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On second-order linear recurrent homogeneous
differential equations with period k

Julius Fergy Tiongson Rabago∗ †

Abstract

We say that w(x) : R → C is a solution to a second-order linear re-
current homogeneous differential equation with period k (k ∈ N), if it
satisfies a homogeneous differential equation of the form

w(2k)(x) = pw(k)(x) + qw(x), ∀x ∈ R,

where p, q ∈ R+ and w(k)(x) is the kth derivative of w(x) with respect
to x. On the other hand, w(x) is a solution to an odd second-order
linear recurrent homogeneous differential equation with period k if it
satisfies

w(2k)(x) = −pw(k)(x) + qw(x), ∀x ∈ R.
In the present paper, we give some properties of the solutions of dif-
ferential equations of these types. We also show that if w(x) is the
general solution to a second-order linear recurrent homogeneous differ-
ential equation with period k (resp. odd second-order linear recurrent
homogeneous differential equation with period k), then the limit of the
quotient w((n+1)k)(x)/w(n)(x) as n tends to infinity exists and is equal
to the positive (resp. negative) dominant root of the quadratic equation
x2 − px− q = 0 as x increases (resp. decreases) without bound.

Keywords: Homogenous differential equations, second-order linear recurrence
sequences, solutions.

2000 AMS Classification: Primary: 34 B 05, 11 B 37. Secondary: 11 B 39.

Received 22 : 07 : 2013 : Accepted 05 : 10 : 2013 Doi : 10.15672/HJMS.2014437531

∗Institute of Mathematics, College of Science, University of the Philippines Diliman, Quezon
City 1101, PHILIPPINES
†Department of Mathematics and Computer Science, College of Science, University of the

Philippines Baguio, Governor Pack Road, Baguio City 2600, PHILIPPINES
Email: jtrabago@upd.edu.ph, jfrabago@gmail.com



1. Introduction
Problems involving Fibonacci numbers and its various generalizations have been ex-

tensively studied by many authors. Its beauty and applications have been greatly appreci-
ated since its introduction. In 1965, a certain generalization of the sequence of Fibonacci
numbers was introduced by A. F. Horadam in [1], which is called as a second-order linear
recurrence sequence and is now known as Horadam sequence. Properties of these type
of sequences have also been studied by Horadam in [1]. In [2], J. S. Han, H. S. Kim,
and J. Neggers studied a Fibonacci norm of positive integers. These authors [3] have
also studied Fibonacci sequences in groupoids and introduced the concept of Fibonacci
functions in [4]. They developed the notion of this type of functions using the concept
of f -even and f -odd functions. Later on, a certain generalization of Fibonacci function
has been investigated by B. Sroysang in [5]. In particular, Sroysang defined a function
f(x) : R → R as a Fibonacci function of period k, (k ∈ N) if it satisfies the equation
f(x + 2k) = f(x + k) + f(x) for all x ∈ R. Recently, the notion of Fibonacci function
has been further generalized by the author in [6]. The concept of second-order linear
recurrent functions with period k which has been introduced by the author in [6] gave
rise to the concept of Pell and Jacobsthal functions with period k, which are analogues of
Fibonacci functions. Some elementary properties of these newly defined functions were
also presented by the author in [6]. Now, inspired by these results, we present in this
work the concept of second-order (resp. odd second-order) linear recurrent homogeneous
differential equations with period k, or simply SOLRHDE-k (resp. oSOLRHDE-k), and
study some of its properties.

The next section, which discusses our main results, is organized as follows. First, we
present some elementary results on second-order (and odd second-order) linear recurrent
homogeneous differential equation with period k, and then provide the form of its general
solution. Afterwards, we investigate the quotient w((n+1)k)(x)/w(n)(x), where w(x) is the
general solution to a SOLRHDE-k (or an oSOLRHDE-k), and find its limit as n tends to
infinity. Each of our results is accompanied by an example for validation and illustration.

2. Main Results
We start-off this section with the following definition.

2.1. Definition. Let k ∈ N, p, q ∈ R+ and w : R → C be differentiable on R infinitely
many times. We say that w(x) is a solution to a SOLRHDE-k if it satisfies a differential
equation of the form given by

(2.1) w(2k)(x) = pw(k)(x) + qw(x),

for all x ∈ R, where w(k)(x) is the kth derivative of w(x) with respect to x. If (p, q) =
(1, 1), (1, 2), (2, 1), then w is a solution to a Fibonacci-like, Jacobsthal-like, and Pell-like
homogeneous differential equation with period k, respectively.

2.2. Example. Let p, q ∈ R+ and 0 6= t ∈ R. Define w(x) = atx, where a > 0. Suppose
that w(x) is a solution to a SOLRHDE-k then (t ln a)2katx = p(t ln a)katx + qatx. Hence,
r2 − pr − q = 0 where r = (t ln a)k. Solving for r, we have r = (p ±

√
p2 + 4q)/2. So,

a = exp
(
t−1Φ

1/k
±

)
, where Φ± = (p ±

√
p2 + 4q)/2. Thus, w(x) = A exp

(
α1/kx

)
+

B exp
(
β1/kx

)
, where α = Φ+ and β = Φ− and, A,B are any arbitrary real numbers. If

we set k = 1, and w(0) = 0 and w′(0) = 1, then we get A + B = 0 and αA + βB = 1.
Here we obtain,

(2.2) w(x) =
1

α− β

(
eαx − eβx

)
.



Thus, (2.2) is a solution to a SOLRHDE-k, with k = 1 and initial boundary conditions
w(0) = 0 and w′(0) = 1. Using the identity eX =

∑∞
n=0(Xn/n!), we can express (2.2) in

terms of power series, i.e. we have

w(x) =
eαx − eβx

α− β =

∞∑
n=0

(
αn − βn

α− β

)
xn

n!
=

∞∑
n=0

Wn

n!
xn,

where Wn is the number sequence obtained from the recurrence relation given by

(2.3) W0 = 0, W1 = 1, Wn+1 = pWn + qWn−1, ∀n ∈ N.

We note that α + β = p, α − β =
√
p2 + 4q, and αβ = −q. Hence, for some particular

values of p and q, we have the following examples.
(1) For (p, q) = (1, 1), the function defined by

f(x) =
1√
5

(
eφx − e(1−φ)x

)
=

∞∑
n=0

Fn
n!
xn,

where φ is the golden ratio and Fn is the nth Fibonacci number, is a solution to
a Fibonacci-like homogeneous differential equation. By letting x = 1, we obtain
the identity
∞∑
n=0

Fn
n!

=
eφ − e1−φ√

5
.

(2) For (p, q) = (1, 2), the function defined by

j(x) =
1

3

(
e2x − e−x

)
=

∞∑
n=0

Jn
n!
xn,

where Jn is the nth Jacobsthal number, is a solution to a Jacobsthal-like homo-
geneous differential equation. By letting x = 1, we obtain the identity
∞∑
n=0

Jn
n!

=
e2 − e−1

3
.

(3) For (p, q) = (2, 1), the function defined by

p(x) =
1

2
√

2

(
eσx − e(2−σ)x

)
=

∞∑
n=0

Pn
n!
xn,

where σ is the silver ratio and Pn is the nth Pell number, is a solution to a
Pell-like homogeneous differential equation. By letting x = 1, we obtain the
identity
∞∑
n=0

Pn
n!

=
eσ − e2−σ

2
√

2
.

2.3. Proposition. Let k ∈ N, p, q,∈ R+ and w(x) be a solution to the differential
equation (2.1). If gm(x) := w(m)(x), then g(x) is also a solution to (2.1).

Proof. Let k ∈ N and p, q,∈ R+. Suppose gm(x) = w(m)(x) where w(x) is a solution to
(2.1). Then,

g(2k)m (x) =
d2k
[
w(m)(x)

]
dx2k

= p
dm
[
w(k)(x)

]
dxm

+ q
dm [w(x)]

dxm
= pg(k)m (x) + qgm(x),

proving the proposition. �



2.4. Example. Let j(x) = e(−1)1/kx where k ∈ N. It can be verified easily that j(x) =

e(−1)1/2x = e±ix is a solution to a Jacobsthal-like homogeneous differential equation with
period 2, i.e.

j(4)(x) = e±ix = −e±ix + 2e±ix = j′′(x) + 2j(x), ∀x ∈ R.

Now, define g(x) = ±ie±ix. We show that g(x) is also a solution to a Jacobsthal-like
homogeneous differential equation with period 2, i.e.

g(4)(x) = g′′(x) + 2g(x), ∀x ∈ R.

We note that,

g′(x) = −e±ix, g′′(x) = ∓ie±ix, g′′′(x) = e±ix, g(4)(x) = ±ie±ix.
Hence,

g(4)(x) = ±ie±ix = ∓ie±ix + 2± ie±ix = g′′(x) + 2g(x).

We can also show this via Proposition (2.3). Since g(x) = j′(x), and j(x) is a solution
to a Jacosthal-like homogeneous differential equation with period 2, then so is g(x) by
Proposition (2.3).

2.5. Proposition. Let k ∈ N, p, q,∈ R+ and, g(x) and h(x) be any two solutions
of the differential equation (2.1). Then, any linear combination of g(x) and h(x), say
w(x) = Ag(x) +Bh(x) where A,B ∈ R, is again a solution to (2.1).

Proof. The proof is straightforward. Let k ∈ N, p, q,∈ R+, and g(x) and h(x) be any two
solutions to the differential equation (2.1). Consider the function w(x) = Ag(x) +Bh(x)
where A,B ∈ R. Then,

w(2k)(x) = Ag(2k)(x) +Bh(2k)(x)

= p
[
Ag(k)(x) +Bh(k)(x)

]
+ q [Ag(x) +Bh(x)]

= pw(k)(x) + qw(x).

This proves the proposition. �

2.6. Example. Let j(x) = e(−1)1/kx where k ∈ N. It can be verified diretly that
the function j(x) = e(−1)1/3x = etx, where t ∈ {−1, (1 ±

√
3i)/2}, is a solution to a

Jacobsthal-like homogeneous differential equation with period 3, i.e.

(2.4) j(6)(x) = j′′′(x) + 2j(x), ∀x ∈ R,

Define w(x) = Ae−x +Be
1
2
(1±
√
3)ix, where A,B ∈ R. Then,

w(6)(x) = Ae−x +Be
1
2
(1±
√
3)ix

= −
[
Ae−x +Be

1
2
(1±
√
3i)x
]

+ 2
[
Ae−x +Be

1
2
(1±
√
3i)x
]

= w′′′(x) + 2w(x).

In fact, this can also be shown using Proposition (2.5). Since g(x) = e−x and h(x) =

exp( 1
2
(1 ±

√
3)ix) are solutions of (2.4), then the function defined by w(x) = Ag(x) +

Bh(x), where A,B ∈ R, is also a solution to (2.4) by Proposition (2.5).

2.7. Theorem. Let k ∈ N, p, q,∈ R+ and w(x) be a solution to the differential equation
(2.1). Furthermore, let {Wn}∞n=0 be a number sequence obtained from a second-order
linear recurrence relation defined by (2.3). Then,

(2.5) w(nk)(x) = Wnw
(k)(x) + qWn−1w(x), ∀x ∈ R, n ∈ N.



Proof. We prove this using induction on n. Let k ∈ N, p, q ∈ R+, and w(x) be a solution
to the differential equation (2.1). Then,

w(k)(x) = (1)w(k)(x) + q(0)w(x) = W1w
(k)(x) + qW0w(x),

w(2k)(x) = pw(k)(x) + q(1)w(x) = W2w
(k)(x) + qW1w(x),

w(3k)(x) =
dk

dxk

(
w(2k)(x)

)
= pw(2k)(x) + qw(k)(x)

= p
[
pw(k)(x) + qw(x)

]
+ qw(k)(x)

= (p2 + q)w(k)(x) + qpw(x)

= W3w
(k)(x) + qW2w(x).

Now we assume that the following equation is true for some natural number n,

w(nk)(x) = Wnw
(k)(x) + qWn−1w(x).

Hence,

w((n+1)k)(x) =
dk

dxk

[
w(nk)

]
=

dk

dxk

[
Wnw

(k)(x) + qWn−1w(x)
]

= Wnw
(2k)(x) + qWn−1w

(k)(x)

= Wn

[
pw(k)(x) + qw(x)

]
+ qWn−1w

(k)(x)

= (pWn + qWn−1)w(k)(x) + qWnw(x)

= Wn+1w
(k)(x) + qWnw(x).

This proves the theorem. �

2.8. Corollary. Let k ∈ N and f(x) be a solution to a Fibonacci-like differential equation
with period k. If {Fn}∞n=0 is the sequence of Fibonacci numbers, then

f (nk)(x) = Fnf
(k)(x) + Fn−1f(x), ∀x ∈ R, n ∈ N.

2.9. Example. Consider the solution f(x) = e
4√φx to a Fibonacci-like differential equa-

tion with period 4 given by the equation

f (8)(x) = f (4)(x) + f(x), ∀x ∈ R.

Furthermore, let {Fn} be the sequence of Fibonacci numbers. By Corollary (2.8), we see
that

f (12)(x) = (2 +
√

5)e
4√φx = 2φe

4√φx + e
4√φx = F3f

(4)(x) + F2f(x),

f (16)(x) =
1

2
(7 + 3

√
5)e

4√φx = 3φe
4√φx + 2e

4√φx = F4f
(4)(x) + F3f(x).

Similarly, for Jacobsthal-like and Pell-like differential equations with period k we have
the following corollaries.

2.10. Corollary. Let k ∈ N and j(x) be a solution to a Jacobsthal-like differential
equation with period k. If {Jn}∞n=0 is the sequence of Jacobsthal numbers, then

j(nk)(x) = Jnj
(k)(x) + 2Jn−1j(x), ∀x ∈ R, n ∈ N.

2.11. Example. Consider the solution j(x) = e−x to a Jacobsthal-like differential equa-
tion given by

j′′(x) = j′(x) + 2j(x), ∀x ∈ R.



Furthermore, let {Jn}∞n=0 be the sequence of Jacobsthal numbers, i.e. {Jn} = {0, 1, 1, 3, 5, 11, 21, 43, 85, 171, . . . }.
By Corollary (2.10), we see that

j(7)(x) = −e−x = 43(−e−x) + 2(21)e−x = J7j
′(x) + 2J6j(x),

j(8)(x) = e−x = 85(−e−x) + 2(43)e−x = J8j
′(x) + 2J7j(x),

j(9)(x) = −e−x = 171(−e−x) + 2(85)e−x = J9j
′(x) + 2J8j(x).

2.12. Corollary. Let k ∈ N and p(x) be a solution to a Pell-like differential equation
with period k. If {Pn}∞n=0 is the sequence of Pell numbers, then

p(nk)(x) = Pnp
(k)(x) + Pn−1p(x), ∀x ∈ R, n ∈ N.

2.13. Example. Consider the solution p(x) = e
3√σx to a Pell-like differential equation

with period 3 given by the equation

(2.6) p(6)(x) = 2p′′′(x) + p(x), ∀x ∈ R.

Furthermore, let {Pn}∞n=0 be the sequence of Pell numbers, i.e. {Pn} = {0, 1, 2, 5, 12, 29, . . . }.
By Corollary (2.12), we see that

p(9)(x) = (7 + 5
√

2)e
3√σx = 5σe

3√σx + 2e
3√σx = P3p

′′′(x) + P2p(x),

p(12)(x) = (17 + 12
√

2)e
3√σx = 12σe

3√σx + 5e
3√σx = P4p

′′′(x) + P3p(x),

p(15)(x) = (41 + 29
√

2)e
3√σx = 29σe

3√σx + 12e
3√σx = P5p

′′′(x) + P4p(x).

In solving for the solution of equation (2.6), we obtain an approximation of the golden
ratio involving the silver ratio σ. In particular, we obtain

φ ≈ 10
(

3
√
σ sin(2π/3)− 1

)
.

This gives us a motivation to obtain a better approximation which is given by

φ ≈ 10

(
3
√
σ sin

(
220 · 56 − 315611

219 · 3 · 56
π

)
− 1

)
.

Looking at this approximation, it might be interesting to get a better approximation of
φ in terms of σ by altering the coefficient of π inside the sine function.

2.14. Corollary. Let k = 1, p, q,∈ R+ and w(x) = eαx be a solution to (2.1). Further-
more, let {Wn}∞n=0 be a number sequence obtained from (2.3). Then,

(2.7) αn = αWn + qWn−1, ∀n ∈ N.

Furthermore, if {Fn}, {Jn}, and {Pn} are the sequence of Fibonacci, Jacobsthal and Pell
numbers, respectively, then

φn = φFn + Fn−1, ∀n ∈ N,(2.8)

2n−1 = Jn + Jn−1, ∀n ∈ N,(2.9)

σn = 2σPn + Pn−1, ∀n ∈ N,(2.10)

where φ and σ are the golden and silver ratio, respectively.

Proof. We note that w(x) = eαx is a solution to equation (2.1) with period k = 1. So,
by Theorem (2.7), we have

αneαx = αWne
αx + qWn−1e

αx,

proving equation (2.7). By letting (p, q) = (1, 1), (1, 2), (2, 1), we obtain equations (2.8),
(2.9), and (2.10), respectively. �



In the following discussion, we study differential equations of the form

(2.11) w(2k)(x) = −pw(k) + qw(x), ∀x ∈ R,

where k ∈ N and p, q ∈ R+. We call such equation as an odd second-order linear recurrent
homogeneous differential equation with period k, or simply, oSOLRHDE-k.

Solving equation (2.11) we obtain the solution

w(x) = aeα
1/kζnx + beβ

1/kζnx,

where ζn = cos
(
π+2nπ
k

)
+ i sin

(
π+2nπ
k

)
, n = 0, 1, . . . , k − 1, and a, b ∈ R. If (p, q, k) =

(1, 1, 1), then we see that f(x) = e−φx is a solution to the following differential equation

w′′(x) = −w′(x) + w(x), ∀x ∈ R.

Similarly, for (p, q, k) = (1, 2, 1), (2, 1, 1), we see that the functions j(x) = e−2x and
p(x) = e−σx are solutions to the differential equations

j′′(x) = −j′(x) + 2j(x), ∀x ∈ R,

p′′(x) = −2p′(x) + p(x), ∀x ∈ R,

respectively. Also, if (p, q, k) = (1, 1, 3), then the function defined by f(x) = etx, where
t ∈ {− 3

√
φ, 3
√
φ(1 ±

√
3i)/2}, is a solution to an odd Fibonacci-like homogeneous differ-

ential equation with period 3. i.e., f(x) = etx is a solution to

(2.12) f (6)(x) = −f (3)(x) + f(x), ∀x ∈ R.

2.15. Theorem. Let k ∈ N, p, q,∈ R+ and w(x) be a solution to the differential equation
(2.11). Furthermore, let {W−n}∞n=0, where W−n = (−1)n+1Wn be a number sequence
obtained from a second-order linear recurrence relation defined by

(2.13) W0 = 0, W−1 = 1, W−(n+1) = −pW−n + qW−n+1, ∀n ∈ N.

Then,

(2.14) w(nk)(x) = W−nw
(k)(x) + qW−n+1w(x), ∀x ∈ R, n ∈ N.

Proof. We follow the proof of Theorem (2.7). Let k ∈ N, p, q,∈ R+, and w(x) be a
solution to the differential equation (2.11). Then,

w(k)(x) = (1)w(k)(x) + q(0)w(x) = W−1w
(k)(x) + qW0w(x),

w(2k)(x) = −pw(k)(x) + q(1)w(x) = W−2w
(k)(x) + qW−1w(x),

w(3k)(x) =
dk

dxk

(
w(2k)(x)

)
= −pw(2k)(x) + qw(k)(x)

= −p
[
−pw(k)(x) + qw(x)

]
+ qw(k)(x)

= (p2 + q)w(k)(x) + qpw(x)

= W−3w
(k)(x) + qW−2w(x).

Now we assume that the following equation is true for some natural number n,

w(nk)(x) = W−nw
(k)(x) + qW−n+1w(x).



Hence,

w((n+1)k)(x) =
dk

dxk

[
w(nk)

]
=

dk

dxk

[
W−nw

(k)(x) + qW−n+1w(x)
]

= W−nw
(2k)(x) + qW−n+1w

(k)(x)

= W−n
[
−pw(k)(x) + qw(x)

]
+ qW−n+1w

(k)(x)

= (−pW−n + qW−n+1)w(k)(x) + qW−nw(x)

= W−(n+1)w
(k)(x) + qW−nw(x),

proving the theorem. �

2.16. Corollary. Let k ∈ N and f(x) be a solution to an odd Fibonacci-like differential
equation with period k. If {Fn}∞n=0 is the sequence of Fibonacci numbers then,

f (nk)(x) = F−nf
(k)(x) + F−n+1f(x), ∀x ∈ R, n ∈ N.

2.17. Example. Consider the solution f(x) = e(
3√φ/2)(1+

√
3i)x to the differential equa-

tion (2.12). By Corollary (2.16), we see that

f (15)(x) = −1

2
(11 + 5

√
5)e(

3√φ/2)(1+
√
3i)x

= −5φe(
3√φ/2)(1+

√
3i)x +−3e(

3√φ/2)(1+
√
3i)x

= F−5f
(3)(x) + F−4f(x).

2.18. Corollary. Let k ∈ N and j(x) be a solution to an odd Jacobsthal-like differential
equation with period k. If {Jn}∞n=0 is the sequence of Jacobsthal numbers then,

j(nk)(x) = J−nj
(k)(x) + 2J−n+1j(x), ∀x ∈ R, n ∈ N.

2.19. Example. Consider the solution j(x) = e−
5√2x to the odd Jacobsthal-like differ-

ential equation with period 5 given by

j(10)(x) = −j(5)(x) + 2j(x), ∀x ∈ R.

By Corollary (2.18), we see that

j(25)(x) = −32e−
5√2x = 11(−2e−

5√2x) + 2(−5)e−
5√2x = J−5j

(3)(x) + 2J−4f(x).

2.20. Corollary. Let k ∈ N and p(x) be a solution to an odd Pell-like differential equation
with period k. If {Pn}∞n=0 is the sequence of Pell numbers then,

p(nk)(x) = P−np
(k)(x) + P−n+1p(x), ∀x ∈ R, n ∈ N.

2.21. Theorem. Let k ∈ N, p, q ∈ R+, and consider the SOLRHDE-k defined by (2.1).
Then,

(2.15) ΩW,k(x) =

k∑
j=1

(
cje

rjx + c̄je
tjx
)
, ∀x ∈ R,

where cj , c̄j ∈ R and, rj and tj , for all j = 1, 2, . . . , k are roots of α and β, respectively,
is the general solution of the given homogeneous differential equation.

Proof. Let {rj}kj=1 and {tj}kj=1 be the set of kth roots of α and β, i.e.

rj = |α|1/k
[
cos

(
θr + 2πj

k

)
+ i sin

(
θr + 2πj

k

)]
,



and

tj = |β|1/k
[
cos

(
θt + 2πj

k

)
+ i sin

(
θt + 2πj

k

)]
,

where j = 1, 2, . . . , k, θr = arg(α) and θt = arg(β). Note that rj′s and tj′s are all
distinct then, {er1x, er2x, . . . , erkx} and {et1x, et2x, . . . , etkx} are linearly independent sets
of solutions of the homogeneous linear equation defined in (2.1). Hence, by Proposition
(2.5), conclusion follows. �

2.22. Example. Consider the Jacobsthal-like homogeneous differential equation (2.4)
with period 3. By Theorem (2.21), we have the general solution

ΩJ,3(x) = c1e
3√2x + c2e

− 1
2

3√2(1+
√
3i)x + c3e

− 1
2

3√2(1−
√
3i)x

+ c̄1e
−x + c̄2e

1
2
(1+
√
3i)x + c̄3e

1
2
(1−
√
3i)x.

Also, if φ and σ are the golden ratio and silver ratio, respectively, then the general
solution to a Fibonacci-like and Pell-like homogeneous differential equation are given by

ΩF,k(x) =

k∑
j=1

cj exp
(
φ1/kΘ2jx

)
+

k∑
j=1

c̄j exp
(

(φ− 1)1/kΘ2j+1x
)

and

ΩP,k(x) =

k∑
j=1

cj exp
(
σ1/kΘ2jx

)
+

k∑
j=1

c̄j exp
(

(2− σ)1/kΘ2j+1x
)
,

where Θm = cos (mπ/k) + i sin (mπ/k) and cj′s, c̄j′s ∈ R, for all x ∈ R, respectively.

In the rest of our discussion, we investigate the quotient of solutions of a second-order
linear recurrent homogeneous differential equation with period k.

2.23. Theorem. Let p, q ∈ R+ and k ∈ N be the period of a SOLRHDE-k defined in
(2.1) and let w(x) be its general solution. Then, the limit limn→∞

w((n+1)k)(x)

w(n)(x)
exists and

is given by

(2.16) lim
n→∞

w((n+1)k)(x)

w(n)(x)
= α (resp. β), as x→∞ (resp. x→ −∞),

where α and β are the roots of the quadratic equation x2 − px − q = 0. Particularly,
if f(x), j(x), and p(x) are solutions to a Fibonacci-like, Jacobsthal-like, and Pell-like
homogeneous differential equation with period k, respectively, then

lim
n→∞

f ((n+1)k)(x)

f (n)(x)
= φ (resp. 1− φ), as x→∞ (resp. x→ −∞)(2.17)

lim
n→∞

j((n+1)k)(x)

j(n)(x)
= 2 (resp. − 1), as x→∞ (resp. x→ −∞)(2.18)

lim
n→∞

p((n+1)k)(x)

p(n)(x)
= σ (resp. 1− σ), as x→∞ (resp. x→ −∞).(2.19)

Proof. Let k, n ∈ N, p, q ∈ R+, and consider the quotient Q(x) : = ω(k)(x)
ω(x)

, where
ω(x) = w(nk)(x) satisfies a SOLRHDE-k. We suppose x→∞. The case when x→ −∞
can be proven in a similar fashion.

We consider two cases: (i) Q(x) < 0, and (ii) Q(x) > 0.



CASE 1. Suppose that Q(x) < 0. Hence, we can assume without loss of generality
(WLOG) that ω(x) > 0 and ω(k)(x) < 0. By assumption, w(x) satisifes (2.1), so we have

w(2k)(x) = −pw(k)(x) + qw(x),

w(3k)(x) = pw(2k)(x)− qw(k)(x) = p(−pw(k)(x) + qw(x))− qw(k)(x)

= −(p2 + q)w(k)(x) + pqw(x),

w(4k)(x) = pw(3k)(x) + qw(2k)(x)

= p(−(p2 + q)w(k)(x) + pqw(x)) + q(−pw(k)(x) + qw(x))

= −(p3 + 2pq)w(2k)(x) + q(p2 + q)w(k)(x),

...

w(nk)(x) = −Wnw
(k)(x) + qWn−1w(x), ∀n ∈ N,

where Wn is the number sequence satisfying equation (2.3). We let ω(x) = w(nk)(x).
Hence, by Proposition (2.3), ω(x) is also a solution to (2.1). It follows that

ω(k)(x)

ω(x)
=

1

w(nk)(x)

dk

dxk

(
w(nk)(x)

)
=
−Wn+1w

(k)(x) + qWnw(x)

−Wnw(k)(x) + qWn−1w(x)

=
−w(k)(x)

Wn+1

Wn
+ qw(x)

−w(k)(x) + qw(x)
Wn−1

Wn

.

So we have

lim
n→∞

ω(k)(x)

ω(x)
= lim
n→∞

−w(k)(x)
Wn+1

Wn
+ qw(x)

−w(k)(x) + qw(x)
Wn−1

Wn

=
−w(k)(x)

(
limn→∞

Wn+1

Wn

)
+ qw(x)

−w(k)(x) + qw(x)
(

limn→∞
Wn−1

Wn

) .
Since β = (p−

√
p2 + 4q)/2 ∈ (−1, 0), then limn→∞ β

n = 0. Thus,

lim
n→∞

ω(k)(x)

ω(x)
=
−αw(k)(x) + qw(x)

−w(k)(x) + α−1qw(x)
= α <∞,

because limn→∞
Wn+1

Wn
= limn→∞

αn+1−βn+1

αn−βn = α and α > β.

CASE 2. Suppose (WLOG) that ω(x) and ω(k)(x) are both positive. By Proposition
(2.3), ω(x) = w(nk)(x) is also a solution to (2.1). Hence,

lim
n→∞

ω(k)(x)

ω(x)
= lim
n→∞

w((n+1)k)(x)

w(nk)(x)
= lim
n→∞

Wn+1w
(k)(x) + qWnw(x)

Wnw(k)(x) + qWn−1w(x)

= lim
n→∞

w(k)(x)
Wn+1

Wn
+ qw(x)

w(k)(x) + qw(x)
Wn−1

Wn

=
w(k)(x)

(
limn→∞

Wn+1

Wn

)
+ qw(x)

w(k)(x) + qw(x)
(

limn→∞
Wn−1

Wn

)
= α.

By letting (p, q) = (1, 1), (1, 2), (2, 1), we obtain equations (2.17), (2.18), and (2.19),
respectively. This completes the proof of the theorem. �



We also have the following theorem for oSOLRHDE-k.

2.24. Theorem. Let p, q ∈ R+ and k ∈ N be the period of an oSOLRHDE-k defined
by (2.11) and let w(x) be its solutions. Then, the limit limn→∞

w((n+1)k)(x)

w(n)(x)
exists and is

given by

(2.20) lim
n→∞

w((n+1)k)(x)

w(n)(x)
= −β (resp. − α), as x→∞ (resp. x→ −∞),

where α and β are the roots of the quadratic equation x2 − px − q = 0. Particularly, if
f(x), j(x), and p(x) are solutions to an odd Fibonacci-like, odd Jacobsthal-like, and odd
Pell-like homogeneous differential equation with period k, respectively, then

lim
n→∞

f ((n+1)k)(x)

f (n)(x)
= −(1− φ) (resp. − φ), as x→∞ (resp. x→ −∞)

lim
n→∞

j((n+1)k)(x)

j(n)(x)
= 1 (resp. − 2), as x→∞ (resp. x→ −∞)

lim
n→∞

p((n+1)k)(x)

p(n)(x)
= −(1− σ) (resp. − σ), as x→∞ (resp. x→ −∞).

The proof of the above theorem follows the same argument as in the proof of Theorem
(2.23), so we omit it.
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