
Cumhuriyet Üniversitesi Fen Fakültesi
Fen Bilimleri Dergisi (CFD), Cilt:36, No: 3 Özel Sayı (2015)

ISSN: 1300-1949

Cumhuriyet University Faculty of Science
Science Journal (CSJ), Vol. 36, No: 3 Special Issue (2015)

ISSN: 1300-1949

*Corresponding author. Email address: Javanmard@pnu.ac.ir

Special Issue: The Second National Conference on Applied Research in Science and Technology

http://dergi.cumhuriyet.edu.tr/cumuscij ©2015 Faculty of Science, Cumhuriyet University

Comparison between Agile and Traditional software development
methodologies

 Mahdi JAVANMARD1,Maryam ALIAN1

1Tehran Payam Noor University, IRAN

 Received: 01.02.2015; Accepted: 05.05.2015

__

Abstract.This paper is a review research about the features of the agile and heavy (traditional) software development
methodologies and comparisons between them based on: Approach, Success Measurement, Project size, Management
Style, Perspective to Change, Culture, Documentation, Emphasis, Cycles, Domain, Upfront Planning, Return on
Investment and Team Size. The important difference between agile and heavy methodologies is the adaptability for
project changes. In agile methodologies changes do easily but heavy methodologies are static and do not adapt with
changes. Also in this paper there are the usage of each groups of methodologies and how can work two groups
together. In addition, some types of heavy and agile methodologies have been described.

Keywords: Methodology, Agile, Heavy, Traditional, Plan Driven, Feature Driven.

1. INTRODUCTION

Traditional methodologies are plan driven in which work begins with the elicitation and
documentation of a complete set of requirements, followed by architectural and high level
design development and inspection. Due to these heavy aspects, this methodology became to be
known as heavyweight. Some practitioners found this process centric view to software
development frustrating and pose difficulties when change rates are still relatively low. As a
result, several consultants have independently developed methodologies and practices to
embrace and respond to the inevitable change they were experiencing. These methodologies and
practices are based on iterative enhancements, a technique that was introduced in 1975 and that
has become known as agile methodologies [1].

The name “agile” came about in 2001, when seventeen process methodologists held a
meeting to discuss future trends in software development. They noticed that their methods had
many characteristics in common so they decided to name these processes agile, meaning it is
both light and sufficient. In consequence to this meeting, the “Agile Alliance” and its manifesto
for agile software development emerged [1].

Agile exposes organizational dysfunction. Unlike traditional methods, agile methodologies
embrace iterations rather than phases. Agile employ short iterative cycles, small/short releases,
simple design, refactoring continuous integration and rely on tacit knowledge within a team as
opposed to documentation. Some of the popular agile methods are Extreme Programming,
Scrum, Lean, Kanban, Dynamic System Development Method, Feature Driven Development
and Adaptive Software Development [2].

The key difference between heavyweight and agile methodologies is the adaptability factor.
In an agile methodology if any major change is required, the team doesn't freeze its work
process; rather it determines how to better handle changes that occur throughout the project. The
verification process in agile method occurs much earlier in the development process. On the
other hand heavyweight methods freeze product requirements and disallow change. It

Comparison between Agile and Traditional Software Development
Methodologies

1387	

	

implements a predictive process and relies on defining and documenting a stable set of
requirements at the beginning of a project [2].

2. TRADITIONAL METHODOLOGY
a. The nature of systems development [3]

Software development is a highly complex activity. It is characterized by variable
requirements, the need for specialized and diverse skills, changeable and sophisticated
technology used to develop and deploy software, and difficulty in management of the people
who deal with such complexity every day. It is not uncommon to find organizations
overwhelmed by the inherent complexity in implementing systems development projects [3].

Therefore, systems development processes can be described as being complex,
unpredictable, and poorly defined. In other words, these processes don't have well-defined
inputs and outputs and therefore are considered unrepeatable [3].

b. The traditional systems development model [3]

Almost since its inception, a rational, engineering-based approach, such as the Waterfall
method, has been used to develop projects. This choice seems to have been grounded in "hard-
systems thinking," which assumes that problems can be well defined, processes can be
optimized, and results can be well predicted. Extensive up-front planning is done to measure
and control the variations in the development life cycle [3].

The essential nature of the traditional software development life cycle is as follows [3]:

• The goals are to thoroughly understand users' needs, craft a solid design, develop
software flawlessly, and implement a functional system that satisfies user needs [3].

• There is a heavy emphasis on thorough planning to deal with risks [3].
• It is based on the principles of hard-systems thinking — identifying alternate ways of

reaching the desired state (S1) from the initial state (S0) and choosing the best way to
achieve it (S0 – S1) [3].

• Such an approach assumes that problems are well defined and that an optimum solution
can be arrived at by extensive, up-front planning [3].

• It also assumes that the processes are predictable and can be optimized and made
repeatable [3].

• It is also based on the assumption that processes can be adequately measured and that
sources of variations can be identified and controlled during the development life cycle
[3].

• In summary, the traditional software development life cycle is highly process-centric
[3].

Based on the above understanding of systems development, organizations adopt a
management style that is [3]:

Command-and-control-based, with a set hierarchy. Therefore these are predominantly
mechanistic organizations geared for high performance in a stable environment [3].

Characterized by high formalization and standardization. People with different
specializations are assigned roles for producing defined outcomes. In addition to this, they also
produce a significant amount of documentation that explains the software and its technical and
design specifications [3].

Notable in that though customers play an important role, their participation is at maximum
only during the specification and implementation stages [3].

JAVANMARD, ALIAN

1388	

	

From the customers' perspective, there are pros and cons to traditional approaches. The
definite advantage is its scalability. Very large projects and mission-critical projects need a
strong plan and close supervision, and they need provision for stability. The shortcomings are
based on the assumption that customer requirements are well understood at the beginning and
don't change much, which is rarely the case. Another fundamental problem is that processes
take too long, such that when end users see the system, many things - including user
requirements - have changed drastically [3].

To summarize, there are two broad themes that emerge in traditional systems development,
around which the problems are centered [3]:

The development life cycle and its processes: The way processes are understood and
designed and managed (as though they are well defined, predictable, repeatable processes) is
highly process-centric. It uses hard-systems thinking, engineering-based in its approach. The
focus is on achieving stability [3].

The management style: The way people are organized, managed, and controlled is through
"high command and control," a formalized and standardized appropach with limited customer
interaction [3].

Summary of Some Traditional methodology as follows:

Plan-Driven Methodologies: Traditional plan-driven models for software design, also known
as Software Development Lifecycles (SDLCs) break up projects up into phases. A typical
example might be [4]:

Figure 1. Traditional project management delivery [4].

• Requirements: Assessing scope of the system requirements and the overall project [4].
• Architecture and Design: Developing an understanding of the solution from a technical
perspective, creating a high-level design of modular components and their interactions, and
setting standards for how common technical issues should be resolved [4].
• Development: Producing code in an environment specific to the culture of the project. Tasks
are assigned according to individual skills, and development continues until goals or milestones
are reached [4].
• Testing, Delivery and Feedback: Testing of individual component should be ongoing, with
application-level testing towards the end of the project — ideally, involving customers to
confirm that requirements have been met, or to identify changes that must be made [4] .

Plan-driven methodologies work well for small, well-defined projects with a limited scope of
work and few variables. Due to the IT industry’s rapid growth and progression, methodologies
have had to evolve to get expansive projects with multi-million dollar budgets completed on
time and on budget [4].

c. Some traditional methodologies include:

1) Waterfall: The waterfall approach emphasizes a structured progression between defined
phases. Each phase consists on a definite set of activities and deliverables that must be

Comparison between Agile and Traditional Software Development
Methodologies

1389	

	

accomplished before the following phase can begin. The phases are always named differently
but the basic idea is that the first phase tries to capture What the system will do, its system and
software requirements, the second phase determines How it will be designed. The third stage is
where the developers start writing the code, the fourth phase is the Testing of the system and the
final phase is focused on Implementation tasks such as training and heavy documentation.
However, in engineering practice, the term waterfall is used as a generic name to all sequential
software engineering methodology.[1]

Figure 2. A Comparison between Agile and Traditional Software Development Methodologies M. A. Awad [1]

2) Rational Unified Process (RUP): All efforts, including modeling, is organized into workflows
in the Unified Process (UP) and is performed in an iterative and incremental manner. The
lifecycle of the UP is presented in Figure 3. Some of the key features of the UP are as follows
[1]:

• It uses a component based architecture which creates a system that is easily extensible,
promotes software reuse and intuitively understandable. The component commonly being used
to coordinate object oriented programming projects [1].
• Uses visually modeling software such as UML – which represent its code as a diagrammatic
notation to allow less technically competent individuals who may have a better understanding of
the problem to have a greater input [1].
• Manage requirements using use-cases and scenarios have been found to be very effective at
both capturing functional requirements and help in keeping sight of the anticipated behaviors of
the system [1].
• Design is iterative and incremental – this helps reduce project risk profile, allows greater
customer feedback and help developers stay focused.
• Verifying software quality is very important in a software project. UP assists in planning
quality control and assessment built into the entire process involving all member of the team
[1].

Figure 3. Development Methodologies M. A. Awad [1].	

JAVANMARD, ALIAN

1390	

	

3) Rapid Application Development (RAD): Emphasizes user involvement and the building of
prototypes to prove techniques and refine requirements. After the scope of the project is defined
in the Requirements Planning phase, users interact with system analysts to develop prototypes
in the User Design phase. Users then provide direct feedback during the Construction phase.
Finally, in the Cutover phase the end users are trained to use the product as it is deployed.[1].

4) Spiral Model: Another heavyweight software development model is the spiral model, which
combines elements of both design and prototyping-in-stages, in an effort to combine advantages
of top-down and bottom-up concepts. The spiral model was defined by Barry Boehm, based on
experience with various refinements of the waterfall model as applied to large software projects
[1].

• Objective setting – Specific objectives for the project phase are identified [1].
• Risk assessment and reduction – Key risks are identified, analyzed and information is
obtained to reduce these risks [1].
• Development and Validation – An appropriate model is chosen for the next phase of
development.
• Planning – The project is reviewed and plans are drawn up for the next round of spiral [1].

5) ITIL: Information Technology Infrastructure Library (ITIL): A comprehensive set of
processes and best practices for projects in the IT realm. ITIL is a how-to guide for IT projects
such as data center design or large-scale institutional network hardware configuration.[4]

3. AGILE METHODES [3]

To address the challenges posed by the traditional methods, a set of lightweight methods
called "Agile" were developed more than a decade ago. They include XP, Scrum, feature-driven
development, and more. Agile methods, using various tactics, try to overcome the limitations of
the dynamic nature of systems development projects [3].

Agile methods address the inherent problems of traditional systems development using two
scientific concepts: One method is using "empirical process control." One can also say that this
is based on "soft-systems thinking." The other method is seeing the systems development as
"complex adaptive systems" and designing team structures and methods around that [3].

Here is how Agile addresses the shortcomings of the traditional software development life
cycle [3]:

Agile methods adopt the empirical process control model as against the defined process
control model. Empirical process control is meant for processes that aren't well defined and are
unpredictable and unrepeatable. It implements control through frequent inspection and
adaptation. Since software development processes are highly complex and variable in nature,
empirical process control methods seem to be a best fit to deliver results [3].

According to complexity theory, a complex adaptive system (CAS) self-organizes and adapts
to changes in the environment without any central rules governing its behavior. An Agile
development system can be likened to a CAS, responding to complex and unpredictable
changes in the requirements [3].

The development model changes from a linear life cycle model to an evolutionary delivery
model. This is characterized by short iterative cycles, with periodic reflections and adaptations
and continuous integration of code into the overall system under development [3].

Comparison between Agile and Traditional Software Development
Methodologies

1391	

	

Since the cycles are short and iterative, they provide the necessary flexibility and speed to
adapt to changes in requirements through constant feedback from the stakeholders [3].

Agile methods also need constant collaboration with customers, using their input and
feedback at various checkpoints during each iterative cycle [3].

a. Summary of Some Agile methodology are shown as follows:

1) Scrum: A generic process framework, not limited to software development. Cyclic and
iterative, rather than phase-oriented - planning and implementation are concurrent, so while the
team is busy building, they’re also planning for the future [5].

Scrum is an iterative, incremental process for developing any product or managing any work.
Scrum concentrates on how the team members should function in order to produce the system
flexibility in a constantly changing environment. At the end of every iteration it produces a
potential set of functionality. The term ‘scrum’ originated from a strategy in the game of rugby
where it denotes “getting an out-of-play ball back into the game” with team work [1].

Scrum does not require or provide any specific software development methods/practices to
be used. Instead, it requires certain management practices and tools in different phases of Scrum
to avoid the chaos by unpredictability and complexity [1].

Key Scrum practices are discussed below and the Scrum process is shown as follows [1]:
• Product Backlog - This is the prioritized list of all features and changes that have yet to be
made to the system desired by multiple actors, such as customers, marketing and sales and
project team. The Product Owner is responsible for maintaining the Product Backlog [1].
• Sprints - Sprints are 30-days in length, it is the procedure of adapting to the changing
environmental variables (requirements, time, resources, knowledge, technology etc) and must
result in a potentially shippable increment of software. The working tools of the team are Sprint
Planning Meetings, Sprint Backlog and Daily Scrum meetings [1].
• Sprint Planning meeting – Sprint planning meeting is first attended by the customers, users,
management, Product owner and Scrum Team where a set of goals and functionality are decided
on. Next the Scrum Master and the Scrum Team focus on how the product is implemented
during the Sprint [1].
• Sprint Backlog – It is the list of features that is currently assigned to a particular Sprint.
When all the features are completed a new iteration of the system is delivered [1].
• Daily Scrum – It is a daily meeting for approximately 15 minutes, which are organized to
keep track of the progress of the Scrum Team and address any obstacles faced by the team [1].

2) Extreme Programming (XP): XP focuses on tactical best-practices for building software
rather than the best ways to get the overall project to the release on time and on budget. It
prescribes a very specific set of software development practices, like pair programming, test-
driven development, and continuous integration. As a result, agile software projects often use
Scrum for project management while drawing tactical practices from XP [4].

3) Feature Driven Development (FDD): Feature Driven Development (FDD) was used for the
first time in the development of a large and complex banking application project in the late 90’s.
Unlike the other methodologies, the FDD approach does not cover the entire software
development process but rather focuses on the design and building phases [1].

4) Dynamic System Development Method: The DSDM, Dynamic System Development
Method, was developed in the United Kingdom in the mid-1990. The fundamental idea behind
DSDM is to fix time and resources, and then adjust the amount of functionality accordingly
rather than fixing the amount of functionality in a product, and then adjusting time and
resources to reach that functionality. DSDM consists of five phases [1].

JAVANMARD, ALIAN

1392	

	

b. General Features and Comparison of Agile Methodologies [1]

Table 1 is shown the comparison of Agile Methodologies:

Figure 4. Table of General Features and Comparison of Agile Methodologies [1]

4. DIFFERENCE IN AGILE AND HEAVYWEIGHT METHODOLOGY

A summary of the difference of agile and heavyweight methodologies is shown in table
below [1].the difference is useful for comparing them.

Table 1.	
 Difference in Agile and Heavyweight Methodologies [1].

Comparison between Agile and Traditional Software Development
Methodologies

1393	

	

Agile Methods Heavy Methods

Approach Adaptive Predictive

Success Measurement Business Value Conformation to plan

Project size Small Large

Management Style Decentralized Autocratic

Perspective to Change Change Adaptability Change Sustainability

Culture Leadership-
Collaboration Command-Control

Documentation Low Heavy

Emphasis People-Oriented Process-Oriented

Cycles Numerous Limited

Domain Unpredictable/Explor
atory Predictable

Upfront Planning Minimal Comprehensive

Return on Investment Early in Project End of Project

Team Size Small/Creative Large
	

5. HOW CAN WATERFALL AND AGILE WORK TOGETHER?[5]

While it’s tempting for proponents of agile methodologies to claim they work best for every
development project, that’s simply not the case.While agile project management methodologies
can generally be used for any development project and will often provide some powerful
benefits, situations definitely arise when more traditional methods like Waterfall are the smarter
way to go [5].

For example, large, enterprise-wide development efforts in which the user is being led
through a standardized process are completed more efficiently using Waterfall methods. On the
other hand, teams developing mobile applications – which must be highly flexible and quickly
updated due to the nature of the ecosystem they’re created for – will likely find agile methods
more conducive to success [5].

However, in the real world of project management and development, many projects are not
completely black or white. They actually benefit most from a hybrid approach that takes
advantage of the strengths of both Agile and Waterfall methodologies without allowing them to
get in each other’s way [5].

a. Blending the Best of Both Worlds[5]

How can Waterfall and Agile work together to the benefit of the project [5]?First of all, it’s
important to understand where each method’s strength lies[5].

Agile methods generally allow for faster iteration and more frequent releases with
subsequent user feedback that can be worked into future development. Waterfall methods tend
to greatly lessen the number and severity of errors that will affect the end user [5].

So, in many cases, the optimum project combination incorporates significant planning and
QA input early in the development process to mitigate errors while introducing Agile processes

JAVANMARD, ALIAN

1394	

	

to the release schedule and user feedback opportunities, allowing for faster and more controlled
improvements [5].

b. Pros and Cons[5]

Of course, blending these two methods into a hybrid project requires some level of
compromise from both sides [5].

In contrast with a strictly Waterfall project, a hybrid project has to give up some level of
certainty in exchange for the flexibility afforded by the Agile aspects of the development
process. Similarly, in contrast with an agile project, a team working on a hybrid project may
find their freedom limited by Waterfall’s planning, budgeting and scheduling constraints [5].

Through adequate communication and effective cooperation between team members and
diverse teams, however, the hybrid approach can often be the most effective means of
completing complex projects with shifting requirements [5].

6. CONCLUSION

Although there are many benefits of using agile methodologies, but these methodologies
cannot be fully used in all projects. Agile methodologies are adaptive with changes but they are
used in Small Projects. Today Some Project do based on heavy methodologies yet, choosing a
methodology is depended on type, scale of project and another factor.

REFERENCE

[1] M. A. Awad,”A Comparison between Agile and Traditional Software Development
Methodologies”, School of Computer Science and software Engineering, The University of
Western Australia , 2005.
[2] Bhattacharjee, Vishwajyoti , July 06, 2012, http://EzineArticles.com/7162906.
[3] Vijaya Devi,” Traditional and Agile Methods: An Interpretation“, 23 January 2013,
http://www.scrumalliance.org/community/articles/2013/january/traditional-and-agile-methods-
an-interpretation.

[4] “Project Management & Agile Methodologies”,September 17,
2012,https://www.cprime.com/2012/09/project-management-agile-methodologies.
[5] “Hybrid Projects: How Can Waterfall and Agile Work Together”, May 13,
2014,https://www.cprime.com/2014/05/hybrid-projects-how-can-waterfall-and-agile-work-
together.

