)), if t ∈ J ′k := (tk, sk],

gk(sk, yn(sk)) + 1
Γ(r)

∫ t
sk

(t− s)r−1fn(s))ds, if t ∈ Jk := (sk, tk+1].
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Let

an(t) =


y0 if t ∈ [0, t1],

gk(t, yn(t)), if t ∈ J ′k := (tk, sk],

gk(sk, yn(sk)), if t ∈ Jk := (sk, tk+1].

a(t) =


y0 if t ∈ [0, t1],

gk(t, y(t)), if t ∈ J ′k := (tk, sk],

gk(sk, y(sk)), if t ∈ Jk := (sk, tk+1].

We have ‖an − a‖ → 0 as n→∞.
Consider the continuous linear operator

Θ : L∞(J,E) −→C(J,E)

f 7−→Θ(f)(t) =


1

Γ(r)

∫ t
0 (t− s)r−1f(s)ds if t ∈ [0, t1],

0, if t ∈ J ′k := (tk, sk],
1

Γ(r)

∫ t
sk

(t− s)r−1f(s))ds, if t ∈ Jk := (sk, tk+1].

We have

‖(hn − an)(t)− (h− a)(t)‖ = ‖(hn − h)(t) + (a− an)(t)‖.
≤ ‖(hn − h)(t)‖+ ‖(a− an)(t)‖,

implies that
‖(hn − an)(t)− (h− a)(t)‖ −→ 0 as n→∞.

From Lemma 2.9 it follows that Θ ◦ SF is a closed graph operator. Moreover, we have

(hn − an)(t) ∈ Θ(SF,yn)

Since yn −→ y, Lemma 2.9 implies that

(hn − an)(t) =


1

Γ(r)

∫ t
0 (t− s)r−1f(s)ds if t ∈ [0, t1],

0, if t ∈ J ′k := (tk, sk],
1

Γ(r)

∫ t
sk

(t− s)r−1f(s)ds, if t ∈ Jk := (sk, tk+1],

for some f ∈ SF,y.
Step 4: M relatively compact in PC(J,E)

Let M ⊂ U , where M ⊂conv({0} ∪N(M)) and for some countable set C ⊂ M let M = C. Taking into
account (3.9)-(3.11) , it is easily seen thatN(M) is equicontinuous. Therefore,M ⊂conv({0}∪N(M)) implies
that M is equicontinuous. It remains to apply the ArzÂťela-Ascoli theorem to show that for each t ∈ I the
set M(t) is relatively compact. By taking into account that C is countable and C ⊂ M ⊂conv(0 ∪N(M)),
we can find a countable set H = {hn : n ≥ 1} ⊂ N(M) such that C ⊂ conv({0} ∪ H). Then, there are
yn ∈M and fn ∈ SF,yn with

hn(t) =


y0 + 1

Γ(r)

∫ t
0 (t− s)r−1fn(s)ds if t ∈ [0, t1],

gk(t, yn(t)), if t ∈ J ′k := (tk, sk],

gk(sk, yn(sk)) + 1
Γ(r)

∫ t
sk

(t− s)r−1fn(s))ds, if t ∈ Jk := (sk, tk+1].
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Taking into account Theorem 2.7 and the fact that M ⊂ C ⊂ conv({0} ∪H), we obtain

α(M(t)) ≤ (α(C(t)) ≤ α(H(t)) = α{hn(t) : n ≤ 1}).

Using (3.6)-(3.8), we obtain
if t ∈ [0, t1]

α({M(t)}) ≤ 2

Γ(r)

∫ t

0
(t− s)r−1α{fn(s)ds, n ≥ 1},

if t ∈ Jk, we have

α({M(t)}) ≤ c∗α{yn(t)}+
2

Γ(r)

∫ t

sk

(t− s)r−1α{fn(s), n ≥ 1}ds

,

if t ∈ J ′k

α({M(t)}) ≤ c∗α{yn(t), n ≥ 1}.

Also, since fn ∈ SF,yn and yn(s) ∈M(s), then from (H3) we have

(t− s)r−1α{fn(s)ds, n ≥ 1} = (t− s)r−1p(s)α(M(s))ds.

It follows that
if t ∈ [0, t1]

α({M(t)}) ≤ 2p∗

Γ(r)

∫ t

0
(t− s)r−1α(M(s))ds,

≤ 2p∗

(1− c∗)Γ(r)

∫ t

0
(t− s)r−1α(M(s))ds,

if t ∈ Jk, we have

α({M(t)}) ≤ 2p∗

(1− c∗)Γ(r)

∫ t

sk

(t− s)r−1α(M(s))ds

,

if t ∈ J ′k

α({M(t)}) ≤ c∗α(M(t))⇒ (1− c∗)α(M(t)) ≤ 0.

Consequently, if t ∈ [0, t1] ∪ Jk, we have by (H5), that the function Φ given by Φ(t) = α(M(t)) satisfies
Φ ≡ 0; that is, α(M(t)) = 0 for all t ∈ J . Now, by the ArzÂťela-Ascoli theorem, M is relatively compact in
PC(J,E).

Step 5: A priori estimate.
Let y ∈ PC(J,E) be such that y ∈ λN(y) for some λ ∈ (0, 1). Then for each t ∈ J we have

y(t) =


λy0 + λ

Γ(r)

∫ t
0 (t− s)r−1f(s)ds if t ∈ [0, t1],

λgk(t, y(t)), if t ∈ J ′k := (tk, sk],

λgk(sk, y(sk)) + λ
Γ(r)

∫ t
sk

(t− s)r−1f(s)ds, if t ∈ Jk := (sk, tk+1],
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for some f ∈ SF,y. On the other hand we have,

‖y(t)‖ ≤ ‖gk(t, y(t))‖+ ‖y0‖+
1

Γ(r)

∫ tk+1

sk

(t− s)r−1‖f(s)‖ds

≤ ck(t)‖y(t)‖+ ‖y0‖+
1

Γ(r)

∫ tk+1

sk

(t− s)r−1p(s)ds

≤ c∗‖y(t)‖+ ‖y0‖+
p∗T r

Γ(r + 1)

≤ c∗‖y(t)‖+ ‖y0‖+
p∗T r

Γ(r + 1)
.

Then
‖y‖ ≤ 1

1− c∗

(
‖y0‖+

p∗T r

Γ(r + 1)

)
:= d.

Set
U = {y ∈ PC(J,E) : ‖y‖ < d+ 1}.

Condition (2.2) is satisfied by our choice of the open set U . From Theorem 3.4, we conclude that N has at
least one fixed point y ∈ PC(J,E) being a solution of problem (1.1)-(1.3).

4. An Example

Let us consider the following fractional differential inclusions with non instantaneous impulses,

cD
1
2 yn(t) ∈ 1

(9 + n+ et)(1 + ‖y(t)‖)
[yn(t)− 1, yn(t)], for each t ∈

(
0,

1

3

]
∪
(

1

2
, 1

]
, (4.1)

yn(t) =
1

4 + n+ et
sin |yn(t)|, t ∈

(
1

3
,
1

2

]
, (4.2)

yn(0) = 0. (4.3)

Set

E = l1 = {y = (y1, y2, . . . , yn, . . . , ),
∞∑
n=1

|yn| <∞},

E is a Banach space with the norm

‖y‖ =

∞∑
n=1

|yn|.

Let
F (t, y) = (F1(t, y), F2(t, y), . . . , Fn(t, y), . . .),

Fn(t, y) =
1

(9 + n+ et)(1 + ‖y(t)‖)
[yn(t)− 1, yn(t)],

and
g1(t, y) = (g11(t, y), g12(t, y), . . . , g1n(t, y), . . .),

g1n(t, y) =
sin |yn(t)|
4 + n+ et

.
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Clearly F is closed and convex valued. For each y ∈ E and t ∈ [0, 1], we have

‖F (t, y)‖P ≤
1

9 + et
.

Hence, the hypothesis (H2) is satisfied with p(t) = 1
9+et and c1(t) = 1

4+et .

Since all conditions of Theorem 3.4 are satisfied with p∗ = 1
10 and c∗ = 1

5 , problem (4.1)-(4.3) has at least
one solution.
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