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The postulates and laws that constitute the foundation of classical electromagnetic 

theory in stationary continuous media are reviewed and discussed from the 
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ÖZET 

Bu çalışmada hareketsiz sürekli ortamlar için klasik elektromanyetizma kuramının 

esasını oluşturan postülalar, yasalar ve ilkeler literatürden atıflarla özgün bir 

yaklaşımla irdelenmiştir. Ortaya konan bakış açısının, elektrik-elektronik 

mühendisliği eğitiminin temelini oluşturan elektromanyetizma kuramının 

olabildiğince net ve doğru şekilde anlaşılmasına katkıda bulunabilmesi 

hedeflemektedir. 

Anahtar Kelimeler: Elektromanyetik alanlar, Maxwell denklemleri, 

elektromanyetizma eğitimi, hareketsiz ortamlar 
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1. INTRODUCTION 

Classification and establishment of a methodology constitute the 

essence of scientific thinking. With this in mind we suggest the 

flowchart in Figure 1 to draw a general strategy for consecutive steps 

in analytical investigation of electromagnetic phenomena. The first 

block describes the construction of the physical model. One starts 

with the postulates and field equations (laws) of stationary (or 

moving) media which are combined with constitutive relations that 

describe the electromagnetic behavior of material media. Next, 

complementary postulates and laws which serve as the bridge that 

meets electromagnetism with other branches of physics (such as 

mechanics, thermodynamics, elasticity, acoustics, physiology, etc.) 

are involved so that the physical model is uniquely constructed. 

Many laws, principles, theorems or relations follow as an outcome 

of these fundamental equations immediately. Finally, the projection 

of the postulates on field behavior in presence of any physical 

singularity, such as boundary/transition conditions, initial 

conditions, the radiation condition, the edge condtions or other 

conditions specific to the problem, such as symmetry or periodicity, 

should be involved. The next block is the construction of the 

mathematical model. By incorporating all field relations, after 

successive decoupling and elimination operations, one obtains a 

mixed boundary value problem for the field quantities under 

investigation. This should be followed with the proof of the well-

posedness of the associated boundary value problem under a most 

general parametrization. The following block is the derivation of a 

solution. To simplify the problem adequately, no physical constraint 

or approximation on the physical and geometrical parameters should 

be missed. Next, the methodology that complies with our purposes 

should be adopted. At this stage one may apply exactly analytical, 

asymptotic, purely computational or hybrid methods. The final block 

is the verification of the obtained analytical or numerical solution. 
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First, the consistency of the solution should be checked in itself over 

various general mathematical/physical properties and principles 

such as periodicity, casuality, stability, reciprocity, duality, energy 

conservation, and so on. This should be followed by a numerical 

comparison between different solutions derived by alternative 

methods to estimate accuracy or convergence property over various 

parameters as a benchmark test. Satisfactory results herald a 

consistent analytical/numerical solution for the boundary value 

problem. Once the mathematical result is also verified by 

measurement data, our mathematical model can be called consistent 

with physical behavior as well. In case of any failure at the 

verification process each consequent step on the flowchart should be 

checked over. 

In this paper the axiomatic structure of classical electromagnetic 

theory in stationary continuous media is studied from the author’s 

perspective for educational purposes. The focus is on the postulates 

and laws of stationary continuous media which fall into the first 

block on the flowchart. 
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Figure 1. A Flowchart of Analytical Investigation of Electromagnetic Phenomena 

2. POSTULATES ON ELECTRICAL CHARGE  

Rougly speaking, the discipline of classical electromagnetism 

studies basically the relation between electrical and magnetic 

sources and the fields they generate as well as their connection with 

quantities from other disciplines of physics. To understand and 

characterize the concepts of this field theory, one must get down to 
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the level of electric charge. The experimental evidences on the study 

of electrical charge pioneered by Cavendish, Robison, Coulomb, 

Millikan till date reveal that its behaviour can be summoned up under 

the following three postulates: 

Postulate 1: There exists two kinds of electrical charges: a positive 

charge and a negative charge. The “plus” and “minus” signs rests on 

the fact that their effects tend to cancel one another. 

Postulate 2: Electrical charge is conserved, it cannot be created or 

destroyed; in the sense that whenever any positive charge appears, 

an equal amount of negative charge also appears. Conversely, 

whenever any positive charge disappears, an equal amount of 

negative charge also disappears. Thus the algebraic sum of all 

charges is constant in any isolated system. This postulate is actually 

assumed to hold for the entire universe, which is called “global 

conservation of charge”. 

Postulate 3: All charges are integral multiples of the electronic 

charge, whose magnitude is given 191.60 10e Coulomb  . The 

study of subatomic particles (quarks) with charges which are 

fractions of e  are beyond the interest of classical electromagnetic 

theory. 

As a good reference of the nature and behaviour of electrical charge 

as well as its experimental tests till date one may refer to the papers 

in the special issue in [1] (see also [2]). These three postulates on 

electrical charge are available in many references including [3, p.4-

5], [4, p.12], [5, p.11]. It should be pointed out that, unlike the 

traditional approach, we consider Coulomb (or Lorentz) Law as a 

“complementary postulate” and do not include as a fourth postulate 

on electric charge at this stage. 
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3. TRANSITION FROM PARTICLE CHARGES TO 

MACROSCOBIC CHARGE DENSITY 

The second step in deriving a macroscobic field theory is to establish 

the transition from discrete electrical charges to a continuous 

distribution. Let us quote from [5, Sect.2.2] and [6, Sect.1.2.1] where 

the reasoning and validity of this transition is clearly described: 

“Obviously, the requirement for a macroscobic field theory is 

associated with the fact that it is impossible to calculate the effect of 

each (free or bound) electric charge in a given system. Therefore a 

macroscobic volume charge density function defined at a point P as 

lim q
 

 
 

   , where   is a small volume that shrinks onto the 

point P in the limit and q  is the total amount of charge in  . 

Since a point theoretically having zero volume cannot contain a 

physically finite sized electron, and the physical fact that the actual 

charge density must vary because of the thermal agitation of 

electrons and protons, it can be inferred that such a limit definition 

is inconsistent with the discreteness of electronic charge. The linear 

dimensions of the electron and proton, when described in classical 

terms, are estimated to be of the order of  1510 [ ]m , these regions 

occupied by these particles are tiny and comparatively isolated; 

moreover, their locations are continually changing. However, from 

a practical point of view, this does not pose a real difficulty. One can 

easily choose the volume   to be quite negligable in comparison to 

the relatively large volumes of interest in a macroscobic theory and 

still be assured of its being sufficiently large on the atomic (or 

microscobic) scale of electrons. The volume   may, in fact, contain 

an immense number of discrete charges. In a metal, for example, the 

free electron density is typically of the order of 29 310 [ / ]electrons m

. An elemental cube with sides as small as a thousand angstroms (i.e., 

3 710 [A] 10 [ ]
o

m ) and thus a volume 21 310 [ ]m  , contains 
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810 100 millon electrons! Yet the size of the elemental cube (

310 [A]
o

) is still quite negligable in comparison to the sizes of most 

electronic devices. Thus, any inaccuracies resulting from the 

assumption of a smooth charge distribution with a finite density are 

negligable. The advantage of a description of electromagnetic theory 

in terms of charge density is thus clear. The field calculated from a 

macroscobic charge density is, of course, correspondingly an 

“average” field; it is what would be found by a laboratory scale 

measurement.” 

One may also refer to [7, Sect.6.6] for the derivation of macroscobic 

Maxwell’s equations by averaging each field quantity in microscobic 

Maxwell’s equations in the distributional sense. 

4. ELECTROMAGNETIC FIELD EQUATIONS OF 

STATIONARY CONTINUOUS MEDIA 

Now that the link between microscobic and macroscobic field 

quantities is discussed, one may introduce the well-known 

Maxwell’s Equations [8] as a postulate. Regarding cases when 

Maxwell’s equations fail to explain electromagnetic phenomena the 

reader may refer to the survey paper [9]. 

Postulate 4: Macroscopic electromagnetic phenomena of stationary 

continuous material media are governed by the Maxwell’s equations 

curl ( ; ) ( ; ) 0,  curl ( ; ) ( ; ) ( ; )CE r t B r t H r t D r t J r t
t t

 
   
 

 (1a,b) 

 div ( ; ) ( ; ),  div ( ; ) 0fD r t r t B r t   (1c,d) 

or equivalently the integral set 

 

 0
S S

d
E dc B dS

dt


      , C

S S S

d
H dc D dS J dS

dt


            (2a,b) 
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fD dS d
 

 


    , 0B dS


  ,        (2c,d) 

where the field quantities are defined in MKSA units as follows: 

( ; )E r t : Electrical field vector [V/m] 

( ; )B r t : Magnetic induction density field (or magnetic displacement 

field) [Wb/m2] (or [T]) 

( ; )H r t : Magnetic field [A/m] 

( ; )D r t : Displacement density field (or electrical displacement field) 

[C/m2] 

( ; )CJ r t : Conduction current density [A/ m2] 

( ; )f r t : Free charge density [C/m3]  

For a complete description of material media we also involve the 

closed form constitutive relations  

     0 0; , ; , ;e m

d b C CD f E H E P B f E H H P J f E H           (3a-c) 

with the additional field quantities 

  9

0 1 36 10    : Dielectric permittivity of free space [F/m] 

7

0 4 10    : Magnetic permittivity of free space [H/m] 

( ; )eP r t : Electrical polarization density field [C/m2] 

( ; )mP r t : Magnetic polarization density field [Wb/m2]  

and df , bf , Cf  being suitable arbitrary functions that may 

characterize material media. 

The presence of electrical and magnetic polarization vectors 
eP  and 

mP  are assumed to characterize (or include) all types of polarization 

mechanisms observable in any material medium. The Maxwell’s 
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equations in point form in (1a-d) can be stated in words briefly as 

follows: 

“The curl of the electrical field at a point equals to the time rate of 

decrease of the magnetic displacement vector at that point.” (also 

called Faraday’s Law) 

“The curl of the magnetic field at a point equals to the total electrical 

current density at that point.” (also called Ampere’s Law) 

“The divergence of the electrical displacement vector at a point is 

equal to the electrical volume charge density at that point” (also 

called Law of Conservation of Electrical Flux) 

“The divergence of the magnetic displacement vector at any point is 

equal to zero” (also called Law of Conservation of Magnetic Flux). 

The present time notation of Maxwell equations is introduced by 

Heaviside, who also developed the modern vector operators. (see. 

[10]). Next we shall make a number of general remarks on this 

system of equations: 

Remark 1: It should be mentioned that not all quantities of an 

electromagnetic space are supposed to vary with both space and time 

simulatenously provided that at least one of the quantities in (1a-d) 

is assumed a function of time. 

Remark 2: By the term “stationary media” it should be understood 

that there are no convention currents, which means that there is no 

material displacement! This description conforms to the Hertzian 

formulation of electrodynamics for moving bodies (cf. [11] and the 

references cited therein), while main stream scientists who treat 

moving electromagnetic media in the context of special/general 

relativity invoke convection currents into the Maxwell’s equations 

by summing up with conduction current (density) term. However, in 

presence of a point charge in arbitrary motion, the partial time 
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derivatives 
t




  in the Maxwell equations fail to characterize the 

actual physical picture by themselves. (see [12], [13]). 

Remark 3: There are two groups of actors in any field theory. These 

are “sources” and “fields”. However, their descriptions are not 

unique. It depends to the representation one chooses. Some fields 

may involve source terms (which is the case with constitutive 

relations) and some sources can be constructed via field terms (called 

“equivalent sources”). Such an interpretation yields that one cannot 

talk about a unique presentation of the Maxwell’s equations. In that 

regard the set (1a-d) is also called the “indefinite” form and 

alternative representations are given in the following section. 

Remark 4: Obtaining field quantities from given sources and 

medium properties is called an “analysis” problem, while the 

opposite case is called a “synthesis” or a “design” problem. Either it 

is an analysis or a design problem, the actual solution can be obtained 

only when the problem is “well-posed” in the sense of Hadamard, 

i.e., a solution exists, the solution is unique, the solution depends 

continuously on data. 

Remark 5: It is seen that dynamic electrical phenomena are 

modelled fundamentally via divergence and curl operations in space 

and first order differentiation operator in time. Of course, many more 

operators will be involved when we exercise on these equations, but 

still the mentioned operators are indispensible and their physical 

interpretations are of fundamental importance. 

Remark 6: It is not always the case for an arbitrary vector ( ; )A r t  

that curl ( ; ) ( ; )A r t A r t  or ( ; ) ( ; )
A

A r t r t
t




. Therefore one should 

not draw conclusions from (1a) or (1b) such as ( ; ) ( ; )E r t B r t  or 
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( ; ) ( ; ) or ( ; )CH r t D r t J r t  in any case regardless of the properties 

of a medium. (cf. [14], [15] and the references cited therein). 

Remark 7: One common property of divergence, curl and partial 

time derivative operators is their linearity. On the other hand, all 

source quantities in Maxwell’s equations are of the first order. These 

properties directly addresses that the Postulate 4 inherently involves 

“the principle of superposition”. 

This property can be stated as follows: Consider that we have two 

sets of sources ( , )I I

f CJ  and ( , )II II

f CJ . Then the total field at any 

point when the two sources exist simultaneously is the vector sum of 

the (partial) fields generated when they appear by themselves in the 

same medium: 

( , ) ( , ) ( , ) ( , )I I II II I I II II

f C f C f C f CE J J E J E J                 

and similarly for the other three field components. However, it 

should not be inferred that the actual coupling mechanism between 

the two sets of sources is disregarded when one treats them 

individually. 

Remark 8: The most critical components in the dynamic field 

relations are the electrical and magnetic displacement current 

densities ( ; )
D

r t
t




 and ( ; )

B
r t

t




. 

D

t




 has the same unit as the 

electrical conduction current density function CJ , which implies 

that this term also signifies a certain mechanism of current flow. A 

current that is generated by a dynamic field as opposed to by motion 

of electrons! This groundbreaking contribution of Maxwell to 

electromagnetism denotes that the flow of current (or of the 

associated energy) may be maintained by the displacement field at 

any point where conduction or convection currents are cut off 
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abruptly in a dynamic system, and is closely associated with the 

radiation mechanism of antennas. 

5. ON ALTERNATIVE REPRESENTATIONS OF THE 

FIELD EQUATIONS 

Which type of analogy is there between electrical and magnetic field 

quantities? Two different viewpoints discussed in [16, Sect.104] 

yield opposite results: 

1. By looking at the mathematical (dual) structure of the field 

equations (1a-d) it can be inferred that E  and D  can be correlated 

to H  and B , respectively.  

2. On the other hand, the definitions of E  and B  (based on a test 

charge in Coulomb and Lorentz Force Laws) make no reference to 

electric and magnetic properties atoms or molecules and holds 

equally well both macro- and microscobically. By contrast, the 

microscobic definitions of D  and H  in (3a,b) involve eP  and mP , 

and hence depend on atomic or molecular properties; the step from 

the micro- to macroscobic definitions involves taking averages over 

multitudes of atoms. From this standpoint E  and D  are correlated 

respectively to B  and H .  

Another argument is which pair of the four electric and magnetic 

field quantities is more meaningful, more descriptive and more 

convenient in specific computations. For this purpose let us 

introduce the following polarization source quantities: 

( ; ) div ( ; )e e

P r t P r t   : Electrical polarization (or bounded) charge 

density [C/m3] 

( ; ) div ( ; )m m

P r t P r t   : Magnetic polarization (or bounded) charge 

density [Wb/m3] 
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( ; ) ( ; )e e

PJ r t P r t
t





: Electrical polarization  (or bounded) current 

density [A/ m2] 

( ; ) ( ; )m m

PJ r t P r t
t





: Magnetic polarization  (or bounded) current 

density [V/ m2] 

 0( ; ) 1 curl ( ; )e e

VOJ r t P r t   Electrical vortex current density [V/ 

m2]  

 0( ; ) 1 ( ; )mM r t P r t : Magnetization vector [A/m] with 

 0B H M   

 0( ; ) 1 curl ( ; ) curl ( ; )m m

VOJ r t P r t M r t   [A/m2] Magnetization 

(or magnetic vortex) current density 

while  2

0 0 01c   . The notations  
,e m

PJ , 
,e m

VOJ  belong to the present 

author. Next, we outline the four possible pairings as follows: 

Form A1.  

Fundamental Fields: ( E , B ) 

Fundamental Sources: ( f , CJ ), ( e

P ,
e

PJ ), 
m

VOJ   

curl 0
B

E
t


 


,   02

0

1
curl e m

C P VO

E
B J J J

c t



   


      (4a,b) 

  0div 1 e

f PE         , div 0B                                        (4c,d) 

This representation is called Amperian model in literature as 

emphasized in [16, p.367] and is especially suitable in particle 

dynamics where the Lorentz Force comes into play and in relativistic 

electrodynamics for applying Lorentz transformations. 
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Form A2.  

Fundamental Fields: ( E , H ) 

Fundamental Sources: ( f , CJ ), ( e

P ,
e

PJ ), ( m

P ,
m

PJ )  

0curl m

P

H
E J

t



  


 , 0curl e

C P

E
H J J

t



  


                    (5a,b) 

  0div 1 e

f PE         ,  0div 1 m

PH                  (5c,d) 

This model is particularly convenient in electromagnetic wave 

propagation theory in MKSA units since it is suitable to describe the 

intrinsic impedance of a medium and power flow in terms of E  and 

H  fields. (see also [16, p.367], [17, p.xiii]). 

Form A3.  

Fundamental Fields: ( D , B ) 

Fundamental Sources: ( f ; CJ ), 
e

VOJ ,
m

VOJ   

0 0curl e

VO

B
D J

t
 


 


 ,  0 0curl m

C VO

D
B J J

t
 


  


          (6a,b) 

div fD   , div 0B          (6c,d) 

Form A4.  

Fundamental Fields: ( D , H ) 

Fundamental Sources: ( f , CJ ), ( m

P ,
m

PJ ,
e

VOJ )  

 02

0

1
curl e m

VO P

H
D J J

c t



  


 , curl C

D
H J

t


 


      (7a,b) 

div fD   ,  0div 1 m

PH           (7c,d) 
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Forms A3 and A4 have not attracted much interest in the history of 

electromagnetism. Finally let us quote the views of C.T. Tai [18] on 

the argument:  

“As long as Maxwell’s equations are written in their indefinite form 

(1a-d) all these variants are equally acceptable. The reason for this 

strong statement is that once the constitutive relations are known or 

specified all of them reduce to one definite form, and it is the final 

form of Maxwell’s equations with the constitutive relations that 

provide us a working model. In other words, it is meaningless to 

speak of the solutions of the Maxwell’s equations in their indefinite 

forms” 

6. MAXWELL’S EQUATIONS IN SYMMETRIC FORM 

Let us introduce hypothetical free magnetic sources into Maxwell’s 

equations and make a notational change in free electrical sources as 

( ; )e

CJ r t : Electrical conduction current density [A/ m2] 

( ; )e

f r t : Free electrical charge density [C/m3]  

( ; )m

CJ r t : Magnetic conduction current density [V/ m2] 

( ; )m

f r t : Free magnetic charge density [Wb/m3]  

Discussions on the availability of isolated magnetic poles are beyond 

the interest of the present work (cf.[19]). However, the concept of 

magnetic conductors is commonly used in electromagnetic radiation 

problems. Accordingly, the corresponding pairs are outlined as 

follows: 

Form B1.  

Fundamental Fields: ( E , B ) 

Fundamental Sources: (
e

f ,
e

CJ ), ( e

P ,
e

PJ ), 
m

VOJ ,  (
m

f ,
m

CJ ) 
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curl m

C

B
E J

t


  


,   02

0

1
curl e e m

C P VO

E
B J J J

c t



   


     (8a,b) 

  0div 1 e

f PE         , div 0B                                        (8c,d) 

Form B2.  

Fundamental Fields: ( E , H ) 

Fundamental Sources: (
e

f ,
e

CJ ), ( e

P ,
e

PJ ), ( m

P ,
m

PJ ), (
m

f ,
m

CJ )  

0curl m m

C P

H
E J J

t



   


 , 0curl e e

C P

E
H J J

t



  


      (9a,b) 

  0div 1 e e

f PE         ,  0div 1 m

PH                  (9c,d) 

Form B3.  

Fundamental Fields: ( D , B ) 

Fundamental Sources: (
e

f ,
e

CJ ), 
e

VOJ , 
m

VOJ , (
m

f ,
m

CJ ) 

0 0curl e

VO

B
D J

t
 


 


 ,  0 0curl m

C VO

D
B J J

t
 


  


   (10a,b) 

div e

fD   , div 0B       (10c,d) 

Form B4.  

Fundamental Fields: ( D , H ) 

Fundamental Sources: (
e

f ,
e

CJ ), ( m

P , 
m

PJ ), 
e

VOJ , (
m

f ,
m

CJ ) 

 02

0

1
curl e m m

VO P C

H
D J J J

c t



   


 , curl e

C

D
H J

t


 


   (11a,b) 

div e

fD   ,  0div 1 m

PH         (11c,d) 
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Remark 9: There is an astonishing coupling mechanism in 

Maxwell’s equations such that electric and magnetic type quantities 

seem to interchange under a certain rule in passing from one relation 

to another. It is called the duality principle and the transformations 

are as follows: 

, , , , , , ,e m e m e m e m e m e m

f f C C P P P P VO VOE H J J P P J J J J D B           ; 

, , , , , , , ;m e m e m e m e m e m e

f f C C P P P P VO VOH E J J P P J J J J B D                

0 0   in any field relation to obtain another (the dual) one. This 

property also implies that the dual transformations in the solution of 

a certain problem directly yield the solution of the dual problem 

without effort. When 
m

f , 
m

CJ  are not involved in a model, then the 

duality principle applies only when 
e

f , 
e

CJ  are zero as well, i.e., in 

nonconducting media. 

Remark 10: Are Maxwell’s equations more informative in 

differential or integral form? This question has been discussed in 

detail in [20] and concluded that two different formulations of the 

same phenomenon need to be equally informative (though not 

supposed to be equally practical in every case) as long as both sets 

are postulated properly. By equal information we imply that any 

mathematical relation derived through one set of Maxwell’s 

equations should also be derivable through the other set. 

7. THE PRINCIPLE OF CONTINUITY 

If one applies the divergence operator on (1b) and substitute (1c) into 

the resultant equation, the field components ( ; )D r t  and ( ; )H r t  are 

eliminated to yield  

( ; ) ( ; ) 0
f

CdivJ r t r t
t


 


,                                                            (12) 



On the Postulates and Laws of Electromagnetic Theory in Stationary Continuous Media 

 
177 

which is called “the principle of continuity for conduction currents”. 

(12) can be expressed in words as follows: “The divergence of the 

density of electrical conduction currents at a point is equal to the time 

rate of decrease of static charges at the same point”. For Maxwell’s 

equations in symmetric form the continuity relations for all types of 

sources can be outlined as follows:  

,

,div ( ; ) ( ; ) 0

e m

fe m

CJ r t r t
t


 


, 

,
, ( ; ) ( ; ) 0

e m
e m P
PdivJ r t r t

t


 


  (13a-d) 

The integral form of (13a-d) in an arbitrary volume can be written as 

, , 0e m e m

C f

d
J dS d

dt
 

 


    ,
, , 0e m e m

P P

d
J dS d

dt
 

 


        (14a-d) 

When the Maxwell equations are considered as the fundamental laws 

of stationary continuous media, then the continuity relations (13) or 

(14) follow as corollaries. It is also possible to go backwards by 

postulating the four continuity relations for free and polarized 

electrical/magnetic currents to derive the four Maxwell equations in 

symmetric form (see [21]). 

8. A PHYSICAL INTERPRETATION OF THE MAXWELL’S 

EQUATIONS IN POINT FORM 

A physical interpretation of the relations (1a-d) and (2) can be given 

when one incorporates the integral form definitions of curl and 

divergence operators. For a comprehensive discussion on the 

definitions of vector operators the reader may refer to [22]. Now, 

assume that we are involved in electromagnetic phenomena taking 

place at an arbitrary fixed point   at the instant  . Then one can write 

1
ˆlim max ( ; ) ( ; )

S P
C

B
n E r t dc P t

S t 


  
   

  
                                (15a) 
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1
ˆlim max ( ; ) ( ; ) ( ; )C

S P
C

D
n H r t dc P t J P t

S t 


  
   

  
                  (15b) 

1
lim ( ; ) ( ; )f

P
S

D r t dS P t



 



 
                                                 (15c) 

1
lim ( ; ) 0

P
S

B r t dS
  



 
                                                            (15d) 

1
lim ( ; ) ( ; )

f

C
P

S

J r t dS P t
t



 



  

  .                                         (16) 

In (15a,b) we introduce an arbitrary infinitisimal open surface S  

with unit normal n̂  and enclosure C  that includes and shrinks onto 

a fixed point P  in the limiting case. The direction of n̂  and dc  are 

specified according to the right hand rule. In (15c,d) to (16) we have 

an arbitrary infinitisimal volume   with enclosure S  that also 

includes and shrinks onto the fixed point P  in the limiting case (see 

Fig.s 1 and 2). 

       Figure 1                                                            Figure 2 

8.1 An Interpretation of Faraday’s Law in Point Form  

We perform contour integrations of the total electrical field around 

the enclosures of infinitely many infinitisimal open fixed surfaces 

(as in Fig. 1) defined by the only condition that they include (and 

shrink in the limit onto) the fixed point P and divide the result to the 

surface area. Each time we obtain a real number. However, there is 
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only one open surface of them all that yields the greatest value. That 

numerical value together with the accompanying unit normal vector 

of that surface describe the curl of the electrical field at the point P, 

which is also equal to the time rate of decrease of the total magnetic 

displacement field at the same point. We understand that the 

direction and magnitude of the vector 
B

t




 at any point yields 

information about the “maximum circulation” of the electrical field 

at the same point. To be more specific we shall denote the surface, 

its enclosure and the unit normal that maximize the contour 

integration by MS , 
MC  and ˆMn , respectively. Then our relation 

can be written as 

1
ˆlim ( ; ) ( ; )

M

M

M
S P

M C

B
n E r t dc P t

S t 



 

   

which yields 

ˆ( ; ) M

B
P t n

t




       and      

1
( ; ) lim ( ; )

M

M

S P
M C

B
P t E r t dc

t S 



 

   . 

A further manipulation on the integral representation is also 

possible: One may apply scalar product operation ˆ
M MS n   to each 

side to get 

ˆlim ( ; ) lim ( ; )
M M

M

M M
C P S P

C

B
E r t dc P t n S

t   



    

  

and rearrange the right hand side as 

ˆlim ( ; ) lim ( ; ) lim ( ; )

lim ( ; ) ( ; )

M M M

M M

M

M M
S P S P S P

S S

m
m M

S P

B B d
P t n S r t dS B r t dS

t t dt

dd
S t P t

dt dt




     
 

 

 
     

 

  

 
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where we introduce ( ; ) ( ; )

M

m M

S

S t B r t dS


    and 

lim ( ; ) ( ; )
M

m M m
S P

S t P t 
 

   as “the instantaneous total magnetic 

flux passing through the surface MS  and point P ”, respectively. It 

should be noted that ( ; )m MS t   and ( ; )m P t  and quantities with 

similar arguments that follow are nonstandard notations introduced 

by the author. In the theory of analytical functions the formal 

equivalence ˆlim ( ; ) lim ( ; )
M M

M

M M
S P S P

S

B B
P t n S r t dS

t t   


 
   

 
  is 

known to hold when  ( ; )
B

r t
t




 remains finite (bounded) on the 

surface MS . 

The term ( ; )

MC

E r t dc


  addresses the total work done by the 

(electrical) sources in carrying a (free) 1C  electrical point charge 

around the fixed contour 
MC  as observed by the electrical point 

charge itself. It is also called “the electromotive force” (“emf”) 

acting on MS , again, as observed by the point charge.  We shall 

call its limiting value as 
MC P   as “the instantaneous 

electromotive force at point P ”, or ( ; )emf P t . 

Consequently, Faraday’s Law in point form can be stated alternative 

to (15a) as 

( ; ) ( ; )md
emf P t P t

dt


                                                                 (17) 

and expressed in words as “the instantaneous electromotive force at 

a fixed point P  is equal to the time rate of decrease total magnetic 

flux passing through that point”. Obviously, the directions of 

circulation and the normal of the surface are always specified in 

accord with the right hand rule unless otherwise stated. 
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When electrical and magnetic fields remain finite inside any 

neighborhood of the point P , the individual terms in (17) vanish in 

a uniform manner in the limiting case 
MS P   to yield 

( ; ) 0emf P t  ,   ( ; ) 0m P t  . 

Obviously, the new point form quantities ( ; )emf P t  and ( ; )m P t  

make sense (are nontrivial) when singular electrical and/or magnetic 

field quantities are involved.  

8.2 An Interpretation of Ampere’s Law in Point Form  

Based on our expertise with Faraday’s Law we can express 

Ampere’s Law directly as follows: “The maximum circulation of the 

magnetic field around a fixed point P  is equal to the total current 

density (sum of displacement and conduction current densities) 

passing through that point” or  

1
ˆlim ( ; ) ( ; ) ( ; )

M

M

M C
S P

M C

D
n H r t dc P t J P t

S t 



  

   

which yields 

ˆ( ; ) ( ; )C M

D
P t J P t n

t





 

and 

1
( ; ) ( ; ) lim ( ; )

M

M

C
S P

M C

D
P t J P t H r t dc

t S 



  

    

One should note that MS , 
MC  and ˆMn  in Ampere’s Law is by no 

means related to those calculated in Faraday’s Law and is only a 

matter of notation. 

A further manipulation as before gives 
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ˆlim ( ; ) lim ( ; ) ( ; )
M M

M

C M M
C P S P

C

D
H r t dc P t J P t n S

t   


 
     

 
  

The right hand side can be arranged into 

ˆlim ( ; ) ( ; ) lim ( ; ) ( ; )

lim ( ; ) ( ; )

( ; ) ( ; )

M M

M M

M

C M M C
S P S P

S S

e
M C M

S P

e
C

D D
P t J P t n S r t dS J r t dS

t t

d
S t I S t

dt

d
P t I P t

dt





   
 

 

   
        

     

 
    

 

 

 

 

where we introduce ( ; ) ( ; )

M

e M

S

S t D r t dS


    as “the 

instantaneous total electrical flux passing through the surface MS ” 

and ( ; ) lim ( ; ) lim ( ; )
M M

M

C C M C
S P S P

S

I P t I S t J r t dS
   



     as “the 

instantaneous free current passing through point P ”. Due to duality 

between Faraday’s and Ampere’s Laws, the term  ( ; )

MC

H r t dc


  

addresses the total work done by the sources in carrying a (free) 

1 Wb  magnetic point charge around the fixed contour 
MC  as 

observed by the magnetic point charge itself. This terms is also 

called “the magnetomotive force” (“mmf”) acting on MS , again, as 

observed by the magnetic point charge itself. We shall call its 

limiting value as 
MC P   as “the instantaneous magnetomotive 

force at point P ”, or ( ; )mmf P t . Please note that mmf is a physical 

(measurable) quantity although it has been described via the 

fictitious magnetic point charge not included in our fundamental 

representation of the field equations (1a-d).  

In the limiting case 
MS P   the alternative representation of 

Ampere’s Law can be given as   
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( ; ) ( ; ) ( ; )e Cmmf P t P t I P t                                                       (18) 

which can be expressed in words as “the instantaneous 

magnetomotive force at a point P  is equal to the sum of the total 

instantaneous electric flux and the free currents passing through that 

point”. Again, the point form quantities in (18) are nontrivial only 

when ( ; )H r t , ( ; )D r t  and ( ; )CJ r t  display singular behavior at 

point P . As one of the simplest cases ( ; )CJ r t  can be observed to 

have a singular nature at a point P  when a uniform current flows 

along a curve, or on a surface that includes that point. 

8.3 An Interpretation of the Law of Conservation of Electrical 

Flux in Point Form 

In (15c) we first multiply each side by   to get 

lim ( ; ) lim ( ; )f
S P P

S

D r t dS P t


 
   



    

Each side can be put into the final forms  

lim ( ; ) lim ( ; ) ( ; )e e
S P S P

S

D r t dS S t P t 
   



    ,   

lim ( ; ) lim ( ; ) ( ; )f
P P

r t d Q t Q P t
 



  
   



    

to get 

( ; ) ( ; )e P t Q P t  ,                                                                        (19) 

or “the total instantaneous electrical flux emerging from any point is 

equal to the total instantaneous electrical charge located on the same 

point”. It should be emphasized that ( ; )Q P t  in (19) is nontrivial only 

when ( ; )f r t  displays singular behavior at point P . For instance, 

this case may easily be associated with an isolated point charge 

located at that point. However, if we consider a uniform distribution 

of line and surface charges on a curve C  and a surface   that cross 



Burak POLAT 

 
184 

the point P  with arbitrary but finite valued (line and surface) charge 

densities ( ; )L r t  and ( ; )S r t , then volume integrations in an 

infinitisimal region   that contains and shrinks onto point P  

reduce as 

lim ( ; ) lim ( ; )f L
P C P

C

r t d r t dL




  
   

 

   

. lim ( ; ) lim ( ; )f S
P P

r t d r t dS




  
  

 

  . 

Due to a standard theorem of integration, the right hand side integrals 

have values in the range  

lim min ( ; ) lim ( ; ) lim max ( ; )L L L
C P r C C P C P r C

C

r t C r t dL r t C  
       



     

lim min ( ; ) lim ( ; ) lim max ( ; )S S S
P r C P P r

r t r t dS r t  
    



    , 

the end points of which go to zero uniformly. Here we assume  

( ; )L r t  or ( ; )S r t  to have a positive sign. A similar procedure 

applies when any of them has negative sign. This example 

demonstrates that ( ; ) 0Q P t   for these two geometries. 

8.4 An Interpretation of the Law of Conservation of Magnetic 

Flux in Point Form 

Due to the similar structure of (15d) with (15c), this law can be 

expressed in a straightforward manner as 

( ; ) 0m P t  ,                                                                                (20) 

or  “the total instantaneous magnetic flux emerging from any point 

is equal zero”, which, again, is nontrivial only when ( ; )B r t  displays 

singular behavior at point P . 
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8.5 An Interpretation of the Law of Continuity of Free Currents 

in Point Form 

We first multiply (16) by   to get 

lim ( ; ) lim ( ; )
f

C
S P P

S

J r t dS P t
t




   



   

  

and then put each side of this relation into the final forms 

lim ( ; ) lim ( ; ) ( ; )C C C
S P S P

S

J r t dS I S t I P t
   



    ,   

lim ( ; ) lim ( ; )

                             lim ( ; ) ( ; )

f f

V P P

f
P

P t r t d
t t

d dQ
r t d P t

dt dt







 
 

 

   


 


 
 

 

 





 

to get 

( ; ) ( ; )C

dQ
I P t P t

dt
  ,                                                                    (21) 

which can be interpreted as “the total instantaneous free current 

emerging from any point is equal to the time rate of decrease of the 

total instantaneous charge at the same point”.   

A similar interpretation also applies to electrical and magnetic 

polarization currents: 

,
, ( ; ) ( ; )

e m
e m P
P

dQ
I P t P t

dt
  , 

where we may describe the instantaneous electrical/magnetic 

polarization charges and currents at an arbitrary point in terms of the 

instantaneous electrical/magnetic polarization flux , ( ; )e m

P P t  at the 

same point through 
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,
, ,

,
,

( ; ) lim ( ; ) lim ( ; )

                                                 lim ( ; ) ( ; )

e m
e m e m

P P
S P S P

S S

e m
e m P

S P
S

P
I P t J r t dS r t dS

t

dd
P r t dS P t

dt dt



   
 

 



   



  

 



, , ,

, ,

( ; ) lim ( ; ) lim ( ; )

                                                 lim ( ; ) ( ; )

e m e m e m

P P
P P

e m e m

P
S P

S

Q P t r t d divP r t d

P r t dS P t

 
 

  



   
 

 


  

   

 


 

8.6 A Special Case: “The current at the tip of an infinitely thin 

conducting wire” 

We shall consider an “infinitely thin” arbitrary conducting wire 

carrying a dynamic free current  ( , )CI r t  (see Fig. 3). Let us assume 

that this thin wire is cut abruptly at two tip points, one of which we 

shall call  P . By a  “flux integration” of the Faraday’s Law (1b) 

through an infinitely small closed surface S  that shrinks onto the 

fixed point P , we shall show that ( ; ) 0CI P t  . 

Figure 3 

A “flux integration” of the Faraday’s Law through any arbitrary 

closed surface S  is written by  

( ; ) ( ; ) ( ; )C

S S S

D
curl H r t dS r t dS J r t dS

t


    

    

Due to Stokes’ theorem, the left hand side equals to the circulation 

of the magnetic field around the enclosure of  S . However, S  is a 

priori a closed surface and, by definition, has a zero enclosure. 
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Therefore, assuming that ( ; )H r t  does not possess any singularity at 

any point on S , the left hand side always yields zero: 

( ; ) 0
S

curl H r t dS        ,       ( ; ) ( ; )C

S S

D
r t dS J r t dS

t


   

  . 

Next we consider the closed surface to be infinitely small and shrink 

onto the fixed point P  in the limit. Then one writes 

lim ( ; ) lim ( ; )C
S P S P

S S

D
r t dS J r t dS

t   


   

  . 

The right hand side formally yields ( ; )CI P t  and the right hand side 

yields zero through (19) as 

lim ( ; ) lim ( ; ) ( ; ) ( ; ) 0e

S P S P
S S

dD d dQ
r t dS D r t dS P t P t

t dt dt dt



   
 

 
      

  
  , 

since ( ; ) 0Q P t   as described following (19). This result is based on 

the physical fact that only a uniform distribution of line charges can 

be supported on a simple conductor. Alternatively, this can also be 

taken as a mathematical description for a simple conductor. So we 

obtain the desired result which is usually incorporated as a boundary 

condition in modeling of thin wire antennas. 

9. CONCLUSION 

In the present work a flowchart for analytical investigtion of 

electromagnetic phenomena is sketched and the axiomatic structure 

of classical electromagnetic theory based on Maxwell’s equations is 

studied in stationary continuous media from a Hertzian perspective. 

The extension of the present subject for moving bodies is available 

in the authors’s earlier work [11] on the axiomatic structure of 

Hertzian electrodynamics. 
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