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Abstract— In this paper, average symbol error rate (ASER) 

performance of rectangular quadrature amplitude modulation 

(RQAM) scheme is analyzed over α-η-µ fading channels. First, an 

ASER expression is derived based on Chernoff approximation of 

Gaussian Q-function. Then, an asymptotic ASER formula is 

obtained for analyzing system behavior at high signal-to-noise 

ratio (SNR) regime. The ASER performance is presented for 

different modulation levels and fading parameter values. In 

addition, relative truncation error (RTE) is illustrated in order to 

determine how many terms are needed for the computation of 

proposed expression. It is shown that analytical results are in 

close agreement with exact results. 

 
 

Index Terms— Error analysis, α-η-µ distribution, RQAM, 

Gaussian Q-function. 

I. INTRODUCTION 

UADRATURE amplitude modulation (QAM) which is 

known as efficient modulation method for bandwidth has 

an important role in digital multimedia transmission since it 

achieves high data rates. Rectangular QAM (RQAM), cross 

QAM (XQAM) and square QAM (SQAM) are popular QAM 

methods that are used in high speed communications. RQAM 

is considered as a generic modulation type and it has practical 

applications in the field of high speed mobile communications 

and microwave communications [1]. 

A number of studies which focus on the performance for 

RQAM schemes under different fading conditions, have been 

presented in the literature [2-7]. In [2], a lower bound ASER 

expression was derived for cooperative diversity systems with 

RQAM technique over Rayleigh fading channels. In addition, 

symbol error probability (SEP) and average symbol error rate 

(ASER) expressions were proposed for RQAM modulated 

systems under Nakagami-m fading conditions [3-6]. In [3], the 

SEP of RQAM modulation was presented over Nakagami-m 

fading channels in terms of the product of two Gaussian Q-

functions. The authors in [4] studied the performance of L-

branch communication system with RQAM scheme in the 

presence of Nakagami-m fading and they proposed an 
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expression for the SEP of the considered system. In [5] and 

[6], RQAM technique was applied to multiple relay networks 

and two-way relaying systems operating under Nakagami-m 

fading conditions. Asghari et al. analyzed the SEP of RQAM 

scheme with maximum ratio combining over η-µ fading 

channels [7]. In [8], the ASER of RQAM and XQAM 

modulations were investigated based on moment generating 

function over two-wave with diffuse power fading channels. 

Lower bound ASER expressions of RQAM and XQAM for 

AF relaying systems were presented in Rayleigh fading with 

maximum ratio combining in [9]. In another work [10], the 

authors derived ASER formulas for hexagonal and rectangular 

QAM based on cumulative distribution function over 

Nakagami-m fading channels. 

In wireless communications, it is important to take the 

composite fading channels into consideration such as in [11-

15] for performance analysis since these fading models are 

generalized distributions which provide flexibility for 

reducing other well-known fading channels. However, as far 

as we know, error performance of RQAM modulated wireless 

communication systems over α-η-µ fading channels does not 

exist in literature. α-η-µ fading can be employed in order to 

reflect small variations in the signal strength and it has special 

cases including popular fading distributions such as Rayleigh, 

Nakagami-m, Weibull, η-µ, α-µ. Motivated by this, for the 

first time in the literature, we analyze ASER performance of 

RQAM scheme over α-η-µ fading channels. Here, we derive a 

novel ASER expression based on Chernoff approximation of 

Gaussian Q-function. Then, we also obtain an asymptotic 

ASER expression in order to evaluate the system behavior at 

high signal-to-noise ratio (SNR) region. 

II. SYSTEM AND CHANNEL MODELS 

We consider a single-input single-output wireless 

communication system that sends a signal x which is 

modulated according to RQAM scheme. The received signal, 

y is defined as 

0 y xG N  (1) 

where G is the fading coefficient of the channel and 0N  is 

spectral density of noise power. The probability density 

function (PDF) of intantaneous SNR,  , for      

distribution is expressed by 
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where  ,  ,   are fading parameters,  0.5 / 2    , 

    is Gamma function,  vI   is the modified Bessel 

function of the first kind,   is the average SNR defined by 

 E   and  E   denotes expectation. h and H parameters 

are defined in two different formats, respectively, as 
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III. AVERAGE SYMBOL ERROR RATE ANALYSIS 

Mathematicaly, the ASER for any kind of modulation method 

is evaluated by integrating the conditional symbol error rate 

(SER) of additive White Gaussian noise (AWGN) channels 

over the PDF of instantaneous SNR as follows 

   
0

( )s sP e P e f d  


   (5) 

where  sP e   is the conditional SER expression of AWGN 

channels and  f   is the PDF of the instantaneous SNR. 

General order RQAM constellations can be obtained by 

combining two pulse amplitude modulation (PAM) signals as 

IM PAM (in-phase) and 
QM PAM  (quadrature). For M-

ary RQAM, the conditional SER in AWGN channels is 

expressed as 

          2 2sP e pQ a qQ b pqQ a Q b        (6) 

where I QM M M  ,  1 1/ Ip M  , 

    2 2 26 1 1I Qa M M     ,  1 1/ Qq M  , b a , 

Q Id d   is the decision distance ratio of quadrature-to-in-

phase components ( Id  is the in-phase decision distance and 

Qd  is the quadrature decision distance) and  Q   is Gaussian 

Q-function. Inserting (6) into (5), the ASER can be rewritten 

as 
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The integral in (7) is in an intractable format because of 

including Gaussian Q-function. Therefore, we utilize an upper 

bound approximation of the Gaussian Q-function which is 

defined by 
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The approximate form given in (8) is known as Chernoff 

approximation [16]. This approximation facilitates the 

integration and ASER analysis over fading channels. First, we 

start by solving 1I  for ASER analysis. By inserting the 

Chernoff approximation and (2) into the first integral in (7), 1I  

can be reexpressed as follows 
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Now using the infinite series representations of exponential 

function [17, (1.211.1)] and  vI   [17, (8.445)] in (9), we 

have 
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where    2 2v k u      and 2 0.5u m   . After 

some algebra and by using [17, (3.381.4)], 1I  is derived as 
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Then, 2I  and 3I  are obtained by using the same analytical 

steps as used for 1I , respectively, as 
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Finally, the ASER expression is found as 
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Concerning about the truncation error which arises from the 

infinite series involved in (14), we evaluated the ASER 

expression in (14) for several values of the upper limits of 

infinite summations. Table I tabulates the ASER values and 

relative truncation error (RTE) for 4X2 QAM at 20   dB 

when K and M terms are used.  

 
TABLE I 

ASER AND RTE VALUES FOR 4X2 QAM WITH 1.5, 0.5, 1.5      

AND 1   

M K ASER RTE 

24 2 0.016957241605913 42.8012 10  

24 3 0.016957295835405 63.1980 10  

24 4 0.016957296375839                          83.1870 10  

24 5 0.016957296380701                          102.8671 10  

24 6 0.016957296380741                              122.3755 10  

24 7 0.016957296380742 141.8369 10  

24 8 0.016957296380742 161.3382 10  

 

RTE can be evaluated by following the same procedure in 

[18]. In Table I, one can see that the decimal places remained 

same even if the upper limits were increased. Hereby, Table I 

shows that the number of enough terms in order to compute 

the derived ASER expression in (14) with a negligible 

truncation error are 24M   and 8K  . In Table II, we 

illustrate the ASER and RTE values for 8X4 QAM scheme at 

40   dB. Again, it can be easily seen that fewer terms are 

enough to evaluate the derived ASER expression at high SNR. 

From Table II, only K=4 terms are needed for the evaluation 

of infinite series when M=8 where the RTE value decreases to 
167.5473 10 . For all practical cases, (14) can be computed 

with a negligible truncation error without compromising 

numerical precision. Table I and Table II state that the derived 

expression is in rapidly convergent form.  

 

 
TABLE II 

ASER AND RTE VALUES FOR 8X4 QAM WITH 1.5, 0.5, 1.5      

AND 1   

M K ASER RTE 

8 2 567582 103.6887776706  84.5747 10  

8 3 55 103.68877767069095  
126.3366 10  

8 4 5103.688777670690958  
167.5473 10  

8 5 5103.688777670690958  
208.0208 10  

IV. ASYMPTOTIC ANALYSIS 

To analyze system behavior at the high SNR regime 

   , we derive an asymptotic ASER expression for the 

considered system. Firstly, we expand the infinite series of 

exponential function and  vI   at zero point as 

    2 2
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Thus, the asymptotic PDF expression becomes 
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Then, substituting (17) and Chernoff approximation of 

Gaussian Q-function into (7), we have 
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(18) 

By using [17, (3.381.4)], the asymptotic ASER expression 

results in 
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V. RESULTS 

Here, ASER performance results are illustrated based on the 

proposed analytical expressions in comparison with exact 

results to validate the ASER expressions derived in this paper. 

The derived ASER expression includes convergent infinite 

series, which is truncated by K and M number of finite terms. 

Analytical results of (14) were obtained by setting the upper 

limits of the infinite summations to 10K   and 30M  . Fig. 

1 shows the ASER performance of 4X2 QAM scheme for 

several values of fading parameters. As can be seen from Fig. 

1, the analytical results of (14) match closely with the exact 

results while the asymptotic results are very tight at high SNR 

regime. A transition from 1  , 0.5   and 1.5   to 

1.5  , 0.3   and 1.5   provides a considerable 

performance improvement which is more than 5 dB even if the 

value of η decreases from 0.5 to 0.3 with fixed value of µ. 

 

 
Fig.1. ASER performance of 4X2 QAM scheme with β=1 

 

In Fig. 2, the ASER performance of 8X4 QAM modulated 

wireless systems is presented. Again, it can be seen that the 

exact results and approximated results are in close agreement.  

Moreover, the asymptotic results become tight with the 

approximate results at high SNR regime. For the case of 

1.5  , 0.3   and 1.5  , 4X2 QAM scheme provides 

  610sP e   at 40 dB while the same ASER value is obtained 

at 46 dB with 8X4 QAM scheme. As expected, when the 

constellation size inceases, the performance decreases.  

 

 

 

 
Fig.2. ASER performance of 8X4 QAM scheme with β=1. 

 

VI. CONCLUSION 

We have derived approximated and asymptotic ASER 

expressions for wireless communication systems using RQAM 

scheme over      fading channels. The proposed 

approximate expression is in rapidly convergent form and its 

analytical results show close agreement to the exact ones. In 

addition, the asymptotic results are also tight with the 

approximate results at high SNR. In addition, it should be 

highlighted that using more terms for the infinite series does 

not have any influence in the 15th decimal place of the results 

and RTE values are decreasing rapidly to the negligible levels 

as given in Table I and Table II. As a result, one can easily 

obtain the ASER performance of the considered system over 

well-known fading channels such as Rayleigh, Nakagami-m, 

Weibull and so on by using the flexibility of      fading. 
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