
ISSN 2148-838Xhttp://dx.doi.org/10.13069/jacodesmath.561316

J. Algebra Comb. Discrete Appl.
6(2) • 63–74

Received: 23 March 2018
Accepted: 12 March 2019

0
Journal of Algebra Combinatorics Discrete Structures and Applications

Fibonacci numbers and resolutions of domino ideals
Research Article

Rachelle R. Bouchat, Tricia Muldoon Brown

Abstract: This paper considers a class of monomial ideals, called domino ideals, whose generating sets correspond
to the sets of domino tilings of a 2 × n tableau. The multi-graded Betti numbers are shown to be
in one-to-one correspondence with equivalence classes of sets of tilings. It is well-known that the
number of domino tilings of a 2 × n tableau is given by a Fibonacci number. Using the bijection,
this relationship is further expanded to show the relationship between the Fibonacci numbers and
the graded Betti numbers of the corresponding domino ideal.

2010 MSC: 05E40, 13A15

Keywords: Fibonacci numbers, Monomial ideals, Domino tilings

1. Introduction

Monomial ideals have been studied using mechanisms from several different areas of mathematics,
including combinatorics, graph theory, algebra, and topology. Given a simplicial complex, there are
two common monomial ideals that are studied, the Stanley Reisner ideal of the complex as well as the
facet ideal of the complex (see Miller and Sturmfels [14] for a comprehensive overview of these results).
Of particular interest are monomial ideals representing well-known combinatorial objects. For example,
Conca and De Negri [8] introduced the study of edge ideals. These edge ideals are squarefree monomial
ideals generated from the edges of a graph. Edge ideal results have been extended to the study of path
ideals by Bouchat, Há, and O’Keefe [4] and further generalized to facet ideals of simplicial complexes by
Faridi [10] and to path ideals of hypergraphs by Há and Van Tuyl [12]. Furthermore, many other natural
combinatorial objects can be used to generate squarefree monomial ideals. In this paper, we consider a
class of monomial ideals arising from the set of domino tilings of a 2× n tableau.

A domino tiling of a 2×n rectangular tableau is a disjoint arrangement of 2×1 tiles placed horizontally
or vertically to completely cover the area of the rectangle. Domino tilings have been well-studied from
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a combinatorial viewpoint, and they have many interesting properties. For example, using DeMoivre’s
initial conditions on Fibonacci numbers, a classic exercise can show the number of 2 × n domino tilings
is given by the nth Fibonacci number. Further, a survey paper by Ardilla and Stanley [2] gives many
results for domino and more generalized tilings of the plane. In this paper, we will show the Fibonacci
numbers also occur naturally when enumerating graded Betti numbers related to domino tilings.

Tilings have been studied in terms of their enumeration, their intersection, and their connection to
graph theory. See Fisher and Temperley [16] and Kasteleyn [13] for the first enumerative results; Butler,
Horn, and Tressler [7] for intersection results; or Benedetto and Loehr [3] for graph theoretical results.
These results, among others, suggest that interpretation as monomial ideals will also be of interest. Here,
we extend previous work by the authors [6] to enumerative results concerning the multi-graded and graded
Betti numbers of the ideal corresponding to the set of all 2× n domino tilings.

For a field k, to each domino position in the 2 × n tableau, we associate a variable in the ring
R = k[x1, . . . , x2(n−1), y1, . . . , yn]. The xi for 1 ≤ i ≤ n − 1 are associated with the horizontally placed
dominoes covering entries (1, i) and (1, i+1), the xi for n ≤ i ≤ 2(n−1) are associated with the dominoes
covering entries (2, i− (n− 1)) and (2, i− (n− 1) + 1), and the yi for 1 ≤ i ≤ n are associated with the
vertically oriented dominoes covering entries (1, i) and (2, i).

Definition 1.1. Consider a 2× n tableau being tiled with 2× 1 tiles, and denote the set of tilings of the
tableau by Tn = {τ : τ is a tiling of the 2× n tableau}. Let zi ∈ {x1, . . . , x2(n−1), y1, . . . , yn}.

1. The tiling monomial xτ associated to the tiling τ is the monomial xτ =
∏
z
δzi (τ)

i where

δzi(τ) =

{
1 , if zi ∈ τ
0 , else

2. Associated to a collection of domino tilings {τ1, . . . , τm} is the domino monomial
xτ1,...τm =

∏
z
δzi ({τ1,...,τm})
i where

δzi({τ1, . . . , τm}) =

{
1 , if zi ∈ τj for some 1 ≤ j ≤ m,
0 , else.

Example 1.2. The tiling monomial associated to the following tiling of the 2× 7 tableau x1 x3 x5 y7

x7 x9 x11


is x1x3x5x7x9x11y7, and the domino monomial associated to the collection of tilings x1 x3 x5 y7

x7 x9 x11

,
y1 y2 y3 x4 x6

x10 x12


is x1x3x4x5x6x7x9x10x11x12y1y2y3y7.

Definition 1.3. The domino ideal corresponding to an 2× n tableau is the ideal

I := (xτ : xτ is a tiling monomial).

We note, the generating set of the domino ideals associated to the set of all 2×n domino tilings can
also be viewed as paths of a graph. However, the ideals are not path ideals, as their generating sets do
not correspond to all paths of a specified length within a graph, but rather just a subset, as illustrated
in Example 1.4.
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Example 1.4. Consider a 2× 3 tableau, then the domino ideal I is generated by the domino monomials
corresponding to the tilings in the set: x1 y3

x3

,
y1 x2

x4

,
y1 y2 y3


Then I = (x1x3y3, x2x4y1, y1y2y3) ⊂ k[x1, x2, x3, x4, y1, y2, y3]. Notice that I is generated by a subcollec-
tion of the paths of length two in the graph:

x3 x1 y3 y2 y1 x2 x4

Before stating our results, we give the necessary background from topology and commutative algebra.

2. Background

In this paper, we will focus on properties of domino ideals relating to the corresponding minimal free
resolutions. Since a domino ideal, I, can be viewed as a finitely generated graded R-module. Associated
to I is a minimal free resolution, which is of the form

0→
⊕

aR(−a)βp,a(I) δp−→
⊕

aR(−a)βp−1,a(I) δp−1−→ · · · δ1−→
⊕

aR(−a)β0,a(I) → I → 0

where the maps δi are exact and where R(−a) denotes the translation of R obtained by shifting the
degree of elements of R by a ∈ Nn. The numbers βi,a(I) are called the multi-graded Betti numbers of I,
and they correspond to the number of minimal generators of degree a occurring in the ith-syzygy module
of I.

The graded Betti numbers for a finitely generated ideal I, can be computed using the software system
Macaulay2 (see [11]) and are displayed in a Betti table where:

0 1 · · · i · · ·
total: – – –

0:
1:
...

j : βi,i+j(I)
...

Example 2.1. Consider the domino ideal I = (x1x3y3, x2x4y1, y1y2y3) ⊂ k[x1, x2, x3, x4, y1, y2, y3] cor-
responding to a 2 × 3 tableau. Then the Betti table from Macaulay2 corresponding to the minimal free
resolution of I is:

0 1 2

total : 3 3 1

3 : 3 . .

4 : . 2 .

5 : . 1 1

From this Betti table, it is easy to form the graded minimal free resolution of I:

0 −→ R(−7) −→
R2(−5)

⊕
R(−6)

−→ R3(−3) −→ I −→ 0.
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Throughout this paper, we will be using a result adapted from Theorem 2.8 of Alilooee and Faridi [1]
to calculate the multi-graded Betti numbers for path ideals of rooted trees. Before we provide this result,
we need the following definitions from simplicial topology.

Definition 2.2.

1. An abstract simplicial complex, ∆, on a vertex set X = {x1, . . . , xn} is a collection of subsets of X
satisfying:

(a) {xi} ∈ ∆ for all i, and
(b) F ∈ ∆, G ⊂ F =⇒ G ∈ ∆.

The elements of ∆ are called faces, and the maximal faces (under inclusion) are called facets. The
simplicial complex ∆ with facets F1, . . . , Fs will be denoted by 〈F1, . . . , Fs〉.

2. For any Y ⊆ X , an induced subcollection of ∆ on Y, denoted by ∆Y , is the simplicial complex
whose vertex set is a subset of Y and whose facet set is given by

{F | F ⊆ Y and F is a facet of ∆}.

3. If F is a face of ∆ = 〈F1, . . . , Fs〉, the complement of F in ∆ is given by F cX = X \ F , and the
complementary complex is then ∆c

X = 〈(F1)cX , . . . , (Fs)
c
X 〉.

Note, in the setting of domino monomials, we let xτ represent either a monomial in the ring R =
k[x1, . . . , x2(n−1), y1, . . . , yn] or a simplex whose vertices are given by the variables. Thus given x =
xτ1,τ2,...,τm , the complex Γx is the simplicial complex 〈xτ1 ,xτ2 , . . . ,xτm〉 and its complementary complex
Γcx is given by

Γcx = 〈(xτ1)cx, (xτ2)cx, . . . , (xτm)cx〉.

The following example illustrates this complex.

Example 2.3. Consider the domino monomial x = x1x2x4x5x6x8y1y2y3 originating from a 2×5 tableau,
which is generated from the set of tilings {x1x4x5x8y3, x2x4x6x8y1, x4x8y1y2y3}. We have

Γcx = 〈x2x6y1y2, x1x5y2y3, x1x2x5x6〉.

We often apply a deformation retraction to associate variables that always appear together in the com-
plement, such as xi with xn−1+i, and in doing so we obtain the following complex that is topologically
equivalent to Γcx:

Γcx ' 〈x2y1y2, x1y2y3, x1x2〉 ' S1

Complementary complexes are important in determining the Betti numbers as we see in the following
corollary.

Corollary 2.4 (Corollary 2.11 in [5]). Let S = k[x1, . . . , xn] be a polynomial ring over a field k, and let
I be a pure, squarefree monomial ideal in S. Then the multi-graded Betti numbers of I are given by

βi,a(I) = dimk H̃i−1

(
ΓcVert(Γ)

)
where Γ is an induced subcollection of ∆(I) with Vert(Γ) = {xi | ai = 1} where a = (a1, . . . , an).

Concluding the background results, we observe the following:

Corollary 2.5. Let I be a domino ideal. Then βi,a(I) ∈ {0, 1}.

As we can find a path ideal containing each domino ideal and because path ideals have this property
(see Erey and Faridi [9]), the result follows immediately.
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3. Statistics

In order to associate the domino monomials with the appropriate multi-graded Betti numbers, we
first introduce three statistics on the set of domino monomials.

Definition 3.1. Given a domino monomial x corresponding to the 2× n tableau:

1. Set d(x) = d1d2 · · · dn ∈ {1, 2, 3}n where di = #{z ∈ {xi−1, xi, yi} : z|x} for all 1 ≤ i ≤ n − 1 and
dn = #{z ∈ {xn−1, yn} : z|x}. We say d(x) is the depth sequence of x.

2. Set v(x) = #{yiyi+1 : yiyi+1|x, xixn−1+i - x, and di = di+1 = 2} to be the number of pairs of
vertical dominos in x with a 2 in the depth sequence at these positions such that the corresponding
pair of horizontal dominos is not in x.

The depth sequence is so named because if all dominos of the monomial x were minimally stacked
in their respective positions on the 2× n tableau, the height at position i would correspond to the value
of the depth sequence di. Both of these statistics will be utilized to classify sets of domino monomials by
their the multi-graded Betti numbers βi,a(In).

To simplify notation we let 1k represent the depth sequence given by the string of k ones 11 · · · 1,
and similarly let 2k = 22 · · · 2 and 3k = 33 · · · 3 describe the depth sequences of strings of k twos and
threes, respectively. Thus, for example, the depth sequence 2221233211 can be written as 231232212.

Before defining the third statistic, we need to introduce two operations on depth sequences.

Definition 3.2. Let d(x) = d1d2 · · · dn ∈ {1, 2, 3}n be a given depth sequence.

O1. We may double the sequence by taking any subsequence of 1k , for 1 ≤ k ≤ n, and replacing it with
2k.

O2. We may triple the sequence by taking any single subsequence of 23 and replacing the middle two
with a three.

To illustrate the above definitions for the two operations, we provide the following examples.

Example 3.3. Consider the depth sequence d(x) = 1111222211. Then we can double d(x) to obtain the
sequence 2221222211 or 1111222222, among others. We could also triple d(x) to obtain 1111232211 or
1111223211.

We can now introduce the next statistic on domino monomials.

Definition 3.4. The starting column of a domino monomial x is given by the minimum number of
operations, doubles or triples, needed to obtain the depth sequence d(x) from the depth sequence 1n. We
write sc(x) to represent this quantity.

When considering the formation of a domino monomial from the underlying optimal stacking of
domino tilings, it becomes clear that the starting column statistic is well-defined. For instance, replacing
a subsequence of 1k with 2k could correspond to taking a domino tiling with horizontal tiles at particular
entries and combining it with another domino tiling having vertical tiles on those same entries, among
other options. Similarly, replacing a subsequence of 23 with 232 could correspond to having both pairs
of horizontal tiles as well as the two end vertical tiles and then adding in a third tiling which includes
the central vertical tile.

Example 3.5. Consider the domino monomial

x = x1x3x4x5x6x7x9x10x11x12y1y2y3y7

presented in Example 1.2. The depth sequence of x is d(x) = 27, and as 27 is minimally created from 17

by one operation of changing a sequence of seven ones into seven twos, the starting column is sc(x) = 1.
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We intend to use the starting column statistic, sc(x) to identify the minimum label i such that
βi,a(In) = 1 where a is the (3n − 2)-tuple such that ai = δzi({τ1, . . . , τm}) for x{τ1,...,τm}. We note,
monomials with the same depth sequence may appear in different columns of the Betti table. Thus, the
starting column is needed to determine the column i for a given monomial x{τ1,...,τm}.
Proposition 3.6. Let Γcx be the complementary complex of a domino monomial x such that xixn−1+i | x,
yi - x, and yi+1 - x for some 1 < i < n− 1. Further, let x′ be the domino monomial x′ = x

yiyi+1

xixn−1+i
. If

Γcx is homotopic to the sphere Sj, then Γcx′ is homotopic to the sphere Sj+1.

Proof. By Corollary 2.5, if Γcx is not contractible we may assume it is homotopic to a sphere Sj for some
j ≥ 0. Now, when transitioning from the domino monomial x to x′ by replacing the variables xixn−1+i

with yiyi+1, the vertex set of Γx also changes to the vertex set of Γx′ in the same way. Thus every facet
in the complementary complex Γcx can be mapped to a facet of Γcx′ through this replacement. That is,
a tiling in Γx containing xixn−1+i is mapped to a tiling in Γx′ containing yiyi+1, and the complements
of these tilings within their respective complementary complexes are the same. Further, a tiling in Γx

which does not contain xixn−1+i is mapped to itself in Γx′ , and thus the complement of that tiling in Γcx
which contains xixn−1+i is mapped to the facet of Γcx′ containing yiyi+1 using the replacement. First, we
note by our hypothesis the image of Γcx in Γcx′ is homotopic to Sj . Second, these facets may be grouped
into two disjoint sets; that is, into the set of facets which contain the vertices yiyi+1 and the set of facets
which contain xi−1xi+1.

Now, the remaining facets of Γcx′ must be complements of tilings that contained yi or yi+1, but not
both. Therefore, these facets can also be put into two disjoint sets, namely the set of complementary
facets which contain the vertices xi+1yi or the set of complementary facets which contain the vertices
xi−1yi+1. Thus, in the complex Γcx′ , we have disjoint sets of facets containing xi−1xi+1 or yiyi+1, forming
a sphere; and moreover, both of these sets are connected to those facets containing xi−1yi+1, creating a
pyramid over the sphere Sj . On the other hand these disjoint sets of facets which form the sphere are
also connected to xi+1yi, creating another pyramid over this sphere. As there is no connection between
the apex of either of these two pyramids, we see the complex is actually a bipyramid over a sphere, Sj ,
which is homotopic to the sphere Sj+1, and we have proven the claim.

Note, although the action in Proposition 3.6 of replacing two interior stacked horizontal tiles with
their respective pair of vertical tiles affects the dimension of the complementary complex it does not
change the depth sequence, that is d(x) = d(x′).

Recall, in the case that the depth sequence of a domino monomial is a string of ones, we know the
domino monomial corresponds to a single tiling, and as a generator of the ideal we have β0,a(In) = 1.
Thus, if i = 0, the multi-graded Betti number, β0,a(In) = 1 if and only if x = xτ . The next proposition
describes the multi-graded Betti numbers for i ≥ 1.
Proposition 3.7. Given a domino monomial x = x{τ1,...,τm}, let a = (a1, a2, . . . , a3n−2) where ai =
δzi({τ1, . . . , τm}). Then for i ≥ 1, the multi-graded Betti number βi,a(In) = 1 if and only if i = sc(x) +
v(x).

Proof. Let x be a domino monomial. We first consider the domino monomials where v(x) = 0; that is,
the monomials whose corresponding multi-graded Betti numbers are non-zero when i = sc(x). Since there
is always a deformation retraction that takes xixn−1+i to xi, we will use the variable xi for 1 ≤ i ≤ n− 1
to represent the monomial xixn−1+i.

Case: d(x) ∈ {1, 2}n \ 1n. Assume the depth sequence consists of m strings of consecutive twos
separated by strings of ones. For example:

222211122221112211 m = 3

122122122221122122 m = 5

For each string of twos in columns ci, ci + 1, . . . , ci + ki where 1 ≤ ci ≤ n − 1 indexes the first col-
umn of the ith string of twos for 1 ≤ i ≤ m and ki ≥ 1, consider a partial domino monomial
xcixci+1 · · ·xci+kiyciyci+ki which corresponds to the pair of tilings
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Si =

{
{xcixci+2 · · ·xci+ki−1, xci+1xci+3 · · ·xci+ki−2yciyci+ki} if n is even
{xcixci+2 · · ·xci+ki−2yci+ki , xci+1xci+3 · · ·xci+ki−1yci} if n is odd

(Note, a sequence of only one 2 is impossible so ki > 0.) The maximal set of tilings in the equivalence
class of x, Sx, consists of the concatenation of one element from the pair of tilings in Si for all 1 ≤ i ≤ m,
along with fixed choices for the variables representing the strings of ones. In the complementary complex,
every variable corresponding to a one in the depth sequence appears in each generator, and thus does
not appear in any facets of the complementary complex. Furthermore, note that the two sub-tilings in
Si are complementary to each other, so we may represent Si as {ti, t̄i}. With this notation:

Γcx = 〈t1t2 · · · tm, t̄1t2 · · · tm, t1t̄2 · · · tm, . . . , t1t2 · · · ¯tm, t̄1t̄2 · · · tm,
. . . , t̄1t2 · · · ¯tm, . . . , t1t̄2 · · · ¯tm, . . . , t̄1t̄2 · · · ¯tm〉

is homotopic to the complex with m vertices and m complementary vertices, such that in each of the 2m

m-dimensional facets no element is in the same facet as its complement, but is in every other facet that
does not contain its complement. As this complex is the cross-product of m zero-dimensional spheres,
it is homotopic to a sphere of dimension m − 1. Thus we have βm,a(In) = dimKH̃m−1(Sm−1) = 1 and
i = sc(x) + v(x) = m.

Case: d(x) ∈ {1, 2, 3}n \ {1, 2}n. First assume that x can be written x = x̂ · yc for some column c
for 1 < c < n − 1 and some x̂ where d(x̂) ∈ {1, 2}n \ 1n, and thus the depth sequence of x has exactly
one three. We compare the complementary complex Γcx with the complementary complex Γx̂. From the
case above, we know Γcx̂ is homotopic to a sphere in dimension m− 1. Further every tiling in Γx̂ is also
a tiling in Γx, and thus every facet in Γcx̂ appears as a part of a facet of Γcx by the simplicial join with
yc. Therefore, the image of Γcx̂ ∗ yc in Γcx is a cone over an (m− 1)-dimensional sphere. The rest of Γcx is
generated by the complements of tilings which contained the vertical tile yc. Recall, that the sphere Γcx̂
can be described as strings of barred and unbarred vertices where, without loss of generality, the unbarred
vertex corresponds to the tiling with odd indexed x variables and the barred vertex corresponds to the
tiling with even indexed x variables. Any tiling containing horizontal tiles and yc must contain both odd
and even indexed x variables, and hence the complementary facet also contains odd and even indexed x
vertices while also avoiding yc. Therefore these complements contain tiles in ti and t̄i and so fill the void
in the sphere described by Γcx̂. Thus Γcx is the cone by yc over the boundary of an m-dimensional ball
and thus is homotopic to a sphere Sm. For depth sequences with more than one three, this process can
be iterated so the result follows from the previous case.

Finally, we need to consider domino monomials with a given depth sequence d(x) where v(x) > 0.
Consider the set of pairs {yiyi+1 : yiyi+1|x, xixn−1+i - x, and di = di+1 = 2} Note, if we replace any
subset of non-overlapping pairs of yiyi+1 in the monomial x with the corresponding xixn−1+i, the depth
sequence remains unchanged. Applying Proposition 3.6, we see each of these replacements of yiyi+1 with
xixn−1+i decreased the dimension of the sphere by one, as well as decreased the statistic v(x) by one.
By reversing this process we have proven the claim.

Example 3.8. Consider the domino monomial

x = x1x3x4x5x6x7x9x10x11x12y1y2y3y7

from Example 1.2, and observe that x contains two adjacent pairs of vertical dominos. However, for only
one of these pairs, y2y3, is the corresponding pair of horizontal dominos absent, so we have

i = sc(x) + v(x)

= 2 + 1 = 3.

Thus, the equivalence class of tilings x corresponds to the multi-graded Betti number β3,a(I7) = 1 where
a = (a1 . . . , a3n−2) is such that am = 1 if and only if m|x and am = 0 otherwise.

We may now state our main result.
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Theorem 3.9. Let Tn be the set of domino tilings of a 2× n tableau, and let In be the monomial ideal
generated by the tilings τi ∈ Tn. Then, the set of non-zero multi-graded Betti numbers βi,a(In) for i ≥ 0
are in bijection with the set of domino monomials generated from Tn.

Proof. Given a domino monomial, Proposition 3.7 shows the appropriate multi-graded Betti number
is non-zero as the complementary complex corresponds to a sphere. By definition, non-zero multi-graded
Betti numbers can be described by a set of domino tilings, so the result follows.

4. Enumeration

As the correspondence between domino monomials and non-zero multi-graded Betti numbers of the
domino ideal is well understood, we now wish to utilize this result to enumerate graded Betti numbers of
the domino ideal. We will see that the nature of the tilings as counted by Fibonacci numbers is carried
through to the sets of tilings.

As stated, the number of 2 × n domino tilings is given by the nth Fibonacci number Fn where the
Fibonacci number are defined by the recursion with DeMoivre’s initial conditions,

Fn+2 = Fn+1 + Fn;F0 = 1, F1 = 1.

The Fibonacci numbers are one of the most ubiquitous sequences in combinatorics. One can see the
entry A000045 in OEIS[15] to find numerous references to sets of combinatorial objects enumerated by
the Fibonacci numbers. We will use products of Fibonacci numbers and binomial coefficient expansions
of Fibonacci numbers to count sets of tilings and consequently to determine the graded Betti numbers.

In Section 3, we defined a depth sequence for a monomials associated with sets of domino tilings. Now,
we begin by considering specific subsequences which we will call fundamental. Using the fundamental
sequences, we then build all possible depth sequences corresponding to tiling monomials.

The fundamental subsequences are:

1k, 2k, 12k3, 32k1, 32k3, and 3k

The first class of fundamental tilings is already well-understood, and thus the number of domino
tilings of depth 1k is given by Fk for 0 ≤ k ≤ n. Further, a subsequence of k ones in the depth sequence
of a domino monomial implies that every 2× n tiling in the set of tilings which comprise the monomial
x must contain the same set of k tiles chosen in Fk ways. Because there can be no overlap between tiles
chosen for this subsequence and those in other positions of the depth sequence, when counting we may
choose this set of dominos independent of the number of ways to choose sets of dominoes to fill in the
rest of the 2 × n rectangle. Thus the tilings with a given depth sequence may be enumerated by the
product of appropriate Fibonacci numbers for each string of one’s multiplied by the number of ways to
choose dominos for the sequences of two’s and three’s.

So next, consider the fundamental depth sequences of only two’s or three’s. For a given depth
sequence d(x) and a given column in the Betti table i ≥ 1, we wish to understand how many distinct
domino monomials x have this depth sequence and correspond to a multi-graded Betti number in column
i.

Proposition 4.1. Given a domino monomial x = x{τ1,...,τm}, let a = (a1, a2, . . . , a3k−2) where ai =
δzi({τ1, . . . , τm}). For k ≥ 2, the number of domino monomials x with non-zero multi-graded Betti
number βi,a(In) = 1 and depth sequence 2k is

(
k−i−1
i−1

)
.

Proof. If the depth of a domino monomial corresponding to a set of 2 × k tilings is 2k, the first and
last columns must contain the vertical dominos y1, yk and the horizontal dominos x1xk and xk−1x2(k−1).
Therefore there are k − 2 remaining columns in which a choice of dominos can be made. Each of these
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columns must be covered with one pair of horizontal dominos and either another pair of horizontal
dominos or a vertical domino. We see if d(x) = 2k then sc(x) = 1 and so Proposition 3.7 gives if i = 1,
then v(x) = 0 which corresponds to the one domino monomial x = x1x2 · · ·x2k−2y1yk containing all the
horizontal dominos. Thus we satisfy the claim with

(
k
0

)
= 1.

For i > 1, choose i−1 pairs of non-intersecting horizontal dominos of the form xjxk−1+j to be replaced
in the monomial by the pair yj , yj+1. These selections must be non-intersecting because removing both
xjxk−1+j and xj+1xk+j leaves a depth of only 1 in column j + 1. Further, Proposition 3.6 notes that
each of these replacements increases the dimension of the complementary complex by one and as there
are

(
k−2−(i−1)

i−1

)
ways to choose i − 1 non-consecutive integers from the set [k − 2], we have the

(
k−i−1
i−1

)
ways to choose the non-intersecting pairs of horizontal domino tiles enumerates the domino monomials
corresponding to a non-zero ith multi-graded Betti number.

In the proof of Proposition 4.1, we assumed 2k was a depth sequence corresponding to a domino
monomial of a 2 × k rectangle. However, by adjusting indices the domino monomials can easily be
modified to describe a factor of a 2× n domino monomial whose depth sequence contains a subsequence
of k consecutive twos adjacent to a subsequence or subsequences of ones. Now consider fundamental
subsequences of length k+ 1 and k+ 2 containing two’s or three’s and contained inside a larger length n
depth sequence.

First, a subsequence of threes, 3k, in columns j, j + 1, . . . , j + k implies that all dominos, both
horizontal and vertical, in those columns must be included in the monomial. Thus there is only one
way to chose factors for the monomial in those positions. We know that subsequence of threes must be
followed and preceded by a string of twos, so we need to understand how these threes affect the choice
for an adjacent subsequence of twos.

Proposition 4.2. Given a domino monomial x = x{τ1,...,τm}, let a = (a1, a2, . . . , a3n−2) where ai =

δzi({τ1, . . . , τm}). For k ≥ 2, suppose the partial depth sequence djdj+1 · · · dj+k+1 is 32k1 or 12k3,
respectively. Then, the number of factors f of x containing dominos from the set

{xj , . . . xj+k, xj+n−1, . . . , xj+k+n−1, yj , . . . , yj+k}

or

{xj+1, . . . xj+k+1, xj+n, . . . , xj+k+n, yj+1, . . . , yj+k+1},

respectively, such that v(f) = i is
(
k−i
i−1

)
.

Similarly, suppose the partial depth sequence djdj+1 · · · dj+k+1 is
32k3. Then, the number of factors f of x containing dominos from the set

{xj , . . . xj+k, xj+n, . . . , xj+k+n, yj , . . . , yj+k+1}

such that v(f) = i is
(
k−i+1
i−1

)
.

Proof. Similar to the proof of Proposition 4.1, we observe that in the case the subsequence of twos is
preceded or followed by a three we are allowed one more position in which xjxj+n−1 may be replaced
with yjyj+1. Thus we have k−1 or k positions to choose i−1 non-intersection pairs of horizontal dominos
to be replaced by pairs of vertical dominos and the result follows.

These results now allow us to determine graded Betti numbers by listing all depth sequence created
from a string of n ones using operations O1 and O2, separating these sequences into their fundamental
subsequences, enumerating each subsequence using the results above, and finally multiplying. Example 4.3
illustrates this process.

Example 4.3. Letting n = 7, suppose we wish to calculate βi,13. We write all possible combinations of
1’s, 2’s, and 3’s whose sum is 13 and were created from the sequence 17 using the operations O1 and O2 as
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d(x) Multiplicity Count sc(x) i = 1 i = 2 i = 3

2222221 2
[(

4
0

)
+

(
3
1

)
+

(
2
2

)]
· F1 1 2 6 2

2222122 2
[(

2
0

)
+

(
1
1

)]
· F1 ·

(
0
0

)
2 2 2

2221222 1
(
1
0

)
· F1 ·

(
1
0

)
2 1

2322211 2
(
0
0

)
·
[(

2
0

)
+

(
1
1

)]
· F2 2 4 4

1232221 2 F1 ·
(
0
0

)
·
[(

2
0

)
+

(
1
1

)]
· F1 2 2 2

1123222 2 F2 ·
(
0
0

)
·
[(

2
0

)
+

(
1
1

)]
2 4 4

2232211 2
(
1
0

)
·
(
1
0

)
· F2 2 4

1223221 1 F1 ·
(
1
0

)
·
(
1
0

)
· F1 2 1

233211 2
(
0
0

)
·
(
0
0

)
· F3 3 6

1233211 2 F1 ·
(
0
0

)
·
(
0
0

)
· F2 3 4

2321221 2
(
0
0

)
·
(
0
0

)
· F1 ·

(
0
0

)
· F1 3 2

2321122 2
(
0
0

)
·
(
0
0

)
· F2 ·

(
0
0

)
3 4

1232122 2 F1 ·
(
0
0

)
·
(
0
0

)
· F1 ·

(
0
0

)
3 2

2 24 32
We have β1,13(I7) = 2, β2,13(I7) = 24, and β3,13(I7) = 32.

Figure 1. Possible depth sequences whose entries sum to 13 used to compute βi,13(I7)

shown in the first column of the table in Figure 1. Keeping track of the starting column, we enumerate the
subsequences by Propositions 4.1 and 4.2 and multiply. Note, the multiplicity column counts whether or
not the reverse of the sequence is distinct from the original sequence. Thus β1,13(I7) = 2, β2,13(I7) = 24,
and β3,13(I7) = 32.

If we wish to disregard the column in the Betti table, we may use Fibonacci numbers to enumerate
all domino monomials with a given depth sequence.

Corollary 4.4. The number of domino monomials x with the depth sequence d(x) is given by the
product of Counts for its fundamental subsequences as given in the table below.
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Sequence Count
1k Fk
2k Fk−2

12k3 or 32k1 Fk−1

32k3 Fk
3k 1

The above corollary is a result of summing over all 0 ≤ i ≤ b(k − 2)/2c and the identity

Fk =

bk/2c∑
j=0

(
k − j
j

)
,

found in sequence A000045 of OEIS [15].

Example 4.5. Given the depth sequence d(x) = 2222333321112211232, in order to find the number
of domino monomials x with this depth sequence we separate the monomial into its seven fundamental
subsequences as follows:

d(x) = 22223|33|32|111|22|11|232

Thus

#{x|d(x) = 24342132212232} = F3 · 1 · F0 · F3 · F0 · F2 · F0 · F0 = 18.

We make a final observation on the second column of the Betti table associated to the domino ideal.
While the i = 0 column of the Betti table is given by Fibonacci numbers, the i = 1 column also has a
nice description in terms of Fibonacci numbers. All domino monomials counted by multi-graded Betti
numbers where i = 1 must come from one action of O1, that is, switching a consecutive sequence of ones
into twos. Thus, sc(x) = 1 and consequently v(x) = 0 for any such monomial so there is only one choice
of all the horizontal dominos for the tilings in the columns whose depth sequence is labeled with twos.
Because we now only need to count the number of ways to tile the remaining region(s) labeled with ones,
we have the following corollary.

Corollary 4.6. In the minimal free resolution of the domino ideal In, the graded Betti numbers β1,j(In)
are given by a convolution on the Fibonacci numbers, that is,

β1,j(In) =

2n−j∑
k=0

FkF2n−j−k.
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