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A note on the endomorphism ring of finitely
presented modules of the projective dimension < 1
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Abstract

In this paper, we study the behavior of endomorphism rings of a cyclic,
finitely presented module of projective dimension < 1. This class of
modules extends to arbitrary rings the class of couniformly presented
modules over local rings.
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1. Introduction

Throughout this paper, all rings will be associative with identity and modules will be
unital right modules. For any ring R, the Jacobson radical of R will be denoted by J(R)

Recall that Mg is couniform if it has dual Goldie dimension one (if and only if it
is non-zero and the sum of any two proper submodules of Mg is a proper submodule
of Mg). It is well know that a projective right module Pg is couniform if and only if
End(Pr) is a local ring, if and only if there exists an idempotent e € R with Pr = eR
and eRe a local ring, if and only if is a finitely generated module with a unique maximal
submodule.

In [7], Facchini and Girardi introduced and studied the notion of couniformly presented
modules. A module Mg is called couniformly presented if it is non-zero and there exists
an exact sequence
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with Pr projective and both Cr and Pr couniform modules. In this case, every endo-
morphism f of Mg lifts to an endomorphism fy of its projective cover Pgr, and we will
denote by f1 the restriction to Cr of fo. Hence we have a commutative diagram

0 — CR 4 PR — MR — 0
fd 1 fo lr

L

0 — CR — PR — MR — 0.
In [7, Theorem 2.5], Facchini and Girardi proved that:

e Let 0 > Cr — Pr — Mgr — 0 be a couniform presentation of a couniformly
presented module Mg. Set K := { f € End(Mg) | f is not surjective} and I := { f €
End(MRg) | fi: Cr — Cr is not surjective }. Then K and I are completely prime two-
sided ideals of End(Mrg), and the union K U I is the set of all non-invertible elements of
End(MRg). Moreover, one of the following two conditions holds:

(a) Either End(Mg) is a local ring, or
(b) K and I are the two maximal right, maximal left ideals of End(Mg).

If Mg and M}y are two couniformly presented modules with couniform presentations
0—Cgr— Pgr— Mr —0and 0 - Cr — Pr — Mp — 0, we say that Mg and My
have the same lower part, and we write [Mg]e = [My]e, if there are two homomorphisms
fo: Pr — Pg and fi: Pp — Pg such that fo(Cr) = Cx and fo(CR) = Ck.

Recall that a ring R is semilocal if R/J(R) is semisimple artinian, that is, isomorphic
to a finite direct product of rings M,,(D;) of n; X n; matrices over division rings D;. A
ring R is homogeneous semilocal if R/J(R) is simple artinian, that is, isomorphic to the
ring M, (D) of all n x n matrices for some positive integer n and some division ring D
[2, 4]. Examples of such rings include all local rings and all simple Artinian rings. If R is a
homogeneous semilocal ring, then so are the rings eRe and M, (R), where e is a nonzero
idempotent element of R and M,(R) is the matrix ring over R. Also, homogeneous
semilocal rings appear in a natural way when one localizes a right Noetherian ring with
respect to a right localizable prime ideal.

In [4], Corisello and Facchini showed that:

e a homogeneous semilocal ring has a unique maximal proper two-sided ideal and
a unique simple module up to isomorphism. Similarly, as in the case of local rings, a
homogeneous semilocal ring has only one indecomposable projective module Pr up to
isomorphism, and all projective modules are direct sums of copies of this Pg.
e for a module M over any ring R, the Krull-Schmidt theorem holds for M provided
Endr(M) is homogeneous semilocal—that is, the direct sum decomposition of M into
indecomposable summands is unique up to isomorphism.

In [2], Barioli-Facchini-Raggi proved that:

e The later result fails to extend to modules Mgz with finite direct sum decom-
positions whose indecomposable summands have homogeneous semilocal endomorphism
rings,

e If a module M over a ring R has two decompositions M = My & --- d M, =
N1 ®--- @ Ns where all the summands are indecomposable with homogeneous semilocal
endomorphism rings, then these two decompositions are isomorphic.



2. The endomorphism ring

The following results describe the endomorphism ring of a cyclic, finitely presented
module of projective dimension < 1 over a local ring. Throughout this paper, we will
assume that Mg # 0.

2.1. Theorem. Let R be a local ring and let Mg := Rr/I be a cyclic, finitely presented
module of projective dimension < 1. Suppose Exth(Mg, Rr) = 0.

Assume 0 # I # R and let E be the idealizer of the right ideal I of R, that is, the set
of allr € R with rI C I, so that End(Mg) 2 E/I. Set L:={r e R|rI CIJ(R)} and
K :=ENJ(R). Let ¢: E — Endr(I/IJ(R)) be the ring morphism defined by

Y(e)(x+ IJ(R)) =ex + IJ(R),

for every e € E and © € I. Let n be the dimension of the right vector space I/IJ(R)
over the division ring R/J(R). Then:

(1) L and K are prime two-sided ideals of E containing I and K is a completely
prime ideal of E;

(2) For every e € E, the element e + I of E/I is invertible in E/I if and only if
e+ J(R) is invertible in R/J(R) and v(e) is invertible in Endr(I/1J(R)).

(3) The quotient ring E/L 1is isomorphic to the ring M,(R/J(R)) of all n X n ma-
trices over the division ring R/J(R).

(4) Ezactly one of the following two conditions holds:
(a) Fither K C L, in which case E/I is a homogeneous semilocal ring with
Jacobson radical L)1, or
(b) L and K are not comparable.

Proof. (1) and (3). Notice that L is contained in E and is the kernel of 1, so that L is
a two-sided ideal of E. Trivially, I is contained in L. Let us prove that v is onto. Let
f:I/IJ(R) — I/IJ(R) be a morphism. Since Mg := Rg/I is of projective dimension
< 1, the ideal I is projective, so that f lifts to a morphism f’: Ir — Igr. Apply the
functor Hom(—, Rr) to the exact sequence 0 — Ir — Rr — Mg — 0, getting a short
exact sequence

0— HOTI’L(MR,RR) — Hom(RR,RR) — Hom(IR,RR) —0

because Exth (Mg, Rr) = 0. Hence f’ can be extended to a morphism f”: Rr — Rg,
which is necessarily left multiplication by an element » € R. Since f” restricts to the
endomorphism f’ of Ir, we get that r € E, and ¢(e) = f. This proves that v is an onto
ring morphism, so that

E/L = E/kert = Endr(I/IJ(R)) = M,(R/J(R)).
This proves (3).

As Endr(I/IJ(R)) 2 M,(R/J(R)) is a simple ring, it follows that L is a prime ideal
and a maximal two-sided ideal. Similarly, K is the kernel of the composite morphism
¢: E — R/J(R) of the embedding E — R and the canonical projection R — R/J(R).
Since R/J(R) is a division ring, we get that K is a completely prime, two-sided ideal of
E containing I. This concludes the proof of (1).



(2). (:=) Since p(I) = 0 and ¥ (I) = 0, the morphisms ¢ and ¢ induce morphisms

@: E/I — R/J(R) and ¢: E/I — End(I/IJ(R)), respectively. Hence e + I invertible
implies p(e) = e + J(R) invertible in R/J(R) and v (e) is invertible in Endg(I/IJ(R)).
(«<=:) Assume that e € E and that ¢(e) and ¢ (e) are invertible in R/J(R) and Endr(I/1J(R)),
respectively. Then we have a commutative diagram with exact rows

0 I Rr —"> Rr/I——>0
0 I RR il RR/IHO.

Now ¢(e) = e + J(R) invertible implies that e € R\ J(R), and so e is invertible in
R. Hence the middle vertical arrow is an isomorphism. Since 1 (e) is invertible, it is an
automorphism of I/IJ(R), and so e(I/IJ(R)) = I/IJ(R), that is, el + IJ(R) = I. By
Nakayama’s Lemma, el = I. Hence the left vertical arrow is an epimorphism. By the
Snake Lemma, the right vertical arrow is a monomorphism, hence an isomorphism. That
is, e + I is invertible in E/I.

(4) We have the three cases (a) L C K, (b) K C L, and (c) L £ K and K Z L.

Assume L C K. In this case, L C K C F implies that 0 C K/L C E/L, so that
E/L = M,(R/J(R)) has a proper non-zero two-sided ideal. This is impossible, because
M, (R/J) is a simple ring. Hence this case cannot occur.

Assume K C L. From (2), it follows that an element e + I of E/I is invertible in E/I
if and only if e + J(R) is invertible in R/J(R) and e + L is invertible in E/L. Hence, in
order to prove (4) in this case K C L, it suffices to prove that J(E/I) = L/I.
(Q)Ife+1I € J(E/I), then 1 — zey + I is invertible in E/I for every z,y € E. Thus
1 — zey + L is invertible in E/L for all z,y € E, so that e + L € J(E/L).But E/L =
M, (R/J(R)) has Jacobson radical 0 so that e € L.

(D) Take I+ 1 € L/TI withl € L. Then 1 —zly+ L =1+ L in E/L for every z,y € E.
Hence 1 — zly + L is invertible in F/L. In particular, 1 — zly ¢ L. Thus 1 — zly ¢ K,
so that 1 — zly ¢ J(R). As R/J(R) is a division ring, it follows that 1 — zly + J(R) is
invertible in R/J(R). Thus 1 — zly + I is invertible in E/I, and l € J(E/I). O

It is known that a finitely presented module over a semilocal ring always has a semilocal
endomorphism ring. We have the following natural question.

2.2. Question. Characterize J(E/I). This was done in [1] for cyclically presented
modules.

As far as Question 2.2 is concerned, notice that, in the proof of Theorem 2.1(2), we
have seen that the mapping

@ x1: E/J— R/J(R) x End(I/IJ(R))

is a local morphism, so that its kernel K/I N L/I is contained in J(E/I). In particular,
when K C L, we have that L/I = J(E/I) as we have seen in Theorem 2.1(4)(a). We are
not able to describe J(E/I) when K and K are not comparable.

2.3. Remark. Let R be a local right self-injective ring. Let Mg be a cyclic and finitely
presented module of projective dimension < 1. Since Rpr is injective, we have that
Extg (Mg, Rr) = 0. Thus, Theorem 2.1 can be applied.

Let A and B be two modules. We say that:
e A and B have the same monogeny class, and write [A],, = [B]m, if there exist a
monomorphism A — B and a monomorphism B — A [5];



e A and B have the same epigeny class, and write [A]e = [Ble, if there exist an
epimorphism A — B and an epimorphism B — A;

It is clear that a module A has the same monogeny (epigeny) class as the zero module
if and only if A =0.

e Two cyclically presented modules R/aR and R/bR over a local ring R are said to
have the same lower part, denoted [R/aR]; = [R/bR];, if there exist 7, s € R such that
raR = bR and sbR = aR [1].

e If Mg and My are two couniformly presented modules with couniform presenta-

tions

0—>Cr—Pr— Mr—0
and

0— Cr — Pp — Mg — 0,
we say that Mg and M}y have the same lower part, and we write [Mg]e = [Mg]e, if there
are two homomorphisms fo: Pr — Pp and fj: P — Pgr such that fo(Cr) = Cx and
fo(CR) = Cr [7].

2.4. Theorem. Let R be a semiperfect ring and let Rr/L be a cyclic uniform right
R-module with L # 0. Let E be the idealizer of the right ideal L of R, that is, the set of
allr € R with rL C L, so that

End(Rr/L) = E/L.
Similarly, let E' be the idealizer of the right ideal L + J(R) of R, so that
End(Rr/(L + J(R))) = E'/(L + J(R)).

Set I := { e € E| left multiplication by e + I is a non-injective endomorphism of Rr/L }
and K := EN(L+ J(R)). Then:
(1) I and K are two two-sided ideals of E containing L, and I is completely prime
n B.
(2) For every e € E, the element e + L of E/L 1is invertible in E/L if and only if
e+ L+ J(R) is invertible in E'/L + J(R) and e ¢ I.
(3) Moreover:
(a) If I C K, then every epimorphism Rr/L — Rgr/L is an automorphism of
Rr/L,
(b) K I if and only if [Rr/L]m = [L + J(R)/L]m.

Proof. (1) We know that End(Rr/L) = E/L. Every endomorphism e + L of Rg/L ex-
tends to an endomorphism e; of the injective envelope E(Rg/L). Define a ring morphism

¢: E — End(E(Rr/L))/J(End(E(Rr/L)))

by ¢(e) = e1 + J(End(E(Rgr/L))) for every e € E. Since Rr/L is uniform, the injective
envelope E(Rg/L) is indecomposable, the endomorphism ring End(E(Rr/L)) is a local
ring, and the Jacobson radical J(End(E(Rgr/L))) consists of all non-injective endomor-
phisms of E(Rg/L). It follows that I, which is equal to the kernel of the ring morphism
©, whose range is the division ring

End(E(Rr/L))/J(End(E(Rr/L))),

must be a completely prime two-sided ideal of E. The remaining part of statement (1)
is easily checked.
(2) We have already seen that there is a ring morphism

¢: E — End(E(Rr/L))/J(End(E(Rr/L)))



whose kernel is I. Hence if e € E and e 4+ L is invertible in E/L, then ¢(e) must be
invertible in the division ring End(E(Rr/L))/J(End(E(Rr/L))). Thus ¢(e) # 0, that
is, e ¢ ker ¢ = I. Similarly, we can consider the ring morphism

¥: E — End(Rr/L + J(R))

defined by ¢ (e)(r + L + J(R)) = er + L + J(R) for every e € E and every r € R. Its
kernel is K, which contains L. Hence e + L invertible in E/L implies v (e) invertible in
End(Rr/L + J(R)). But

End(Rr/(L+ J(R))) = E'/(L + J(R)),

so that e + L + J(R) must be invertible in E'/L + J(R).

Conversely, assume e € E, e+ L+ J(R) invertible in E'/L+ J(R) and e ¢ I. We want
to show that e + L is invertible in E/L. Since E/L = End(Rr/L), this is equivalent to
showing that left multiplication p.: Rr/L — Rr/L by e is an automorphism of Rr/L.
Now e ¢ I is equivalent to e is injective by definition of I. In order to show that p. is
onto as well, it suffices to prove that u. induces an onto endomorphism

(Rr/L)/(Rr/L)J(R) = (Rr/L)/(Rr/L)J(R)
by Nakayama’s Lemma. But (Rgr/L)J(R) = L + J(R)/L, so that
(Rr/L)/(Rr/L)J(R) = Rr/L+ J(R).

Hence e + L + J(R) invertible in E'/L + J(R) = End(Rr/(L + J(R))) means that the
endomorphism ¥(e) of Rr/L + J(R) induced by pe is onto, as desired.

(3) (a) Assume I C K. Let e+ L: Rr/L — Rr/L be an epimorphism with e € E. Then
the induced morphism (e): Rr/L + J(R) — Rr/L + J(R) is also an epimorphism, so
that it is an automorphism because Rr/L + J(R) is a semisimple module of finite Goldie
dimension. In the isomorphism

End(Rr/(L+ J(R) = E'/(L + J(R)),

we obtain that e + L + J(R) is invertible in the ring E'/(L + J(R)). Thus e ¢ K. Hence
e ¢ 1. 1t follows from (2) that e+ L is invertible, that is, it is an automorphism of Rz /L.
(b) Assume K ¢ I. Then there is an element f € K, f ¢ I. Thus f € E induces an
endomorphism f of Rg/L. Now f ¢ I means that f is injective, and f € K means that
the image of f is contained in L+J(R)/L. Hence [Rr/L]m = [L+J(R)/L]m. Conversely,
if [Rr/L]m = [L + J(R)/L]m, then there is a monomorphism f: Rgr/L — L+ J(R)/L.
If we compose it with the inclusion L + J(R)/L — Rgr/L we get an endomorphism of
Rpr/L which is in K but not in I. Hence K Z I. O

We finish this study with the following result.

2.5. Theorem. Let R be a semiperfect ring, let R/L, R/L’ be two cyclic uniform modules
with L # 0 and L' # 0 proper right ideals of R. Assume that either

(1) every monomorphism Rr/L — Rr/L is an automorphism of Rgr/L, or
(2) every epimorphism Rr/L — Rr/L is an automorphism of Rr/L, or
(3) [Rr/Llm = [L + J(R)/L]m.
Then the followings are equivalent.
((1) RR/L = RR/L/
(b) [Rr/Llm = [Rr/L'lm and [Rr/L]e = [Rr/L'].

Proof. Assume [Rgr/L]m = [Rr/L']m and [Rr/L]e = [Rr/L']e. Then there are monomor-
phisms a: Rg/L — Rgr/L" and B: Rg/L’ — Rgr/L and epimorphisms a: Rr/L —
Rgr/L' and B: Rr/L’ — Rgr/L. Then Ba is a monomorphism Rr/L — Rgr/L and 'c’
is an epimorphism Rg/L — Rr/L. If hypothesis (a) holds, then S« is an automorphism



of Rg/L that factors through Rg/L’, so that Rr/L is isomorphic to a direct summand of
Rr/L'. But Rgr/L # 0 and Rg/L’ is uniform, so that Rr/L = Rg/L’. This proves our
theorem under hypothesis (a). Dually one proves that the theorem holds when hypothesis
(b) holds.

Assume now that hypothesis (c) holds, i.e., [Rr/L]m = [L + J(R)/L]m. Equivalently,
there exists a monomorphism v: Rr/L — Rr/L whose image is contained in L+J(R)/L.
Now if either a or o’ are isomorphisms, then the existence of a or o’ shows that Rg/L =2
Rgr/L’'. This allows us to conclude. Thus we can assume that « is not an epimorphism
and o' is not a monomorphism. Then o' + ay: Rg/L — Rg/L’ is an isomorphism,
because:

(1) It is injective, because it is the sum of the injective morphism ay: Rr/L — Rr/L’
and the non-injective morphism o’: Rg/L — Rr/L’, and Rr/L is uniform.

(2) The ideal J(R) is superfluous in Rr by Nakayama’s Lemma. Considering the
canonical projection Rr — Rgr/L, it follows that L + J(R)/L is superfluous in Rr/L.
Applying the morphism a: R/L — R/L’, we get that the image of oy is contained in
a(L+ J(R)/L), hence is a superfluous submodule of R/L’. Thus the sum of oy and the
surjective morphism o’: R/L — R/L' is a surjective morphism o’ +avy: Rr/L — Rr/L’.

Thus « + o~ is an isomorphism of Rr/L onto Rr/L’. d

2.6. Remark. By Theorem 2.4, the only case in which we cannot apply Theorem 2.5 is
when K is properly contained in I. Namely, if K Z I, then [Rr/L]m = [L + J(R)/L]m
and we can apply Theorem 2.5(a); if K C I, then either K is properly contained in I,
which is the case still unknown, or K = I, but in the latter case every epimorphism
Rr/L — Rr/L is an automorphism of Rr/L by Theorem 2.4(1).
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