

ESKİSEHİR TECHNICAL UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY A- APPLIED SCIENCES AND ENGINEERING

2019, 20(1), pp. 104 - 111, DOI: 10.18038/aubtda.438249

MONOTONICITY RESULTS AND ASSOCIATED INEQUALITIES FOR K-GAMMA **FUNCTION**

İnci EGE^{1,*}, Emrah YILDIRIM¹

¹ Department of Mathematics, Faculty of Art and Science, Aydın Adnan Menderes University, Aydın, Turkey

ABSTRACT

This study is inspired by the work of Neumann in 2011. In the study, we establish some double inequalities involving the ratio $\frac{\Gamma_k(n+s)}{\Gamma_k(n+k)}$, where Γ_k is the k-analogue of Euler's gamma function. Some monotonicity results involving k-gamma

function are found. By the aid of these results, some inequalities such as $[\Gamma_k(k + \sigma)]^{\frac{k}{\sigma}} \leq \sum_{i=1}^n [\Gamma_k(k + x_i)]^{\frac{k}{x_i}}$ for $x_i > 0, 1 \leq 1$ $i \le n$, where $\sigma = x_1 + x_2 + \dots + x_n$ are valid.

Keywords: Gamma function, k-Gamma function, Monotonicity, Inequality

1. INTRODUCTION

Euler's gamma function $\Gamma(x)$ is defined for x > 0 by

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \, .$$

Gautschi in [1] obtains bounds for the ratio of two classical gamma functions as follows:

$$e^{(s-1)\psi(n+1)} \le \frac{\Gamma(n+s)}{\Gamma(n+1)} \le n^{s-1} \tag{1}$$

for $0 \le s \le 1$ and $n \in Z^+$, where ψ denotes digamma function that is defined by the logarithmic derivative of classical gamma function, i.e. $\psi(x) = \frac{d}{dx} \ln \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}$. In [2], Neumann uses the properties of logarithmically convex functions in order to establish some inequalities for this function. Firstly, he gives the following definition.

Definition 1. The function ϕ is defined by

$$\phi \equiv \phi(a,b,x) = \left[\frac{f(a+x)}{f(b+x)}\right]^{\frac{1}{a-b}}, \qquad a+x, \ b+x \in D, \ a \neq b$$
(2)

where $f: D \to \mathbb{R}^+$, D is subinterval of \mathbb{R} and f is log-convex. Then author obtains the following results.

Proposition 2. *The function* ϕ *increases with an increase in either* **a** *or* **b***.*

Proposition 3. If the function f is continuously differentiable on D, the following double sided inequalities

*Corresponding Author: iege@adu.edu.tr Received: 28.06.2018 Accepted: 21.03.2019

$$(a-b)\frac{f'(b+x)}{f(b+x)} \le \ln\frac{f(a+x)}{f(b+x)} \le (a-b)\frac{f'(a+x)}{f(a+x)}$$
(3)

holds true for $a + x, b + x \in D$, $a \neq b$ and using $f(x) = \Gamma(x)$ in (3) yields

$$(a-b)\psi(b+x) \le \ln \frac{\Gamma(a+x)}{\Gamma(b+x)} \le (a-b)\psi(a+x).$$
(4)

for $a + x, b + x \in \mathbb{R}^+$, $a \neq b$.

The inequalities (4) are generalizations of the inequalities (1). Author in [2] also shows the following lemma.

Lemma 4. Let $g: \mathbb{R}^+ \to \mathbb{R}$, and let $x_i > 0, 1 \le i \le n$. If the function $\frac{g(x)}{x}$ is increasing on \mathbb{R}^+ , then

$$\sum_{i=1}^{n} g\left(x_{i}\right) \leq g\left(\sigma\right) \tag{5}$$

where $\sigma = x_1 + x_2 + \cdots + x_n$.

Inequality (5) is reversed if $\frac{g(x)}{x}$ is decreasing on \mathbb{R}^+ .

Diaz and Pariguan define Pochhammer k-symbol and k-gamma function in [3]:

Definition 5. Let $x \in \mathbb{C}$, $k \in \mathbb{R}$ and $n \in \mathbb{Z}^+$. The Pochhammer k-symbol is given by

$$(x)_{n,k} = x(x+k)(x+2k) \dots (x+(n-1)k).$$

k-Analogue of gamma function is defined by

$$\Gamma_{k}(x) = \lim_{n \to \infty} \frac{n! k^{n} (nk)^{\frac{n}{k}-1}}{(x)_{n,k}}$$

for $x \in \mathbb{C} \setminus k\mathbb{Z}^-$ and k > 0. Its integral representation is given by

$$\Gamma_k(x) = \int_0^\infty t^{x-1} e^{-\frac{t^k}{k}} dt$$

for $x \in \mathbb{C}$, Re(x) > 0.

They obtain several results that are generalizations of the classical gamma function. The next proposition is some of their results that will be used later in this paper.

Proposition 6. The k-gamma function $\Gamma_k(x)$ satisfies the following properties:

i.
$$\Gamma_k(x+k) = x\Gamma_k(x),$$
 (6)

$$ii. \qquad \Gamma_k(k) = 1, \tag{7}$$

iii. $\Gamma_k(x)$ is logarithmically convex for $x \in \mathbb{R}$,

iv.
$$\frac{1}{\Gamma_k(x)} = xk^{-\frac{x}{k}}e^{\frac{x}{k}\gamma}\prod_{n=1}^{\infty}\left(\left(1+\frac{x}{nk}\right)e^{-\frac{x}{nk}}\right)$$
(9)

where γ denotes the Eular's constant defined as $\gamma = \lim_{n \to \infty} \left(1 + \dots + \frac{1}{n} + \ln n \right)$,

v.
$$\Gamma_s(x) = \left(\frac{s}{k}\right)^{\frac{x}{s}-1} \Gamma_k\left(\frac{kx}{s}\right).$$
 (10)

By using the equation (9), Krasniqi in [4] obtains the following series representations of k-digamma function and k-polygamma function as

$$\psi_k(x) = \frac{\ln k - \gamma}{k} - \frac{1}{x} + \sum_{n=1}^{\infty} \frac{x}{nk(x+nk)}$$
(11)

(8)

and

$$\psi_{k}^{(n)}(x) = (-1)^{n+1} n! \sum_{i=1}^{\infty} \frac{1}{(x+ik)^{n+1}}$$
(12)

respectively for n = 1, 2, ... The author also proves the following lemma and theorem in [4].

Lemma 7. The function $\psi'_k(x)$ is strictly monotonic on $(0, \infty)$.

Theorem 8. Let x > 0, $y \ge 0$ be real numbers and $k \ge 1$. Then the function

$$f(x) = \frac{[\Gamma_k(x+y+1)/\Gamma_k(y+1)]^{\frac{1}{x}}}{x+y+1}$$

is strictly decreasing on $(0, \infty)$.

Our motivation for this study is to give k-generalizations of the results obtained by Gautschi [1] and Neumann [2]. Then we give some monotonicity properties and obtain some inequalities for summations and multiplications of k-gamma function.

2. MAIN RESULTS

Firstly, we will prove k-generalization of Gautschi inequalities (1).

Theorem 9. Let n be a positive integer, k be a positive real number and $0 \le s < k$. Then we have

$$e^{(s-k)\psi_k(n+k)} \le \frac{\Gamma_k\left(n+s\right)}{\Gamma_k\left(n+k\right)} \le n^{\frac{s-k}{k}}.$$
(13)

Proof. Let us define the function *f* by

$$f(s) = \frac{1}{k-s} \ln \frac{\Gamma_k(n+s)}{\Gamma_k(n+k)}$$

for $0 \le s < k$. By using the equation (6), we have $f(0) = \frac{1}{k} \ln \frac{\Gamma_k(n)}{\Gamma_k(n+k)} = -\frac{\ln n}{k}$ and using

L'Hopital's rule leads us to

$$\lim_{s \to k} f(s) = -\lim_{s \to k} \psi_k(n+s) = -\psi_k(n+k)$$

It is sufficient to show that the function f is monotonically decreasing. By differentiation of f with respect to s, we get

$$(k-s)f'(s) = f(s) + \psi_k(n+s).$$

Let us consider

$$\phi(s) = (k-s) \left[f(s) + \psi_k(n+s) \right].$$

Then, $\phi(k) = 0$ and $\phi(0) = k \left(\psi_k(n) - \frac{\ln n}{k} \right)$. Using logarithmic derivative of the equation (10) leads us to

$$\psi_k(x) = \frac{\ln k}{k} + \frac{1}{k}\psi\left(\frac{x}{k}\right).$$

Then we obtain $\phi(0) = \psi\left(\frac{n}{k}\right) - \ln\left(\frac{n}{k}\right)$. Since $\psi(x) - \ln x$ is negative on $(0, \infty)$, we get $\phi(0) < 0$ and since $\phi'(s) = (k - s)\psi'_k(n + s)$, we have $\psi'_k(n + s) > 0$, from equation (12) and Lemma 7. It follows that $\phi(s) < 0$. Hence for 0 < s < k, we obtain $f'(s) = \frac{f(s) + \psi_k(n+s)}{k-s} < 0$. Thus we get

$$-\psi_k(n+k) \leq f(s) \leq -\frac{\ln n}{k}.$$

This completes the proof of the theorem.

Before we obtain the monotonicity result on k-gamma function, we need the following lemma. **Lemma 10.** For x > 0, k > 0 and r = 1, 2, ... we have

$$\psi_k(x+k) = \frac{\log k - \gamma}{k} - \sum_{n=1}^{\infty} \left[\frac{1}{x+nk} - \frac{1}{nk} \right]$$
(14)

and

$$\psi_{k}^{(r)}(x+k) = (-1)^{r+1} r! \sum_{n=1}^{\infty} \frac{1}{(x+nk)^{r+1}}.$$
(15)

Proof. From (9), we have

$$\ln \Gamma_k(x) + \ln x = \frac{x}{k} \ln k - \frac{x}{k} \gamma - \sum_{n=1}^{\infty} \left(\ln \left(1 + \frac{x}{nk} \right) - \frac{x}{nk} \right)$$

Then by using the recurrence formula (6), we have

$$\ln \Gamma_k \left(x+k \right) = \frac{x}{k} \ln k - \frac{x}{k} \gamma - \sum_{n=1}^{\infty} \left(\ln \left(1 + \frac{x}{nk} \right) - \frac{x}{nk} \right).$$
(16)

By differentiating the equation (16), we get the equation (14) as desired. The equation (15) can be obtained from mathematical induction.

Now we can give the following theorem.

Theorem 11. The function $\left[\Gamma_k(x+k)\right]^{\frac{1}{x}}$ is logarithmically concave and increasing for x > -k.

Proof. Let $f(x) = \frac{\ln \Gamma_k(x+k)}{x}$. It is sufficient to show that the first derivative of f is positive and the second derivative of f is negative. So from the first derivative of f and the equations (14) and (16) we have

$$f'(x) = \frac{1}{x} \psi_k (x+k) - \frac{1}{x^2} \ln \Gamma_k (x+k)$$

= $\frac{1}{x} \left[\frac{\ln k}{k} - \frac{\gamma}{k} - \sum_{n=1}^{\infty} \left[\frac{1}{x+nk} - \frac{1}{nk} \right] \right] - \frac{1}{x^2} \left[\frac{x \ln k}{k} - \frac{x\gamma}{k} - \sum_{n=1}^{\infty} \left[\ln \left(1 + \frac{x}{nk} \right) - \frac{x}{nk} \right] \right]$
= $\frac{1}{x^2} \sum_{n=1}^{\infty} \left[-\frac{x}{x+nk} + \frac{x}{nk} - \frac{x}{nk} + \ln \left(1 + \frac{x}{nk} \right) \right].$

By using the logarithmic expansion (see for example [5])

$$\ln\left(1+\frac{x}{nk}\right) = \sum_{i=1}^{\infty} \frac{1}{i} \left(\frac{x}{x+nk}\right)^{i},$$

we obtain

$$f'(x) = \frac{1}{x^2} \sum_{n=1}^{\infty} \sum_{i=2}^{\infty} \frac{1}{i} \left(\frac{x}{x+nk}\right)^i > 0.$$

Hence f is an increasing function.

We want to note that since Γ_k is log-convex function, this result can be proved by using Definition 1, letting $f(x) = \Gamma_k(x)$, a = x, b = 0, x = k,

$$\phi(x,k,0) = \left[\frac{\Gamma_k(x+k)}{\Gamma_k(k)}\right]^{\frac{1}{x}}.$$

Then the proof completes by using Proposition 2.

Now if we take second derivative of f, we get

$$f''(x) = \frac{1}{x} \psi_k'(x+k) - \frac{2}{x^2} \psi_k(x+k) + \frac{2}{x^3} \ln \Gamma_k(x+k)$$
$$= \frac{1}{x} \sum_{n=1}^{\infty} \frac{1}{(x+nk)^2} - \frac{2}{x^2} \left[\frac{\ln k}{k} - \frac{\gamma}{k} - \sum_{n=1}^{\infty} \left[\frac{1}{x+nk} - \frac{1}{nk} \right] \right] +$$
$$+ \frac{2}{x^3} \sum_{n=1}^{\infty} \left[\left(\frac{x}{x+nk} \right)^2 + \frac{x}{x+nk} - \ln \left(1 + \frac{x}{nk} \right) \right]$$
$$= -\frac{2}{x^3} \sum_{n=1}^{\infty} \sum_{i=3}^{\infty} \frac{1}{i} \left(1 + \frac{x}{nk} \right)^i < 0.$$

Hence by using the equations (14), (15) and (16), we obtain the result, as desired.

In the following theorem, we will give another monotonicity result on k-gamma function.

Theorem 12. The function
$$\frac{\Gamma_k(x+k)^{\frac{k}{x}}}{x}$$
 is decreasing on $(0, \infty)$.

Proof. Let us define the function $f(x) = \frac{\Gamma_k (x+k)^{\frac{k}{x}}}{x}$. Then,

$$\ln f(x) = \frac{k}{x} \ln \Gamma_k (x+k) - \ln x.$$

By differentiating both sides and then multiplying by x^2 , we get

$$x^{2} \frac{f'(x)}{f(x)} = -k \ln \Gamma_{k} (x+k) + xk \psi_{k} (x+k) - x.$$

Now let us denote $h(x) = x^2 \frac{f'(x)}{f(x)}$. Then,

$$\frac{1}{x}h'(x) = k\psi'_{k}(x+k) - \frac{1}{x} = k\sum_{i=0}^{\infty} \frac{1}{(x+ik)^{2}} - \frac{1}{x}$$
$$\leq k\int_{0}^{\infty} \frac{dt}{(x+tk)^{2}} - \frac{1}{x} = k\frac{1}{kx} - \frac{1}{x} = 0.$$

Since k is positive number, the function h is decreasing. Then for x > 0, we have $h(x) \le h(0) = 0$. So we obtain $f'(x) \le 0$ as desired.

Theorem 13. The following inequalities

$$\left[\Gamma_{k}\left(k+\frac{\sigma}{n}\right)\right]^{n} \leq \prod_{i=1}^{n} \Gamma_{k}\left(k+x_{i}\right) \leq \Gamma_{k}\left(k+\sigma\right)$$
(17)

and

$$\left[\Gamma_{k}\left(k+\sigma\right)\right]^{\frac{k}{\sigma}} \leq \sum_{i=1}^{n} \left[\Gamma_{k}\left(k+x_{i}\right)\right]^{\frac{k}{x_{i}}}$$
(18)

are valid for $x_i > 0, \, 1 \leq i \leq n,$ where $\sigma = x_1 + x_2 + \ldots x_n$.

Proof. Since $\Gamma_k(x)$ is a logarithmically convex function, we have

$$\begin{split} \Gamma_k \left(k + \frac{\sigma}{n} \right) &= \Gamma_k \left(\frac{k}{n} + \frac{x_1}{n} + \frac{k}{n} + \frac{x_2}{n} + \dots + \frac{k}{n} + \frac{x_n}{n} \right) \\ &\leq \Gamma_k \left(k + x_1 \right)^{1/n} \dots \Gamma_k \left(k + x_n \right)^{1/n} \\ &= \prod_{i=1}^n \Gamma_k \left(k + x_i \right)^{1/n} . \end{split}$$

Hence we obtain the left side of the inequality (17). For the right side of the first inequality, we consider the fact that for x > -k, the function $\Gamma_k (x+k)^{1/x}$ is increasing by Theorem 11. So for x > -k, the function

$$\ln \Gamma_k \left(x+k \right)^{1/x} = \frac{\ln \Gamma_k \left(x+k \right)}{x}$$

is also an increasing function. Let us take $\ln \Gamma_k(x+k)$ instead of g(x) in lemma 4. We get

$$\sum_{i=1}^{n}\log\Gamma_{k}(x_{i}+k)\leq\log\Gamma_{k}(\sigma),$$

since $\frac{g(x)}{x}$ is increasing for x > -k. Then we can write

$$\prod_{i=1}^{n} \Gamma_{k} (x_{i} + k) \leq \Gamma_{k} (\sigma + k).$$

In Theorem 12, we see that the function $f(x) = \frac{\Gamma_k (x+k)^{\frac{k}{x}}}{x}$ is decreasing for x > 0. By Lemma 4, we obtain the inequality (18).

Corollary 14. For non-negative real numbers x, k and positive integer n, the inequalities

$$n^{-nx} \le \frac{\Gamma_k \left(x+k\right)^n}{\Gamma_k \left(nx+k\right)} \le 1$$
(19)

and

$$\sqrt[n]{\frac{k}{n^k}} \le \Gamma_k \left(k + \frac{k}{n} \right) \le k^{\frac{1}{n}}$$
(20)

 σ

hold true.

Proof. From the inequalities (17) and (18), we have

$$\prod_{i=1}^{n} \Gamma_{k}\left(k+x_{i}\right) \leq \Gamma_{k}\left(k+\sigma\right) \leq \left[\sum_{i=1}^{n} \left[\Gamma_{k}\left(k+x_{i}\right)\right]^{\frac{k}{x_{i}}}\right]^{\overline{k}}$$

for $x_i \ge 0$ and $1 \le i \le n$. If we take $x_1 = x_2 = \cdots x_n = x > 0$, the last double-sided inequalities become

$$[\Gamma_k(x+k)]^n \leq \Gamma_k(k+nx) \leq n^{nx}[\Gamma_k(x+k)]^n.$$

Hence we obtain the inequality (19). Letting $x = \frac{k}{n}$ in the inequality (19), we get the equation (20).

At last, we want to note that all the results in this work tend to the ones in [2] as $k \to 1$.

3. CONCLUSIONS

In this study we give some inequalities for the ratios of k-analogue of gamma function, which generalize the result obtained by Gautschi. Then we find some monotonicity results for k-gamma function. By the aid of these results, we also get some inequalities involving the k-gamma function. The researchers interested in this field can generalize and find different results by using these monotonicity properties and inequalities.

ACKNOWLEDGEMENT

The authors are extremely grateful to the anonymous referees for his/her keen reading and constructive comments for the improvement of the paper.

REFERENCES

- [1] Gautschi W. Some elementary inequalities relating to the gamma and incomplete gamma function. Journal of Mathematics and Physics 1959; 38-1: 77-81.
- [2] Neuman E. Some inequalities for the gamma function. Appl. Math. Comput. 2011; 218-8: 4349-4352.
- [3] Diaz R, Pariguan E. On hypergeometric functions and Pachhammer *k*-symbol. Divulg. Mat. 2007; 15-2: 179-192.
- [4] Krasniqi V. Inequalities and monotonicity for the ration of k-gamma function. Scientia Magna. 2010; 6-1: 40-45.
- [5] Gradshteyn, I. S., Ryzhik, I. M. Table of integrals, series, and products. Academic Press, 2014.