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Abstract: Let R be a ring and M a right R-module. Let N be a proper submodule of M. We say that M is
N-coretractable (or M is coretractable relative to N) provided that, for every proper submodule K
of M containing N, there is a nonzero homomorphism f : M/K — M. We present some conditions
that a module M is coretractable if and only if M is coretractable relative to a submodule N. We
also provide some examples to illustrate special cases.
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1. Introduction

Throughout this paper R will denote an arbitrary associative ring with identity and all modules
will be unitary right R-modules unless stated otherwise. Let M be an R-module. We use Endr(M),
ann, (M) (in the case M is a right R-module), ann;(M) (in the case M is a left R-module) to denote
the ring of endomorphisms of M, the right annihilator in R of M and the left annihilator in R of M,
respectively. Let M be a module and K a submodule of M. Then K is essential in M denoted by
K <. M,if LN K # 0 for every nonzero submodule L of M. Dually, K is small in M (K < M), in case
M = K + L implies that L = M. A submodule N of M is called supplement, if there is a submodule K
of M such that M = N + K and NN K < N. A module M is called supplemented if every submodule
of M has a supplement in M. For any unexplained terminology we refer to [3], [9] and [11].

Khuri in [5] introduced the concept of a retractable module. Let M be a module. Then M is
retractable in case for every nonzero submodule N of M, there is a nonzero homomorphism f: M — N,
i.e Homp(M, N) # 0. In the literature, there are some works about retractable modules (see [6, 12, 14]).
Amini, Ershad and Sharif in [2| defined a dual notation namely coretractable modules. A module M is
coretractable provided that, Homg(M/N, M) # 0 for every proper submodule N of M. There are also
some papers whose main subject is to study and investigate coretractable modules. We refer readers to
[1, 4, 13] for more information about coretractable modules.
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In [10], the author introduced a generalization of coretractable modules via the cosingular submodule.
Following [10], a module M is called Z(M)-coretractable in case, for every proper submodule N of M
containing Z (M), there is a nonzero homomorphism f : M/N — M. Tt is proved in [10, Theorem 2.11]
that a ring R is Z(Rpg)-coretractable if and only if every finitely generated free right R-module F is
Z(F)-coretractable. Also, a characterization of commutative semiperfect Kasch rings is presented via
Z-coretractablity ([10, Corollary 2.14]). Inspiring by [10], we are interested to study coretractablity of
modules relative to their submodules. If in the definition of a coretractable module M, we fix a submodule
N and focus just on nonzero homomorphisms from M/K to M where K # M contains N, we have a
special generalization of coretractable modules. We may choose special submodules of a module M such
as Soc(M), Rad(M) and some others. We present some necessary conditions to prove that when two
concepts coretractable and coretractable relative to a submodule coincide. Among them, we show that
for a small or a semisimple submodule N of M, M is coretractable if and only if M is N-coretractable.
It is also shown that if M is N-coretractable and N is coretractable, then M is coretractable. For a
right ideal I of R, we show that Rp is I-coretractable if and only if every simple right R-module that is
annihilated by I, can be embedded in Rr. As a consequence, Ry is coretractable if and only if R is right
Kasch.

2. Coretractable modules relative to a submodule

In this section we introduce a new generalization of coretractable modules via submodules.

Recall that a module M is coretractable, in case for every proper submodule N of M, there exists a
nonzero homomorphism f: M/N — M.

Definition 2.1. Let M be a module and N a proper submodule of M. We say M 1is N -coretractable in
case for every proper submodule K of M containing N, there is a nonzero homomorphism f : M/K — M.
Note that a module M is coretractable if and only if M is {0}-coretractable.

Let M be a module and N a proper submodule of M. It is not hard to verify that M is N-
coretractable if and only if for every proper essential submodule K of M containing N, there is a nonzero
homomorphism from M/K to M.

Note that if a module M is N-coretractable, then for every submodule T' C N, there is a nonzero
homomorphism g : M/T — M. In fact, if M is N-coretractable, then for every submodule T of M, either
contained in N or containing N, there will be a nonzero homomorphism from M /T to M.

Recall from [7], a ring R is right (left) Kasch in case every simple right (left) R-module can be
embedded in Rg (rR). In [2, Theorem 2.14], the authors proved that R is right Kasch if and only if Rg
is coretractable.

Let R be a right Kasch ring which is not left perfect. Then by [4, Proposition 2.9], there is a right
ideal I of R such that R/I is not coretractable while Rp is coretractable as R is a Kasch ring (see also
[4, Example 2.10]).

Lemma 2.2. (1) Let N,K,N; < M. Let M be N-coretractable. If K O N, then M is K-coretractable.
In particular, if M is Nj-coretractable for each i € I, then M is (3, N;)-coretractable.

(2) Let M be N-coretractable. If K < N such that K contains no nonzero image of any endomor-
phism of M, then M/K is N/K-coretractable. In a special case, if M is N-coretractable such that for
every f € End(M), Imf ¢ N, then M/N is coretractable (see [4, Proposition 2.11]).

Proof. (1) This is straightforward.

(2) Let T/K be a proper submodule of M/K containing N/K. Then N C T C M. Since M is
N-coretractable, there exists a nonzero homomorphism g : M/T — M. Now define h : Ag/—/f(( - M/K

by h(z + K + %) =g(x+T)+ K for every x € M. If Imh = 0, then Img C K. Now, K contains
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the image of the endomorphism gor of M where 7 : M — M /T is the natural epimorphism, this gives a
contradiction. Therefore, M /K is N/K-coretractable. O

Let R be a right Noetherian ring and M be a N-coretractable module where N is a finitely generated
proper submodule of M. Then by Lemma 2.2(2), M/N is coretractable (see [4, Corollary 2.13]).

Proposition 2.3. Let M be a module and K < N < M. If M/K is N/K-coretractable and M/K can
be embedded in M, then M is N -coretractable. In particular, if M = K & K’ and N is any submodule of
M such that K' is (N N K')-coretractable, then M is N-coretractable.

Proof. Let T be a proper submodule of M containing N. Then T'/K is a proper submodule of M/K
containing N/K. By assumption, there is a nonzero homomorphism g : AT/I/—/[I(( ~ M/T — M/K. There
also exists a monomorphism h : M/K — M. Now, the homomorphism hog : M /T — M is the required
one. O

Corollary 2.4. Let M be a module and N < M such that M /N is coretractable. If M/N can be embedded
in M, then M is N-coretractable. In particular, if M is supplemented with Rad(M) a direct summand
of M, then M is Rad(M)-coretractable.

Proof. This is a special case of Proposition 2.3. The last part follows from the fact that for a supple-
mented module M, the module M/Rad(M) is coretractable since M/Rad(M) is semisimple. In this case
M is Rad(M)-coretractable. O

Example 2.5. (1) Let M be a coretractable module and N < M. Then M is N-coretractable. In
particular, every cogenerator M in the category of right R-modules is coretractable relative to every

N <M.

(2) Let M be a module such that for every submodule K of M we have M/K = M. Then M is
coretractable relative to each N < M.

(3) Let M be a module and N < M. If every proper submodule of M containing N, is contained in
a proper summand of M, then M is N-coretractable.

(4) Let M be an uniserial module. If M is coretractable relative to a proper submodule N, then M
is coretractable.

The following introduces a N-coretractable module which is not coretractable. In fact, the class of
relative coretractable modules properly contains the class of coretractable modules.

Example 2.6. Let P be the set of all prime numbers and M = HpEP Zy as an Z-module. Take N =
{0} X Z3 x Zs5 x ... which is a mazimal submodule of M, since M/N = Zs. Consider g : Zo — M defined
by g(x) = (x,0,0,...). Then g is a nonzero homomorphism indicating that M is N-coretractable. Note
that by [2, Example 2.9], M is not a coretractable Z-module.

Remark 2.7. Let M be a module and N < M. If there is not a nonzero homomorphism from M /N to M,
then M is not N -coretractable. For example, let M be a nonsingular module and N be a proper submodule
of M such that M/N is singular. So there does not exist any nonzero homomorphism from M/N to M.
Now, M is not N-coretractable (for example, Z-modules Q and Z can not be nZ-coretractable).

We shall consider some conditions under which the two concepts coretractable and N-coretractable
coincide.

Lemma 2.8. Let M be a module and N < M. In each of the following cases M 1is N -coretractable if
and only if M 1is coretractable.

(1) N is a small submodule of M.

(2) N is a coretractable module.
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Proof. (1) Let M be N-coretractable where N <« M and K be a proper submodule of M. Since
N is small in M, we have N + K # M. Now since M is N-coretractable, then there is a nonzero
homomorphism f : M/(N + K) — M. So that Homp(M/K, M) # 0. It follows that M is coretractable.
The converse is clear.

(2) Let K be a proper submodule of M. Then either K+ N # M or K+ N=M. If K+ N # M,
then similarly to (1) we have Hompr(M /K, M) # 0. Now suppose that K + N = M. Then there is an
isomorphism h : M/K — N/(N N K) induced from M = N 4+ K. Since N is coretractable, there is a
nonzero homomorphism g : N/(NNK) — N. Therefore, jogoh : M/K — M is a nonzero homomorphism
where j : N — M is the inclusion. O

Recall that a module M is hollow, provided every proper submodule of M is small in M.

Corollary 2.9. (1) Let M be a hollow module and N < M. Then M is N-coretractable if and only if
M s coretractable.

(2) Let M be a finitely generated module. Then M is Rad(M)-coretractable if and only if M is
coretractable.

(3) Let N be a semisimple submodule of M. Then M is N-coretractable if and only if M is core-
tractable.

(4) Let M be a module. Then M is Soc(M)-coretractable if and only if M is coretractable.

Let M be a module and N a submodule of M. Following [15], N is -small in M (denoted by
N <5 M), in case M = N + K with M/K singular implies that M = K. Note that by definitions, every
small submodule of M is d-small in M. The sum of all §-small submodules of M is denoted by 6(M).
Also §(M) is the reject of the class of all simple singular modules in M.

Proposition 2.10. Let M be a module and N be a proper §-small submodule of M. Then M is N-
coretractable if and only if M is coretractable.

Proof. Let M be N-coretractable and K be a proper submodule of M. Suppose that M # N+ K. Since
M is N-coretractable, there is a nonzero homomorphism f : M/(N+K) — M. So that for: M/K — M
is the required homomorphism where 7 : M/K — M/(N + K) is natural epimorphism. Otherwise,
M = N + K. Now from [15, Lemma 1.2], there is a decomposition M =Y @ K where Y is a semisimple
projective submodule of N. Therefore, there is a monomorphism from M/K to M since K is a direct
summand of M. It follows that M is coretractable. O

Proposition 2.11. Let M be a module and N be a proper submodule of M. If M is N-coretractable
and M/N has a mazimal submodule, then Soc(M) # 0. In particular, if M is finitely generated and
N -coretractable, then Soc(M) # 0.

Proof. Let K/N be a maximal submodule of M/N. Then K is a maximal submodule of M. So there
is a nonzero homomorphism h : M/K — M. It follows that Imh is a simple submodule of M. This
completes the proof. O

The following is an immediate consequence of last proposition.

Corollary 2.12. Let R be a ring such that every cyclic right R-module is coretractable relative to at least
one of its submodules. Then R is semi-Artinian.

Let R be a ring. Then R is called a right V-ring in case every simple right R-module is injective. As
a generalization of V-rings, R is a right generalized V-ring (GV-ring for short), if every simple singular
right R-module is injective ([11]).
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Proposition 2.13. Let R be a ring and M be an indecomposable right R-module with Rad(M) # M. If
each of the following statements holds, then M is Rad(M)-coretractable if and only if M is simple.

(1) R is a right GV -ring.

(2) M is noncosingular.

Proof. (1) Let M be Rad(M)-coretractable. Then for each maximal submodule K of M there is a
monomorphism g : M/K — M. It follows that Img is a simple submodule of M. Then I'mg is either
singular or projective. If I'mg is projective, then K is a direct summand of M and hence K = 0 or
K = M. So that K = 0. If Img is singular, it will be injective as R is right GV. Therefore, Img is a
summand of M and since g # 0 we conclude that Img = M. In both cases, M is simple. The converse
is obvious.

(2) It follows from (1) and the fact that every homomorphic image of M is noncosingular. O

Corollary 2.14. Let R be a right V-ring and M an indecomposable right R-module. Then M is core-
tractable if and only if M is simple.

Following [8], a module M is dual Rickart provided that for every f € End(M), Imf is a direct
summand of M.

Remark 2.15. Let M be an indecomposable dual Rickart module with Rad(M) # M. Then M is
(Rad(M)-)coretractable if and only if M is simple. Let K be a mazimal submodule of M. Then there is a
monomorphism g : M/K — M. Consider the endomorphism h = gor : M — M where 7 : M — M/K is
the natural epimorphism. Then Imh = Img is a summand of M. So Img = M as M is indecomposable.
It follows that M 1is simple.

Proposition 2.16. Let M be a module and L a proper submodule of M such that L has a supplement
K in M. If M is L-coretractable and K is fully invariant in M, then K is coretractable.

Proof. Let K be a supplement of L in M. Then M = K+ L and KN L < K. Let N be a proper
submodule of K. Then N + L is a proper submodule of M. For if, N + L = M, by modular law
N + (KNL)= K, which implies that N = K, a contradiction. Since M is L-coretractable, there is a
nonzero homomorphism f : M/(N + L) — M. Since K is a fully invariant submodule of M, we have
for(K) C K where 7 : M — M/(N + L) is the natural epimorphism. Now consider h : K/N — K by
h(z + N) = f(x + N + L) for every x € K. It is not hard to verify that h is well-defined. Now, there is
y € M such that y ¢ N+ L and f(y+ N+ L) # 0. Now there exists k € K and [ € L such that y = k+1.
It is easy to see that h(k + N) = f(k+1+ N+ L) = f(y+ L) # 0. It follows that h is nonzero. O

Corollary 2.17. ([2, Proposition 2.5]) Every fully invariant direct summand of a coretractable module
is coretractable.

Let M be a module. Then M is called a duo module provided every submodule of M is fully
invariant.

Corollary 2.18. Let M be a duo module. If M is coretractable relative to each direct summand of M,
then every direct summand of M is coretractable.

Proposition 2.19. Let M = M1 & ... & M, and N < M. If each M; is N N M;-coretractable, then M
is N -coretractable. Especially a finite direct sum of coretractable modules is coretractable.
Proof. The proof is exactly similar to proof of [2, Proposition 2.6]. O

Proposition 2.20. Let R be a right max ring and M = @, ; M; be a direct sum of N N M;-coretractable
right R-modules where N < M. Then M is N-coretractable. In particular, an arbitrary direct sum of
coretractable right R-modules is coretractable.

Proof. Similar to the proof of |2, Proposition 2.7]. O
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Let M be an R-module. A submodule K of M is said to be dense in M if, for any y € M and
0 # x € M, there exists r € R such that zr # 0 and yr € K. Obviously, any dense submodule of M is
essential in M. From [7, Proposition 8.6], K is dense in M if and only if Homgr(P/K, M) = 0 for every
submodule P D K.

Remark 2.21. Let M be a module and N < M. If N is dense in M, then M is not N -coretractable. In
fact for a N-coretractable module M, we have N is not dense in M. This follows from the fact that if M
is N-coretractable, then there is a nonzero homomorphism from M/N to M.

Proposition 2.22. Let M be a module and N a proper submodule of M. If M is quasi-injective or every
proper submodule of M is contained in a maximal submodule, then M is N-coretractable if and only if
every proper submodule of M containing N is not dense in M.

Proof. (1) Let M be a quasi-injective module such that every proper submodule of M containing N
is not dense in M. Suppose that K is a proper submodule of M containing N. Since K is not dense in
M, there is a f : P/K — M where P is a submodule of M containing K. It follows that for : P — M
is a nonzero homomorphism where 7 : P — P/K is the natural epimorphism. Consider the inclusion
homomorphism j : P — M. Since M is quasi-injective, there exists h : M — M such that hoj = for.
By defining h : M/K — M with h(m + K) = h(m) we conclude that M is N-coretractable. Note that
h is nonzero. Conversely, if M is N-coretractable and N C K < M, then there is a homomorphism
g: M/K — M which shows that K is not dense in M.

(2) Suppose that every submodule of M is contained in a maximal submodule of M. Let N C K < M.
Then there is a maximal submodule L of M such that K < L. Since L is not dense in M, there is a
nonzero homomorphism h : M/L — M. As f : M/K — M/L with f(xz + K) = « + L is a nonzero
homomorphism, then hof is nonzero. It follows that M is N-coretractable. The converse is the same as
(1). O

The following presents a characterization of I-coretractable rings.
Theorem 2.23. Let R be a ring and I be a proper right ideal of R. Then the following are equivalent:
(1) Rpg is I-coretractable;
(2) Every n-generated free right R-module is 1™ -coretractable;
(3) For every right ideal T 2 I, anny(T') # 0.

Proof. (1)< (2) Follows from Proposition 2.19.

(1) = (3) Let T be a right ideal of R containing I. Since Rp is I-coretractable, there is a nonzero
homomorphism f : R/T — R. Consider the endomorphism g = for : R — R where 7 is the natural
epimorphism from R to R/T. Then there is an element 0 # a € R such that g(z) = ax. Let y € T. Then
g(y) =ay =0as T C Kerg. This shows that 0 # a € anny(T).

(3) = (1) Let T be a right ideal of R containing I. Since ann;(T) # 0, there exists an element of R
such as a that aT' =0 and a # 0. Define f : R/T — R by f(x 4+ T) = ax. It is easy to check that f is
an R-homomorphism and in particular f # 0. O

Remark 2.24. Let R be a ring and I < Rr with anni(I) = 0. Then Rp is not I-coretractable. For

K K 0 K

example, let R = } be the ring of 2 X 2 upper triangular matrices over a field K. Let I =

0 K 0 K
which is a right ideal of R. Then anny(I) = 0. Hence, Rg is not I-coretractable. In other words, R/J(R)
is coretractable relative to each of its ideals as R/J(R) is a semisimple ring. Note that J(R) = {8 [0(] .

Theorem 2.25. Let R be a ring and I be a proper two-sided ideal of R. Then the following statements
are equivalent:

(1) Rpg is I-coretractable;
(2) Every simple right R-module that is annihilated by I can be embedded in Rp.
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Proof. (1) = (2) Let M = R/K be a simple right R-module such that M I = 0. It follows that I C K.
Since Rp is I-coretractable, there is a nonzero homomorphism f: R/K — R.

(2) = (1) Let T be a right ideal of R containing I. Now there exists a right maximal ideal K of R
such that I C T C K. Consider the simple right R-module M = R/K. Since M1 = 0, there is a nonzero
homomorphism ¢ : R/K — R by assumption. As T is a submodule of K, there exists f : R/T — R/K
defined by f(x 4+ T) =« + K. Hence gof is the desired homomorphism. O

For a ring R, Theorem 2.25 implies that Rp is (J(R)-)coretractable if and only if R is a right Kasch
ring.

In [2, Proposition 4.4], it is shown that if R is a von Neumann regular ring then R is right Kasch if
and only if R is semisimple. In the following we shall investigate a more general version.
Proposition 2.26. Let R be a right GV -ring. Then the following are equivalent:

(1) R is right Kasch;

(2) R is semisimple.

Proof. (1) = (2) Let R be right Kasch. So Rg is J(R)-coretractable. Now suppose that K is an
arbitrary maximal right ideal of R. Then there is a monomorphism g : R/K — R. It follows that
R/K = Img is a simple right R-module. So, I'mg is either singular or projective. In first case Img
should be injective as R is right GV. Therefore, Img is a direct summand of Rr. Now Img is singular
projective which implies that Img = 0, a contradiction. So that I'mg and hence every simple right
R-module will be projective. This shows that R is semisimple.

(2) = (1) It is obvious. O
Corollary 2.27. Let R be a right V-ring. Then R is a Kasch ring if and only if R is semisimple.

K K . 0 K
0 K] where K is a field. Then J(R) = 00

R is a semilocal ring as R/J(R) = K x K which is a semisimple ring. Now by [3, Fzercise 10, Page
113/, Soc(rR) = {K K}. However, Soc(Rg) = [0 K Set my = Soc(gR) and me = Soc(Rr). Then

Example 2.28. (1) Let R = } . It is easy to check that

0 0 0 K|
both my and ma are maximal left and right ideals of R. A quick calculation shows that anni(my) = mo,
anni(mz) =0, ann,.(m1) = 0 and ann,(ms) = my. Now by Theorem 2.23, Rg is mq-coretractable while
Rpg is not ma-coretractable. Also left version of Theorem 2.23, implies that rR is ma-coretractable but
it is not mq-coretractable. Since the simple right R-module R/msa can not be embedded in Rp and the
simple left R-module R/my can not be embedded in rR, the ring R is neither right Kasch nor left Kasch
(note that since R is right GV which is not a V-ring, it can not be Kasch from Proposition 2.26).

a 0bc

(2) Let K be a division ring and R = {A = 8 8 2 (C)l | a,b,c,d,e € K}. Then J(R) = {A €
000e

R|a=0=c¢e}, Soc(Rr) = anni(J(R)) = {A € R | a = 0}, Soc(gR) = ann,(J(R)) = J(R). Since

R/J(R) 2 K x K, R is a semilocal ring. Now Soc(Rg) = {A € R| a =0} and Soc(gR) = J(R). From
[7, Example 8.29], Soc(RRr) is a left and right mazimal ideal of R. Since ann,(Soc(Rg)) = {A € R |
a=e=0}=J(R) #0, it follows from [7, Corollary 8.28], R/Soc(Rr) can be embedded in rR (see also
Theorem 2.23). Therefore, rR is Soc(Rg)-coretractable while rR is not Soc(grR)-coretractable (see also
Corollary 2.9). Now an easy computation shows that anni;(Soc(Rg)) ={A€ R|a=c=d=e=0} #0.
So R/Soc(RpR) can be embedded in Rr by [7, Corollary 8.28]. As Soc(Rg) is a mazimal right ideal of R,
then Rp is Soc(RRg)-coretractable. Also from [7, Example 8.29], R is a right Kasch ring while it is not
a left Kasch ring.

(3) Let K be a field and R = [[;2, K. It is well-known that R is a Von Neumann regular V -ring.
Consider the ideal T; = K X K X ... x K x0x K x K X .... It is clear that T; for eachi € N is a mazimal
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ideal of R. It is easy to see that ann(T;) =0Xx0x...x0x K x0x ... which is nonzero. Therefore, from
Theorem 2.23, R is I-coretractable for each I C T;. Now consider the ideal L = @;-, K of R. Then
ann(L) = 0 and of course ann(m) = 0 for every mazimal ideal m of R containing L. Hence the simple
R-module R/m can not be embedded in R (see [7, Corollary 8.28]). Therefore, R is not coretractable
relative to L. This means that R is not a Kasch ring.

Proposition 2.29. Let R be a ring and I a right ideal of R such that every free right R-module R™Y is
(I )-coretractable. Then for every right R-module M with I C ann,(M), Homg(M,R) # 0.

Proof. Let M be a right R-module such that I C ann,(M). Then there is a free right R-module
F and a submodule K of F such that M = F/K. Since MI = 0, we have IY) C K where A is an
indexed set. By assumption, there is a nonzero homomorphism f : F//K — F. Then the homomorphism
mof : M — R is the required one where 7 : F — R is the natural epimorphism. O

Proposition 2.30. Let R be a ring having a radical right R-module M with M1 # M where I < Rpg.
If for every right ideal T of R, Rad(T) # T, then there is a free right R-module R“Y) which is not
I _coretractable.

Proof. Let Rad(M) = M such that M is a proper submodule of M. There exists a free right R-module
F = R“ and a submodule K of F such that M/MI = F/K. Being M radical implies that M/MT is
radical. So, Homgr(M/MI,R) = 0. Since (F/K)I =0, I'Y) C K. Tt follows that Homgz(F/K,F) =0
which implies F is not IY-coretractable. O

Proposition 2.31. Let R be a right maz ring and I < Rg such that every cyclic R-module N is NI-
coretractable. Then every right R-module M is MI-coretractable. In particular, if R is a (semiperfect)
right perfect ring with all cyclic right R-modules coretractable, then every (finitely generated) right R-
module is coretractable.

Proof. Let M be aright R-module. Suppose that K is a proper submodule of M containing M 1. Since
R is a right max ring, K is contained in a maximal submodule L of M. For every x € M \ L, we know
M/L~zR/(xkRNL)as xR+ L= M. Note that MI C L. So that (zR/(xRNL))I = 0. It follows that
(xR)I C RN L. Being R a (zR)I-coretractable module implies that Homg(zR/(xRN L),zR) # 0.
Hence there is a nonzero homomorphism f : M/L — M. Therefore, Homp(M/K,M) #0as K C L. O
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