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A note on the endomorphism ring of finitely
presented modules of the projective dimension ≤ 1
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Abstract

In this paper, we study the behavior of endomorphism rings of a cyclic,
finitely presented module of projective dimension ≤ 1. This class of
modules extends to arbitrary rings the class of couniformly presented
modules over local rings.
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1. Introduction
Throughout this paper, all rings will be associative with identity and modules will be

unital right modules. For any ring R, the Jacobson radical of R will be denoted by J(R)
Recall that MR is couniform if it has dual Goldie dimension one (if and only if it

is non-zero and the sum of any two proper submodules of MR is a proper submodule
of MR). It is well know that a projective right module PR is couniform if and only if
End(PR) is a local ring, if and only if there exists an idempotent e ∈ R with PR ∼= eR
and eRe a local ring, if and only if is a finitely generated module with a unique maximal
submodule.

In [7], Facchini and Girardi introduced and studied the notion of couniformly presented
modules. A module MR is called couniformly presented if it is non-zero and there exists
an exact sequence

0→ CR
ι−→ PR →MR → 0
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with PR projective and both CR and PR couniform modules. In this case, every endo-
morphism f of MR lifts to an endomorphism f0 of its projective cover PR, and we will
denote by f1 the restriction to CR of f0. Hence we have a commutative diagram

0 → CR
ι−→ PR → MR → 0

f1 ↓ ↓ f0 ↓ f
0 → CR

ι−→ PR → MR → 0.

In [7, Theorem 2.5], Facchini and Girardi proved that:

• Let 0 → CR → PR → MR → 0 be a couniform presentation of a couniformly
presented module MR. Set K := { f ∈ End(MR) | f is not surjective } and I := { f ∈
End(MR) | f1 : CR → CR is not surjective }. Then K and I are completely prime two-
sided ideals of End(MR), and the union K ∪ I is the set of all non-invertible elements of
End(MR). Moreover, one of the following two conditions holds:
(a) Either End(MR) is a local ring, or
(b) K and I are the two maximal right, maximal left ideals of End(MR).

If MR and M ′
R are two couniformly presented modules with couniform presentations

0 → CR → PR → MR → 0 and 0 → C′
R → P ′

R → M ′
R → 0, we say that MR and M ′

R

have the same lower part, and we write [MR]` = [M ′
R]`, if there are two homomorphisms

f0 : PR → P ′
R and f ′

0 : P
′
R → PR such that f0(CR) = C′

R and f ′
0(C

′
R) = CR.

Recall that a ring R is semilocal if R/J(R) is semisimple artinian, that is, isomorphic
to a finite direct product of rings Mni(Di) of ni × ni matrices over division rings Di. A
ring R is homogeneous semilocal if R/J(R) is simple artinian, that is, isomorphic to the
ring Mn(D) of all n × n matrices for some positive integer n and some division ring D
[2, 4]. Examples of such rings include all local rings and all simple Artinian rings. If R is a
homogeneous semilocal ring, then so are the rings eRe and Mn(R), where e is a nonzero
idempotent element of R and Mn(R) is the matrix ring over R. Also, homogeneous
semilocal rings appear in a natural way when one localizes a right Noetherian ring with
respect to a right localizable prime ideal.

In [4], Corisello and Facchini showed that:

• a homogeneous semilocal ring has a unique maximal proper two-sided ideal and
a unique simple module up to isomorphism. Similarly, as in the case of local rings, a
homogeneous semilocal ring has only one indecomposable projective module PR up to
isomorphism, and all projective modules are direct sums of copies of this PR.
• for a module M over any ring R, the Krull-Schmidt theorem holds for M provided
EndR(M) is homogeneous semilocal—that is, the direct sum decomposition of M into
indecomposable summands is unique up to isomorphism.

In [2], Barioli-Facchini-Raggi proved that:

• The later result fails to extend to modules MR with finite direct sum decom-
positions whose indecomposable summands have homogeneous semilocal endomorphism
rings,
• If a module M over a ring R has two decompositions M = M1 ⊕ · · · ⊕Mt =

N1 ⊕ · · · ⊕Ns where all the summands are indecomposable with homogeneous semilocal
endomorphism rings, then these two decompositions are isomorphic.



2. The endomorphism ring
The following results describe the endomorphism ring of a cyclic, finitely presented

module of projective dimension ≤ 1 over a local ring. Throughout this paper, we will
assume that MR 6= 0.

2.1. Theorem. Let R be a local ring and let MR := RR/I be a cyclic, finitely presented
module of projective dimension ≤ 1. Suppose Ext1R(MR, RR) = 0.

Assume 0 6= I 6= R and let E be the idealizer of the right ideal I of R, that is, the set
of all r ∈ R with rI ⊆ I, so that End(MR) ∼= E/I. Set L := { r ∈ R | rI ⊆ IJ(R) } and
K := E ∩ J(R). Let ψ : E → EndR(I/IJ(R)) be the ring morphism defined by

ψ(e)(x+ IJ(R)) = ex+ IJ(R),

for every e ∈ E and x ∈ I. Let n be the dimension of the right vector space I/IJ(R)
over the division ring R/J(R). Then:

(1) L and K are prime two-sided ideals of E containing I and K is a completely
prime ideal of E;

(2) For every e ∈ E, the element e + I of E/I is invertible in E/I if and only if
e+ J(R) is invertible in R/J(R) and ψ(e) is invertible in EndR(I/IJ(R)).

(3) The quotient ring E/L is isomorphic to the ring Mn(R/J(R)) of all n× n ma-
trices over the division ring R/J(R).

(4) Exactly one of the following two conditions holds:
(a) Either K ⊆ L, in which case E/I is a homogeneous semilocal ring with
Jacobson radical L/I, or
(b) L and K are not comparable.

Proof. (1) and (3). Notice that L is contained in E and is the kernel of ψ, so that L is
a two-sided ideal of E. Trivially, I is contained in L. Let us prove that ψ is onto. Let
f : I/IJ(R) → I/IJ(R) be a morphism. Since MR := RR/I is of projective dimension
≤ 1, the ideal IR is projective, so that f lifts to a morphism f ′ : IR → IR. Apply the
functor Hom(−, RR) to the exact sequence 0 → IR → RR → MR → 0, getting a short
exact sequence

0→ Hom(MR, RR)→ Hom(RR, RR)→ Hom(IR, RR)→ 0

because Ext1R(MR, RR) = 0. Hence f ′ can be extended to a morphism f ′′ : RR → RR,
which is necessarily left multiplication by an element r ∈ R. Since f ′′ restricts to the
endomorphism f ′ of IR, we get that r ∈ E, and ψ(e) = f . This proves that ψ is an onto
ring morphism, so that

E/L = E/ kerψ ∼= EndR(I/IJ(R)) ∼=Mn(R/J(R)).

This proves (3).
As EndR(I/IJ(R)) ∼=Mn(R/J(R)) is a simple ring, it follows that L is a prime ideal

and a maximal two-sided ideal. Similarly, K is the kernel of the composite morphism
ϕ : E → R/J(R) of the embedding E → R and the canonical projection R → R/J(R).
Since R/J(R) is a division ring, we get that K is a completely prime, two-sided ideal of
E containing I. This concludes the proof of (1).



(2). (:⇒) Since ϕ(I) = 0 and ψ(I) = 0, the morphisms ϕ and ψ induce morphisms
ϕ̃ : E/I → R/J(R) and ψ̃ : E/I → End(I/IJ(R)), respectively. Hence e + I invertible
implies ϕ(e) = e+ J(R) invertible in R/J(R) and ψ(e) is invertible in EndR(I/IJ(R)).
(⇐:)Assume that e ∈ E and that ϕ(e) and ψ(e) are invertible inR/J(R) and EndR(I/IJ(R)),
respectively. Then we have a commutative diagram with exact rows

0 // I //

e

��

RR
π //

e

��

RR/I

e

��

// 0

0 // I // RR
π // RR/I // 0.

Now ϕ(e) = e + J(R) invertible implies that e ∈ R \ J(R), and so e is invertible in
R. Hence the middle vertical arrow is an isomorphism. Since ψ(e) is invertible, it is an
automorphism of I/IJ(R), and so e(I/IJ(R)) = I/IJ(R), that is, eI + IJ(R) = I. By
Nakayama’s Lemma, eI = I. Hence the left vertical arrow is an epimorphism. By the
Snake Lemma, the right vertical arrow is a monomorphism, hence an isomorphism. That
is, e+ I is invertible in E/I.
(4) We have the three cases (a) L ⊂ K, (b) K ⊆ L, and (c) L 6⊆ K and K 6⊆ L.

Assume L ⊂ K. In this case, L ⊂ K ⊂ E implies that 0 ⊂ K/L ⊂ E/L, so that
E/L ∼= Mn(R/J(R)) has a proper non-zero two-sided ideal. This is impossible, because
Mn(R/J) is a simple ring. Hence this case cannot occur.

Assume K ⊆ L. From (2), it follows that an element e+ I of E/I is invertible in E/I
if and only if e+ J(R) is invertible in R/J(R) and e+ L is invertible in E/L. Hence, in
order to prove (4) in this case K ⊆ L, it suffices to prove that J(E/I) = L/I.
(⊆) If e + I ∈ J(E/I), then 1 − xey + I is invertible in E/I for every x, y ∈ E. Thus
1 − xey + L is invertible in E/L for all x, y ∈ E, so that e + L ∈ J(E/L).But E/L ∼=
Mn(R/J(R)) has Jacobson radical 0 so that e ∈ L.
(⊇) Take l + I ∈ L/I with l ∈ L. Then 1− xly + L = 1 + L in E/L for every x, y ∈ E.
Hence 1 − xly + L is invertible in E/L. In particular, 1 − xly /∈ L. Thus 1 − xly /∈ K,
so that 1 − xly /∈ J(R). As R/J(R) is a division ring, it follows that 1 − xly + J(R) is
invertible in R/J(R). Thus 1− xly + I is invertible in E/I, and l ∈ J(E/I). �

It is known that a finitely presented module over a semilocal ring always has a semilocal
endomorphism ring. We have the following natural question.

2.2. Question. Characterize J(E/I). This was done in [1] for cyclically presented
modules.

As far as Question 2.2 is concerned, notice that, in the proof of Theorem 2.1(2), we
have seen that the mapping

ϕ̃× ψ̃ : E/J → R/J(R)× End(I/IJ(R))

is a local morphism, so that its kernel K/I ∩ L/I is contained in J(E/I). In particular,
when K ⊆ L, we have that L/I = J(E/I) as we have seen in Theorem 2.1(4)(a). We are
not able to describe J(E/I) when K and K are not comparable.

2.3. Remark. Let R be a local right self-injective ring. Let MR be a cyclic and finitely
presented module of projective dimension ≤ 1. Since RR is injective, we have that
Ext1R(MR, RR) = 0. Thus, Theorem 2.1 can be applied.

Let A and B be two modules. We say that:
• A and B have the same monogeny class, and write [A]m = [B]m, if there exist a

monomorphism A→ B and a monomorphism B → A [5];



• A and B have the same epigeny class, and write [A]e = [B]e, if there exist an
epimorphism A→ B and an epimorphism B → A;

It is clear that a module A has the same monogeny (epigeny) class as the zero module
if and only if A = 0.

• Two cyclically presented modules R/aR and R/bR over a local ring R are said to
have the same lower part , denoted [R/aR]l = [R/bR]l, if there exist r, s ∈ R such that
raR = bR and sbR = aR [1].

• If MR and M ′
R are two couniformly presented modules with couniform presenta-

tions
0→ CR → PR →MR → 0

and
0→ C′

R → P ′
R →M ′

R → 0,

we say that MR and M ′
R have the same lower part, and we write [MR]` = [M ′

R]`, if there
are two homomorphisms f0 : PR → P ′

R and f ′
0 : P

′
R → PR such that f0(CR) = C′

R and
f ′
0(C

′
R) = CR [7].

2.4. Theorem. Let R be a semiperfect ring and let RR/L be a cyclic uniform right
R-module with L 6= 0. Let E be the idealizer of the right ideal L of R, that is, the set of
all r ∈ R with rL ⊆ L, so that

End(RR/L) ∼= E/L.

Similarly, let E′ be the idealizer of the right ideal L+ J(R) of R, so that

End(RR/(L+ J(R))) ∼= E′/(L+ J(R)).

Set I := { e ∈ E | left multiplication by e+ I is a non-injective endomorphism of RR/L }
and K := E ∩ (L+ J(R)). Then:

(1) I and K are two two-sided ideals of E containing L, and I is completely prime
in E.

(2) For every e ∈ E, the element e + L of E/L is invertible in E/L if and only if
e+ L+ J(R) is invertible in E′/L+ J(R) and e /∈ I.

(3) Moreover:
(a) If I ⊆ K, then every epimorphism RR/L → RR/L is an automorphism of
RR/L,
(b) K 6⊆ I if and only if [RR/L]m = [L+ J(R)/L]m.

Proof. (1) We know that End(RR/L) ∼= E/L. Every endomorphism e + L of RR/L ex-
tends to an endomorphism e1 of the injective envelope E(RR/L). Define a ring morphism

ϕ : E → End(E(RR/L))/J(End(E(RR/L)))

by ϕ(e) = e1 + J(End(E(RR/L))) for every e ∈ E. Since RR/L is uniform, the injective
envelope E(RR/L) is indecomposable, the endomorphism ring End(E(RR/L)) is a local
ring, and the Jacobson radical J(End(E(RR/L))) consists of all non-injective endomor-
phisms of E(RR/L). It follows that I, which is equal to the kernel of the ring morphism
ϕ, whose range is the division ring

End(E(RR/L))/J(End(E(RR/L))),

must be a completely prime two-sided ideal of E. The remaining part of statement (1)
is easily checked.
(2) We have already seen that there is a ring morphism

ϕ : E → End(E(RR/L))/J(End(E(RR/L)))



whose kernel is I. Hence if e ∈ E and e + L is invertible in E/L, then ϕ(e) must be
invertible in the division ring End(E(RR/L))/J(End(E(RR/L))). Thus ϕ(e) 6= 0, that
is, e /∈ kerϕ = I. Similarly, we can consider the ring morphism

ψ : E → End(RR/L+ J(R))

defined by ψ(e)(r + L + J(R)) = er + L + J(R) for every e ∈ E and every r ∈ R. Its
kernel is K, which contains L. Hence e + L invertible in E/L implies ψ(e) invertible in
End(RR/L+ J(R)). But

End(RR/(L+ J(R))) ∼= E′/(L+ J(R)),

so that e+ L+ J(R) must be invertible in E′/L+ J(R).
Conversely, assume e ∈ E, e+L+J(R) invertible in E′/L+J(R) and e /∈ I. We want

to show that e+ L is invertible in E/L. Since E/L ∼= End(RR/L), this is equivalent to
showing that left multiplication µe : RR/L → RR/L by e is an automorphism of RR/L.
Now e /∈ I is equivalent to µe is injective by definition of I. In order to show that µe is
onto as well, it suffices to prove that µe induces an onto endomorphism

(RR/L)/(RR/L)J(R)→ (RR/L)/(RR/L)J(R)

by Nakayama’s Lemma. But (RR/L)J(R) = L+ J(R)/L, so that

(RR/L)/(RR/L)J(R) ∼= RR/L+ J(R).

Hence e + L + J(R) invertible in E′/L + J(R) ∼= End(RR/(L + J(R))) means that the
endomorphism ψ(e) of RR/L+ J(R) induced by µe is onto, as desired.
(3) (a) Assume I ⊆ K. Let e+L : RR/L→ RR/L be an epimorphism with e ∈ E. Then
the induced morphism ψ(e) : RR/L + J(R) → RR/L + J(R) is also an epimorphism, so
that it is an automorphism because RR/L+J(R) is a semisimple module of finite Goldie
dimension. In the isomorphism

End(RR/(L+ J(R))) ∼= E′/(L+ J(R)),

we obtain that e+L+ J(R) is invertible in the ring E′/(L+ J(R)). Thus e /∈ K. Hence
e /∈ I. It follows from (2) that e+L is invertible, that is, it is an automorphism of RR/L.
(b) Assume K 6⊆ I. Then there is an element f ∈ K, f /∈ I. Thus f ∈ E induces an
endomorphism f of RR/L. Now f /∈ I means that f is injective, and f ∈ K means that
the image of f is contained in L+J(R)/L. Hence [RR/L]m = [L+J(R)/L]m. Conversely,
if [RR/L]m = [L + J(R)/L]m, then there is a monomorphism f : RR/L → L + J(R)/L.
If we compose it with the inclusion L + J(R)/L → RR/L we get an endomorphism of
RR/L which is in K but not in I. Hence K 6⊆ I. �

We finish this study with the following result.

2.5. Theorem. Let R be a semiperfect ring, let R/L,R/L′ be two cyclic uniform modules
with L 6= 0 and L′ 6= 0 proper right ideals of R. Assume that either

(1) every monomorphism RR/L→ RR/L is an automorphism of RR/L, or
(2) every epimorphism RR/L→ RR/L is an automorphism of RR/L, or
(3) [RR/L]m = [L+ J(R)/L]m.

Then the followings are equivalent.
(a) RR/L ∼= RR/L

′

(b) [RR/L]m = [RR/L
′]m and [RR/L]e = [RR/L

′]e.

Proof. Assume [RR/L]m = [RR/L
′]m and [RR/L]e = [RR/L

′]e. Then there are monomor-
phisms α : RR/L → RR/L

′ and β : RR/L
′ → RR/L and epimorphisms α : RR/L →

RR/L
′ and β : RR/L′ → RR/L. Then βα is a monomorphism RR/L→ RR/L and β′α′

is an epimorphism RR/L→ RR/L. If hypothesis (a) holds, then βα is an automorphism



of RR/L that factors through RR/L′, so that RR/L is isomorphic to a direct summand of
RR/L

′. But RR/L 6= 0 and RR/L′ is uniform, so that RR/L ∼= RR/L
′. This proves our

theorem under hypothesis (a). Dually one proves that the theorem holds when hypothesis
(b) holds.

Assume now that hypothesis (c) holds, i.e., [RR/L]m = [L+ J(R)/L]m. Equivalently,
there exists a monomorphism γ : RR/L→ RR/L whose image is contained in L+J(R)/L.
Now if either α or α′ are isomorphisms, then the existence of α or α′ shows that RR/L ∼=
RR/L

′. This allows us to conclude. Thus we can assume that α is not an epimorphism
and α′ is not a monomorphism. Then α′ + αγ : RR/L → RR/L

′ is an isomorphism,
because:

(1) It is injective, because it is the sum of the injective morphism αγ : RR/L→ RR/L
′

and the non-injective morphism α′ : RR/L→ RR/L
′, and RR/L is uniform.

(2) The ideal J(R) is superfluous in RR by Nakayama’s Lemma. Considering the
canonical projection RR → RR/L, it follows that L + J(R)/L is superfluous in RR/L.
Applying the morphism α : R/L → R/L′, we get that the image of αγ is contained in
α(L+ J(R)/L), hence is a superfluous submodule of R/L′. Thus the sum of αγ and the
surjective morphism α′ : R/L→ R/L′ is a surjective morphism α′+αγ : RR/L→ RR/L

′.
Thus α+ α′γ is an isomorphism of RR/L onto RR/L′. �

2.6. Remark. By Theorem 2.4, the only case in which we cannot apply Theorem 2.5 is
when K is properly contained in I. Namely, if K 6⊆ I, then [RR/L]m = [L + J(R)/L]m
and we can apply Theorem 2.5(a); if K ⊆ I, then either K is properly contained in I,
which is the case still unknown, or K = I, but in the latter case every epimorphism
RR/L→ RR/L is an automorphism of RR/L by Theorem 2.4(1).
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