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On partially τ -quasinormal subgroups of finite
groups
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Abstract
Let H be a subgroup of a group G. We say that: (1) H is τ -quasinormal
in G if H permutes with every Sylow subgroup Q of G such that
(|H|, |Q|) = 1 and (|H|, |QG|) 6= 1; (2) H is partially τ -quasinormal
in G if G has a normal subgroup T such that HT is S-quasinormal
in G and H ∩ T ≤ HτG, where HτG is the subgroup generated by all
those subgroups of H which are τ -quasinormal in G. In this paper,
we find a condition under which every chief factor of G below a normal
subgroup E of G is cyclic by using the partial τ -quasinormality of some
subgroups.
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1. Introduction
All groups considered in the paper are finite. The notations and terminology in this

paper are standard, as in [4] and [6]. G always denotes a finite group, π(G) denotes the
set of all prime dividing |G| and F ∗(G) is the generalized Fitting subgroup of G, i.e., the
product of all normal quasinilpotent subgroups of G.

Normal subgroup plays an important role in the study of the structure of groups.
Many authors are interested to extend the concept of normal subgroup. For example, a
subgroup H of G is said to be S-quasinormal [7] in G if H permutes with every Sylow
subgroup of G. As a generalization of S-quasinormality, a subgroup H of G is said to
be τ -quasinormal [11] in G if H permutes with every Sylow subgroup Q of G such that
(|H|, |Q|) = 1 and (|H|, |QG|) 6= 1. On the other hand, Wang [17] extended normality as
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follows: a subgroup H of G is said to be c-normal in G if there exists a normal subgroup
K of G such that HK = G and H∩K ≤ HG, where HG is the maximal normal subgroup
of G contained in H. In the literature, many people have studied the influence of the
τ -quasinormality and c-normality on the structure of finite groups and obtained many
interesting results (see [2, 5, 8, 11, 12, 17, 19]). As a development, we now introduce a
new concept:

1.1. Definition. A subgroup H of a group G is said to be partially τ -quasinormal in
G if there exists a normal subgroup T of G such that HT is S-quasinormal in G and
H ∩ T ≤ HτG, where HτG is the subgroup generated by all those subgroups of H which
are τ -quasinormal in G.

Clearly, partially τ -quasinormal subgroup covers both the concepts of τ -quasinormal
subgroup and c-normal subgroup. However, the following examples show that the con-
verse is not true.

1.2. Example. Let G = S4 be the symmetric group of degree 4.
(1) Let H be a Sylow 3-subgroup of G and N the normal abelian 2-subgroup of G

of order 4. Then HN = A4 E G and H ∩ N=1. Hence H is a partially τ -quasinormal
subgroup of G. But, obviously, H is not c-normal in G.

(2) Let H=〈(14)〉. Obviously, HA4=G and H ∩ A4=1. Hence H is partially τ -
quasinormal in G. But, obviously, H is not τ -quasinormal in G.

A normal subgroup E of a group G is said to be hypercyclically embedded in G if
every chief factor of G below E is cyclic. The product of all normal hypercyclically
embedded subgroups of G is denoted by ZU (G). In [15] and [16], Skiba gave some char-
acterizations of normal hypercyclically embedded subgroups related to S-quasinormal
subgroups. The main purpose of this paper is to give a new characterization by using
partially τ -quasinormal property of maximal subgroups of some Sylow subgroups. We
obtain the following result.

Main Theorem. Let E be a normal subgroup of G. Suppose that there exists a normal
subgroup X of G such that F ∗(E) ≤ X ≤ E and X satisfies the following properties: for
every non-cyclic Sylow p-subgroup P of X, every maximal subgroup of P not having a
supersoluble supplement in G is partially τ -quasinormal in G. Then E is hypercyclically
embedded in G.

The following theorems are the main stages in the proof of Main Theorem.

1.3. Theorem. Let P be a Sylow p-subgroup of a group G, where p is a prime divisor
of |G| with (|G|, p − 1) = 1. If every maximal subgroup of P not having a p-nilpotent
supplement in G is partially τ -quasinormal in G, then G is soluble.

1.4. Theorem. Let P be a Sylow p-subgroup of a group G, where p is a prime divisor
of |G| with (|G|, p− 1) = 1. Then G is p-nilpotent if and only if every maximal subgroup
of P not having a p-nilpotent supplement in G is partially τ -quasinormal in G.

1.5. Theorem. Let E be a normal subgroup in G and let P be a Sylow p-subgroup of
E, where p is a prime divisor of |E| with (|E|, p − 1) = 1. Suppose that every maximal
subgroup of P not having a p-supersoluble supplement in G is partially τ -quasinormal in
G. Then each chief factor of G between E and Op′(E) is cyclic.

1.6. Theorem. Let E be a normal subgroup of a group G. Suppose that for each
p ∈ π(E), every maximal subgroup of non-cyclic Sylow p-subgroup P of E not having a
p-supersoluble supplement in G is partially τ -quasinormal in G. Then every chief factor
of G below E is cyclic.



2. Preliminaries
2.1. Lemma ( [3] and [7]). Suppose that H is a subgroup of G and H is S-quasinormal
in G. Then

(1) If H ≤ K ≤ G, then H is S-quasinormal in K.
(2) If N is a normal subgroup of G, then HN is S-quasinormal in G and HN/N is

S-quasinormal in G/N .
(3) If K ≤ G, then H ∩K is S-quasinormal in K.
(4) H is subnormal in G.
(5) If K ≤ G and K is S-quasinormal in G, then H ∩K is S-quasinormal in G.

2.2. Lemma ([11, Lemmas 2.2 and 2.3]). Let G be a group and H ≤ K ≤ G.
(1) If H is τ -quasinormal in G, then H is τ -quasinormal in K.
(2) Suppose that H is normal in G and π(K/H) = π(K). If K is τ -quasinormal in G,

then K/H is τ -quasinormal in G/H.
(3) Suppose that H is normal in G. Then EH/H is τ -quasinormal in G/H for every

τ -quasinormal subgroup E in G satisfying (|H|, |E|) = 1.
(4) If H is τ -quasinormal in G and H ≤ Op(G) for some prime p, then H is S-

quasinormal in G.
(5) HτG ≤ HτK .
(6) Suppose thatK is a p-group and H is normal in G. ThenKτG/H ≤ (K/H)τ(G/H).
(7) Suppose that H is normal in G. Then EτGH/H ≤ (EH/H)τ(G/H) for every

p-subgroup E of G satisfying (|H|, |E|) = 1.

2.3. Lemma. Let G be a group and H ≤ G. Then
(1) If H is partially τ -quasinormal in G and H ≤ K ≤ G, then H is partially τ -

quasinormal in K.
(2) Suppose that N E G and N ≤ H. If H is a p-group and H is partially τ -

quasinormal in G, then H/N is partially τ -quasinormal in G/N .
(3) Suppose that H is a p-subgroup of G and N is a normal p′-subgroup of G. If H

is partially τ -quasinormal in G, then HN/N is partially τ -quasinormal in G/N .
(4) If H is partially τ -quasinormal in G and H ≤ K E G, then there exists T E G

such that HT is S-quasinormal in G, H ∩ T ≤ HτG and HT ≤ K.

Proof. (1) Let N be a normal subgroup of G such that HN is S-quasinormal in G and
H ∩ N ≤ HτG. Then K ∩ N E K, H(K ∩ N) = HN ∩ K is S-quasinormal in K by
Lemma 2.1(3) and H ∩ (K ∩N) = H ∩N ≤ HτG ≤ HτK by Lemma 2.2(5). Hence H is
partially τ -quasinormal in K.

(2) Suppose that H is partially τ -quasinormal in G. Then there exists K E G such
that HK is S-quasinormal in G and H ∩K ≤ HτG. This implies that KN/N E G/N
and (H/N)(KN/N) = HK/N is S-quasinormal in G/N by Lemma 2.1(2). In view of
Lemma 2.2(6), H/N ∩KN/N = (H ∩K)N/N ≤ HτGN/N = HτG/N ≤ (H/N)τ(G/N).
Thus H/N is partially τ -quasinormal in G/N .

(3) Suppose that H is partially τ -quasinormal in G. Then there exists K E G
such that HK is S-quasinormal in G and H ∩ K ≤ HτG. Clearly, KN/N E G and
(HN/N)(KN/N) = HKN/N is S-quasinormal in G/N by Lemma 2.1(2). On the
other hand, since (|HN : H|, |HN : N |)=1, HN/N ∩ KN/N = (HN ∩ K)N/N =
(H ∩K)(N ∩K)N/N = (H ∩K)N/N ≤ HτGN/N . In view of Lemma 2.2(7), we have
HτGN/N ≤ (HN/N)τ(G/N). Hence HN/N is partially τ -quasinormal in G/N .

(4) Suppose that H is partially τ -quasinormal in G. Then there exists N E G such
that HN is S-quasinormal in G and H ∩ N ≤ HτG. Let T = N ∩ K. Then T E G,
HT = H(N ∩ K) = HN ∩ K is S-quasinormal in G by Lemma 2.1(5), HT ≤ K and
H ∩ T = H ∩N ∩K = H ∩N ≤ HτG. �



2.4. Lemma. Let G be a group and p a prime dividing |G| with (|G|, p− 1) = 1.
(1) If N is normal in G of order p, then N lies in Z(G).
(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent.
(3) If M ≤ G and |G : M | = p, then M �G.
(4) If G is p-supersoluble, then G is p-nilpotent.

Proof. (1), (2) and (3) can be found in [18, Theorem 2.8]. Now we only prove (4). Let
A/B be an arbitrary chief factor of G. If G is p-supersolvable, then A/B is either a
cyclic group with order p or a p′-group. If |A/B| = p, then |Aut(A/B)| = p − 1. Since
G/CG(A/B) is isomorphic to a subgroup of Aut((A/B), the order of G/CG(A/B) must
divide (|G|, p − 1) = 1, which shows that G = CG(A/B). Therefore, we have G is
p-nilpotent. �

2.5. Lemma ([10, Lemma 2.12]). Let P be a Sylow p-subgroup of a group G, where p
is a prime divisor of |G| with (|G|, p − 1) = 1. If every maximal subgroup of P has a
p-nilpotent supplement in G, then G is p-nilpotent.

2.6. Lemma ([13, Theorem A]). If P is an S-quasinormal p-subgroup of a group G for
some prime p, then NG(P ) ≥ Op(G).

2.7. Lemma ([6, VI, 4.10]). Assume that A and B are two subgroups of a group G and
G 6= AB. If ABg = BgA holds for any g ∈ G, then either A or B is contained in a
nontrivial normal subgroup of G.

2.8. Lemma ([20, Chap.1, Theorem 7.19]). Let H be a normal subgroup of G. Then
H ≤ ZU (G) if and only if H/Φ(H) ≤ ZU (G/Φ(H)).

2.9. Lemma ([14, Lemma 2.11]). Let N be an elementary abelian normal subgroup of a
group G. Assume that N has a subgroup D such that 1 < |D| < |N | and every subgroup
H of N satisfying |H| = |D| is S-quasinormal in G. Then some maximal subgroup of N
is normal in G.

2.10. Lemma. Let N be a non-identity normal p-subgroup of a group G. If N is
elementary and every maximal subgroup of N is partially τ -quasinormal in G, then some
maximal subgroup of N is normal in G.

Proof. If |N | = p, then it is clear. Let L be a non-identity minimal normal p-subgroup
of G contained in N . First we assume that N 6= L. By Lemma 2.3(2), the hypothesis
still holds on G/L. Then by induction some maximal subgroup M/L of N/L is normal
in G/L. Clearly, M is a maximal subgroup of N and M is normal in G. Consequently
the lemma follows. Now suppose that L = N . Let M be any maximal subgroup of N .
Then by the hypothesis, there exists T E G such that MT is S-quasinormal in G and
M ∩ T ≤MτG. Suppose that M 6= MτG. Then MT 6= M and T 6= 1. If N ≤MT , then
N = N ∩MT = M(N ∩ T ). Hence N ≤ T , which implies that M = M ∩ T = MτG, a
contradiction. If N * MT , then M = M(T ∩N) = MT ∩N is S-quasinormal in G by
Lemma 2.1(5), a contradiction again. Hence M = MτG. In view of Lemma 2.2(4), M is
S-quasinormal in G. By Lemma 2.9, some maximal subgroup of N is normal in G. Thus
the lemma holds. �

2.11. Lemma ([15, Theorem B]). Let F be any formation and G a group. If H � G
and F ∗(H) ≤ ZF (G), then H ≤ ZF (G).



3. Proofs of Theorems
Proof of Theorem 1.3. Assume that this theorem is false and let G be a counterexample
with minimal order. We proceed the proof via the following steps.

(1) Op(G) = 1.
Assume that L = Op(G) 6= 1. Clearly, P/L is a Sylow p-subgroup of G/L. Let M/L

be a maximal subgroup of P/L. Then M is a maximal subgroup of P . If M has a
p-nilpotent supplement D in G, then M/L has a p-nilpotent supplement DL/L in G/L.
If M is partially τ -quasinormal in G, then M/L is partially τ -quasinormal in G/L by
Lemma 2.3(2). Hence G/L satisfies the hypothesis of the theorem. The minimal choice
of G implies that G/L is soluble. Consequently, G is soluble. This contradiction shows
that step (1) holds.

(2) Op′(G) = 1.
Assume that R = Op′(G) 6= 1. Then, obviously, PR/R is a Sylow p-subgroup of

G/R. Suppose that M/R is a maximal subgroup of PR/R. Then there exists a maximal
subgroup P1 of P such that M = P1R. If P1 has a p-nilpotent supplement D in G, then
M/R has a p-nilpotent supplement DR/R in G/R. If P1 is partially τ -quasinormal in G,
then M/R is partially τ -quasinormal in G/R by Lemma 2.3(3). The minimal choice of
G implies that G/R is soluble. By the well known Feit-Thompson’s theorem, we know
that R is soluble. It follows that G is soluble, a contradiction.

(3) P is not cyclic.
If P is cyclic, then G is p-nilpotent by Lemma 2.4, and so G is soluble, a contradiction.
(4) IfN is a minimal normal subgroup of G, thenN is not soluble. Moreover, G = PN .
If N is p-soluble, then Op(N) 6= 1 or Op′(N) 6= 1. Since Op(N) char N � G,

Op(N) ≤ Op(G). Analogously Op′(N) ≤ Op′(G). Hence Op(G) 6= 1 or Op′(G) 6= 1,
which contradicts step (1) or step (2). Therefore N is not soluble. Assume that PN < G.
By Lemma 2.3(1), every maximal subgroup of P not having a p-nilpotent supplement in
PN is partially τ -quasinormal in PN . Thus PN satisfies the hypothesis. By the minimal
choice of G, PN is soluble and so N is soluble. This contradiction shows that G = PN .

(5) G has a unique minimal normal subgroup N .
By step (4), we see that G = PN for every normal subgroup N of G. It follows that

G/N is soluble. Since the class of all soluble groups is closed under subdirect product,
G has a unique minimal normal subgroup, say N .

(6) The final contradiction.
If every maximal subgroup of P has a p-nilpotent supplement in G, then, in view

of Lemma 2.5, G is p-nilpotent and so G is soluble. This contradiction shows that
we may choose a maximal subgroup P1 of P such that P1 is partially τ -quasinormal
in G. Then there exists a normal subgroup T of G such that P1T is S-quasinormal
in G and P1 ∩ T ≤ (P1)τG. If T = 1, then P1 is S-quasinormal in G. In view of
Lemma 2.6, P1 � POp(G) = G. By step (5), P1 = 1 or N ≤ P1. Since N is not
soluble by step (4), we have that P1 = 1. Consequently, P is cyclic, which contra-
dicts step (3). Hence T 6= 1 and N ≤ T . It follows that P1 ∩ N = (P1)τG ∩ N .
For any Sylow q-subgroup Nq of N with q 6= p, Nq is also a Sylow q-subgroup of
G by step (4). From step (2) it is easy to see that (P1)τGNq = Nq(P1)τG. Then
(P1)τGNq∩N = Nq((P1)τG∩N) = Nq(P1∩N), i.e., P1∩N is τ -quasinormal in N . Since
N is a direct product of some isomorphic non-abelian simple groups, we may assume that
N ∼= N1 × · · · × Nk. By Lemma 2.2(1), P1 ∩ N is τ -quasinormal in (P1 ∩ N)N1. Thus
(P1 ∩ N)(N1q)

n1 ∩ N1 = (N1q)
n1(P1 ∩ N ∩ N1) = (N1q)

n1(P1 ∩ N1) for any n1 ∈ N1,
where N1q is a Sylow q-subgroup of N1 with q 6= p. Since (N1q)

n1(P1 ∩ N1) 6= N1, we
have N1 is not simple by Lemma 2.7, a contradiction.



Proof of Theorem 1.4. If G is p-nilpotent, then G has a normal Hall p′-subgroup Gp′ .
Let P1 be any maximal subgroup of P . Then |G : P1Gp′ | = p. In view of Lemma 2.4(3),
P1Gp′ �G. Obviously, P1 ∩Gp′ = 1. Hence P1 is partially τ -quasinormal in G.

Now we prove the sufficient part. Assume that the assertion is false and let G be a
counterexample with minimal order.

(1) G is soluble.
It follows directly from Theorem 1.3.
(2) G has a unique minimal normal subgroup N such that G/N is p-nilpotent. More-

over, Φ(G) = 1.
Let N be a minimal normal subgroup of G. Since G is solvable by step (1), N is

an elementary abelian subgroup. It is easy to see that G/N satisfies the hypothesis of
our theorem by Lemma 2.3. By the minimal choice of G, G/N is p-nilpotent. Since the
class of all p-nilpotent groups is a saturated formation, N is a unique minimal normal
subgroup of G and Φ(G) = 1.

(3) P is not cyclic.
If P is cyclic, G is p-nilpotent by Lemma 2.4(2), a contradiction.
(4) Op′(G) = 1.
(5) Every maximal subgroup of P has a p-nilpotent supplement in G.
It is clear that N ≤ Op(G). By Φ(G) = 1, we may choose a maximal subgroupM of G

such that G = NM and G/N ∼= M . Let P1 be an arbitrary maximal subgroup of P . We
will show P1 has a p-nilpotent supplement in G. Since N has the p-nilpotent supplement
M in G, we only need to prove N ≤ P1 when P1 is partially τ -quasinormal in G. Let T
be a normal subgroup of G such that P1T is S-quasinormal in G and P1 ∩ T ≤ (P1)τG.
First, we assume that T = 1, i.e., P1 is S-quasinormal in G. In view of Lemma 2.6,
P1 � POp(G) = G. By virtue of Lemma 2.4(2) and step (3), P1 6= 1. Hence N ≤ P1 by
step (2). Now, assume that T 6= 1. Then N ≤ T . It follows that P1 ∩N = (P1)τG ∩N .
For any Sylow q-subgroup Gq of G (p 6= q), (P1)τGGq = Gq(P1)τG in view of step (4).
Then (P1)τG∩N = (P1)τGGq ∩N � (P1)τGGq. Obviously, P1∩N �P . Therefore P1∩N
is normal in G. By the minimality of N , we have P1 ∩N = N or P1 ∩N = 1. If the later
holds, then the order of N is p since P1∩N is a maximal subgroup of N . Consequently, G
is p-nilpotent by step (2) and Lemma 2.4(1). This contradiction shows that P1 ∩N = N
and so N ≤ P1.

(6) The final contradiction.
Since every maximal subgroup of P has a p-nilpotent supplement in G by step (5), we

have G is p-nilpotent by Lemma 2.5, a contradiction.

Proof of Theorem 1.5. Assume that this theorem is false and and consider a counterex-
ample (G,E) for which |G||E| is minimal.

(1) E is p-nilpotent.
Let P1 be a maximal subgroup of P . If P1 has a p-supersolvable supplement T in G,

then P1 has a p-supersolvable supplement T ∩ E in E. Since (|E|, p − 1) = 1, T ∩ E
is also p-nilpotent by Lemma 2.4(4). If P1 is partially τ -quasinormal in G, then P1 is
also partially τ -quasinormal in E by Lemma 2.3(1). Hence every maximal subgroup of
P not having a p-nilpotent supplement in E is partially τ -quasinormal in E. In view of
Theorem 1.4, E is p-nilpotent.

(2) P = E.
By step (1), Op′(E) is the normal Hall p′-subgroup of E. Suppose that Op′(E) 6= 1.

It is easy to see that the hypothesis of the theorem holds for (G/Op′(E), E/Op′(E)).
By induction, every chief factor of G/Op′(E) between E/Op′(E) and 1 is cyclic. Con-
sequently, each chief factor of G between E and Op′(E) is cyclic. This condition shows
that Op′(E) = 1 and so P = E.



(3) Φ(P ) = 1.
Suppose that Φ(P ) 6= 1. By Lemma 2.3(2), it is easy to see that the hypothesis of

the theorem holds for (G/Φ(P ), P/Φ(P )). By the choice of (G,E), every chief factor of
G/Φ(P ) below P/Φ(P ) is cyclic. In view of Lemma 2.8, every chief factor of G below P
is cyclic, a contradiction.

(4) Every maximal subgroup of P is partially τ -quasinormal in G.
Suppose that there is some maximal subgroup V of P such that V has a p-supersolvable

supplement B in G, then G = PB and P ∩ B 6= 1. Since P ∩ B � B, we may assume
that B has a minimal normal subgroup N contained in P ∩ B. It is clear that |N | = p.
Since P is elementary abelian and G = PB, we have that N is also normal in G. It is
easy to see that the hypothesis is still true for (G/N,P/N). Hence every chief factor of
G/N below P/N is cyclic by virtue of the choice of (G,E). It follows that every chief
factor of G below P is cyclic. This contradiction shows that all maximal subgroups of P
are partially τ -quasinormal in G.

(5) P is not a minimal normal subgroup of G.
Suppose that P is a minimal normal subgroup of G, then some maximal subgroup of

P is normal in G by Lemma 2.10, which contradicts the minimality of P .
(6) If N is a minimal normal subgroup of G contained in P , then P/N ≤ ZU (G/N),

N is the only minimal normal subgroup of G contained in P and |N | > p.
Indeed, by Lemma 2.3(2), the hypothesis holds on (G/N,P/N) for any minimal normal

subgroup N of G contained in P . Hence every chief factor of G/N below P/N is cyclic
by the choice of (G,E) = (G,P ). If |N | = p, every chief factor of G below P is cyclic,
a contradiction. If G has two minimal normal subgroups R and N contained in P ,
then NR/R ≤ P/R and from the G-isomorphism NR/R ∼= N we have |N | = p, a
contradiction. Hence, (6) holds.

(7) The final contradiction.
Let N be a minimal normal subgroup of G contained in P and N1 any maximal

subgroup of N . We show that N1 is S-quasinormal in G. Since P is an elementary
abelian p-group, we may assume that D is a complement of N in P . Let V = N1D.
Obviously, V is a maximal subgroup of P . By step (4), V is partially τ -quasinormal
in G. By Lemma 2.3(4), there exist a normal subgroup T of G such that V T is S-
quasinormal in G, V ∩ T ≤ VτG and V T ≤ P . In view of Lemma 2.2(4), VτG is an
S-quasinormal subgroup of G. If T = P , then V = VτG is S-quasinormal in G and
hence V ∩N = N1D ∩N = N1(D ∩N) = N1 is S-quasinormal in G by Lemma 2.1(5).
If T = 1, then V = V T is S-quasinormal in G. Consequently, we have also N1 is S-
quasinormal in G. Now we assume that 1 < T < P . Hence N ≤ T by step (6). Then,
N1 = V ∩N = VτG ∩N is S-quasinormal in G by virtue of Lemma 2.1(5). Hence some
maximal subgroup of N is normal in G by Lemma 2.9. Consequently, |N | = p. This
contradicts step (6).

Proof of Theorem 1.6. Let q be the smallest prime dividing |E|. In view of step (1) of
the proof of Theorem 1.5, E is q-nilpotent. Let Eq′ be the normal Hall q′-subgroup of E.
If Eq′ = 1, then every chief factor of G below E is cyclic by Theorem 1.5. Hence we may
assume that Eq′ 6= 1. Since Eq′ char E �G, we see that Eq′ �G. By Lemma 2.3(3), the
hypothesis of the theorem holds for (G/Eq′ , E/Eq′). By induction, every chief factor of
G/Eq′ below E/Eq′ is cyclic. On the other hand, (G,Eq′) also satisfies the hypothesis of
the theorem in view of Lemma 2.3(1). By induction again, we have also every chief fac-
tor of G below Eq′ is cyclic. Hence it follows that every chief factor of G below E is cyclic.



Proof of Main Theorem. Applying Theorem 1.6, X is hypercyclically embedded in G.
Since F ∗(E) ≤ X, we have that F ∗(E) is also hypercyclically embedded in G. By virtue
of Lemma 2.11, E is also hypercyclically embedded in G.

4. Some Applications
4.1. Theorem. Let F be a saturated formation containing U and E a normal subgroup
of a group G such that G/E ∈ F . Suppose that for every non-cyclic Sylow subgroup P of
E, every maximal subgroup of P not having a supersoluble supplement in G is partially
τ -quasinormal in G. Then G ∈ F .

Proof. Applying our Main Theorem, every chief factor of G below E is cyclic. Since F
contains U , we know E is contained in the F -hypercentre of G. From G/E ∈ F , it
follows that G ∈ F . �

4.2. Theorem. Let F be a saturated formation containing U and E a normal subgroup
of a group G such that G/E ∈ F . Suppose that for every non-cyclic Sylow subgroup P
of F ∗(E), every maximal subgroup of P not having a supersoluble supplement in G is
partially τ -quasinormal in G. Then G ∈ F .

Proof. The proof is similar to that of Theorem 4.1. �

4.3. Corollary ([9, Theorem 3.4]). Let F be a saturated formation containing U and
E a normal subgroup of a group G such that G/E ∈ F . If every maximal subgroup of
any Sylow subgroup of F ∗(E) is S-quasinormal in G, then G ∈ F .

4.4. Corollary ([19, Theorem 3.4]). Let F be a saturated formation containing U and
E a normal subgroup of a group G such that G/E ∈ F . If every maximal subgroup of
any Sylow subgroup of F ∗(E) is c-normal in G, then G ∈ F .

4.5. Corollary ([1, Theorem 1.4]). Let F be a saturated formation containing U and E
a soluble normal subgroup of a group G such that G/E ∈ F . If every maximal subgroup
of any Sylow subgroup of F (E) is S-quasinormal in G, then G ∈ F .

4.6. Corollary ([8, Theorem 2]). Let G be a group and E a soluble normal subgroup
of G such that G/E is supersolvable. If all maximal subgroups of the Sylow subgroups
of F (E) are c-normal in G, then G is supersolvable.
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