Necessary Condition for Vector-Valued Model Spaces to be Invariant Under Conjugation

Rewayat Khan ${ }^{1}$, Jamroz Khan ${ }^{2}$

Article History	
Received:	02.01 .2019
Accepted:	20.04 .2019
Published:	07.05 .2019
Original Article	

Abstract

The S^{*}-invariant subspaces of the Hardy-Hilbert space $H^{2}(E)$ (where E is finite dimensional Hilbert space of dimension greater than 1) on the unit disc is well known. In this study, we examine that, if Ω is a conjugation on E, and Θ an inner function, then there exist model spaces which are not invariant for the conjugation $C_{\Omega}: L^{2}(E) \longrightarrow L^{2}(E)$. Under what necessary condition the model spaces is mapped onto itself is under consideration.

Keywords - Inner function, model spaces, conjugation.

1. Introduction and Preliminaries

Let \mathbb{D} denote the open unit disc and \mathbb{T} the unit circle in the complex plane \mathbb{C}. Throughout the paper E will denote a fixed Hilbert space, of finite dimension d, and $\mathcal{L}(E)$ the algebra of bounded linear operators on E, which may be identified with $d \times d$ matrices. $\mathcal{L}(E)$ is Hilbert space endowed with Hilbert-Schmidt norm. $H^{2}(E)$ is the Hardy-Hilbert of E-valued analytic functions on \mathbb{D} whose coefficients are square summable, which is a closed subspace of $L^{2}(E)$.

The space $L^{2}(E)$ is defined, as usual, by

$$
L^{2}(E)=\left\{f: \mathbb{T} \longrightarrow E: f\left(e^{i t}\right)=\sum_{-\infty}^{\infty} a_{n} e^{i n t}, a_{n} \in E, \sum_{-\infty}^{\infty}\left\|a_{n}\right\|_{E}^{2}<\infty\right\} .
$$

The inner product on $L^{2}(E)$ is defined by

$$
\begin{equation*}
\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle f\left(e^{i t}\right), g\left(e^{i t}\right)\right\rangle_{E} d t \tag{1}
\end{equation*}
$$

and $L^{2}(E)$ can be orthogonally decompose as

$$
L^{2}(E)=H_{-}^{2}(E) \oplus H^{2}(E),
$$

where $H_{-}^{2}(E)$ is the orthogonal complement of $H^{2}(E)$ in $L^{2}(E)$ with inner product defined in (1). For $f \in H^{2}(E), f(z)$ and $f\left(e^{i t}\right)$ determine each other.

It is important to note that, if $\operatorname{dim} E=1$ (i.e $E=\mathbb{C}$) then $L^{2}(E)$ consists of the scalar valued functions and is denoted by $L^{2}(\mathbb{T})$, and all the results become trivial in that case.

By viewing $\mathcal{L}(E)$ as Hilbert space (endowed with the Hilbert Schmidt norm), one can also consider the space $L^{2}(\mathcal{L}(E))$, which may be identified with the matrices whose entries are from $L^{2}(\mathbb{T})$.

[^0]Alternately, we may view $L^{2}(\mathcal{L}(E))$ also as a space of square summable Fourier series with coefficients in $\mathcal{L}(E)$.

The space $H^{2}(\mathcal{L}(E))$ is a closed subspace of $L^{2}(\mathcal{L}(E))$ whose Fourier coefficients corresponding to negative indices vanishes. We have an orthogonal decomposition

$$
L^{2}(\mathcal{L}(E))=\left[z H^{2}(\mathcal{L}(E))\right]^{*} \oplus H^{2}(\mathcal{L}(E))
$$

The unilateral shift (see [6]) $S: H^{2}(E) \longrightarrow H^{2}(E)$ is defined by $S f=z f$, and its adjoint S^{*} (backward shift) is given by the formula;

$$
S^{*} f=\frac{f-f(0)}{z} .
$$

After gathering the facts in preliminaries, we will present main results in the next section. An effort has been made to make the paper self-contained.

2. Formulation and Basic Results

Definition 2.1. An inner function is an element $\Theta \in H^{2}(\mathcal{L}(E))$ whose boundary values are almost everywhere unitary operators in $\mathcal{L}(E)$.

Definition 2.2. A conjugation is a conjugate-linear operator $C: \mathcal{H} \longrightarrow \mathcal{H}$ that satisfies the conditions

1. C is isometric: $\langle C f, C g\rangle=\langle g, f\rangle \forall f, g \in \mathcal{H}$,
2. C is involutive: $C^{2}=I$.

Model space associated to an inner function Θ, is denoted by K_{Θ}, and is defined by

$$
K_{\Theta}=H^{2}(E) \ominus \Theta H^{2}(E) .
$$

Just like the Beurling-type subspace $\Theta H^{2}(E)$ constitute nontrivial invariant subspace for the unilateral shift S, the subspace K_{Θ} plays an analogous role for the backward shift S^{*}.

For a given inner function Θ, and Ω a conjugation on E, the map $C_{\Omega}: L^{2}(E) \longrightarrow L^{2}(E)$, defined by

$$
(C f)\left(e^{i t}\right)=\Theta\left(e^{i t}\right) \overline{e^{i t}} \Omega f\left(e^{i t}\right)
$$

is a conjugation. It is worth noting that C_{Ω} does not preserve the model spaces in general. However this is true for $\operatorname{dim} E=1$ (see [6]). Under what condition the model spaces is invariant under the conjugation C_{Ω}, this we will study in the next section.

3. Main Results

Example 3.1. If $\Theta\left(e^{i t}\right)^{*} \neq \Omega \Theta\left(e^{i t}\right) \Omega$ then $C_{\Omega} K_{\Theta} \nsubseteq K_{\Theta}$.
Let $E=\mathbb{C}^{2}$ and

$$
\Theta(z)=\left(\begin{array}{cc}
z & 0 \\
0 & z^{2}
\end{array}\right) \in H^{2}\left(\mathcal{L}\left(\mathbb{C}^{2}\right)\right),
$$

then

$$
\Theta H^{2}\left(\mathbb{C}^{2}\right)=\left\{\binom{z f}{z^{2} g}: f, g \in H^{2}\right\},
$$

and the model space associated to Θ is

$$
K_{\Theta}=\left[\Theta H^{2}\left(\mathbb{C}^{2}\right)\right]^{\perp}=\left\{\binom{f_{0}}{g_{0}+g_{1} z}: f_{0}, g_{0}, g_{1} \in \mathbb{C}\right\} .
$$

Let $\Omega: \mathbb{C}^{2} \longrightarrow \mathbb{C}^{2}$ be defined by

$$
\Omega\binom{a_{1}}{a_{2}}=\binom{\overline{a_{2}}}{\overline{a_{1}}}
$$

is a conjugation.

Now consider

$$
\Theta\left(e^{i t}\right)^{*}\binom{a_{1}}{a_{2}}=\left(\begin{array}{cc}
\bar{z} & 0 \tag{2}\\
0 & \bar{z}^{2}
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{a_{1} \bar{z}}{a_{2} \bar{z}^{2}}
$$

and

$$
\Omega \Theta \Omega\binom{a_{1}}{a_{2}}=\Omega\left(\begin{array}{cc}
z & 0 \tag{3}\\
0 & z^{2}
\end{array}\right)\binom{\overline{a_{2}}}{\overline{a_{1}}}=\Omega\binom{\overline{a_{2}} z}{\overline{a_{1}} z^{2}}=\binom{a_{1} \bar{z}^{2}}{a_{2} \bar{z}} \neq \Theta\left(e^{i t}\right)^{*}\binom{a_{1}}{a_{2}} .
$$

Now

$$
C_{\Omega}\binom{0}{z}=\bar{z}\left(\begin{array}{cc}
z & 0 \\
0 & z^{2}
\end{array}\right) \Omega\binom{0}{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & z
\end{array}\right)\binom{\bar{z}}{0}=\binom{\bar{z}}{0} \notin K_{\Theta} .
$$

Theorem 3.2. If Ω is a conjugation on E. Suppose that for the inner function Θ, we have $\Theta\left(e^{i t}\right)^{*}=$ $\Omega \Theta\left(e^{i t}\right) \Omega$. Then $C_{\Omega} K_{\Theta}=K_{\Theta}$.
Proof. Let $f \in K_{\Theta}$ and $h \in H^{2}(E)$, then

$$
\begin{aligned}
\left\langle C_{\Omega} f, \Omega(z h)\right\rangle & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\Theta\left(e^{i t}\right) e^{-i t} \Omega f\left(e^{i t}\right), e^{-i t} \Omega h\left(e^{i t}\right)\right\rangle d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\Omega \Theta\left(e^{i t}\right)^{*} \Omega f\left(e^{i t}\right), \Omega h\left(e^{i t}\right)\right\rangle d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\Omega \Theta\left(e^{i t}\right)^{*} f\left(e^{i t}\right), \Omega h\left(e^{i t}\right)\right\rangle d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle h\left(e^{i t}\right), \Theta\left(e^{i t}\right)^{*} f\left(e^{i t}\right)\right\rangle d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\Theta\left(e^{i t}\right) h\left(e^{i t}\right), f\left(e^{i t}\right)\right\rangle d t=\langle\Theta h, f\rangle=0 .
\end{aligned}
$$

This proves that $C_{\Omega} f \perp H_{-}^{2}(E)$. Next we will prove that $C_{\Omega} f \perp \Theta H^{2}(E)$. For this consider

$$
\begin{aligned}
\left\langle C_{\Omega} f, \Theta z^{n} x\right\rangle & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\Theta\left(e^{i t}\right) e^{-i t} \Omega f\left(e^{i t}\right), \Theta\left(e^{i t}\right) e^{i n t} x\right\rangle d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle e^{-i t} \Omega f\left(e^{i t}\right), e^{i n t} x\right\rangle d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\Omega f\left(e^{i t}\right), e^{i(n+1) t} x\right\rangle d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\langle\Omega e^{i(n+1) t} x, f\left(e^{i t}\right)\right\rangle d t=\left\langle\Omega z^{n+1} x, f\right\rangle \\
& =0 .
\end{aligned}
$$

Here we have used the fact that $\Omega z^{n+1} x \in H_{-}^{2}(E)$. This shows that $C_{\Omega} K_{\Theta} \subset K_{\Theta}$ and this combined with $C_{\Omega}^{2}=I$ follows that $C_{\Omega} K_{\Theta}=K_{\Theta}$.

Acknowledgement

I am very much grateful to my family for their support and love throughout my tough time.

References

[1] J. A. Cima, W. T. Ross, The backward shift on the Hardy space. Mathematical Surveys and Monograps, Volume 79. Amer. Math. Soc. Providence, RI, 2000. MR 1761913.
[2] R. G. Douglas, Banach algebra techniques in operator theory, Graduate Texts in Mathematics, Volume 179, Springer-Verlag, New York, 1998.
[3] E. Fricain, J. Mashreghi, The theory of H(b) spaces. Volume 2, New Mathematical Monographs, Volume 21, Cambridge University Press, Cambridge, 2015.
[4] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), 1285-1315.
[5] S. R. Garcia, Conjugation and Clark operators. Recent advances in operator-related function theory, Contemp. Math, Volume 393, Amer. Math. Soc Providence, RI, 2006, pp. 67-111. MR 2198373 (2007b:47073).
[6] S. R. Garcia, J. Mashreghi, W.T. Ross, Introduction to model spaces and their operators. Cambridge: Cambridge University Press. 2016.
[7] S. R. Garcia, Conjugation, the backward shift, and Toeplitz kernel. J. Operator Theory 54/2 (2005) 239-250. MR 2186351.

[^0]: ${ }^{1}$ rewayat.khan@gmail.com (Corresponding Author); ${ }^{2}$ jamroz.khan73@gmail.com
 ${ }^{1}$ Abdus Salam School of Mathematical Sciences Government College University, Lahore, Pakistan.
 ${ }^{2}$ Government College of Management Sciences 2, Peshawar, Pakistan.

