
Cumhuriyet Üniversitesi Fen Fakültesi 
Fen Bilimleri Dergisi (CFD), Cilt:36, No: 3 Özel Sayı (2015) 

ISSN: 1300-1949 
 

 

Cumhuriyet University Faculty of Science 
Science Journal (CSJ), Vol. 36, No: 3 Special Issue (2015) 

ISSN: 1300-1949 
 

	  

_____________ 

*Corresponding author. Email address: Mehdi_motevasel@yahoo.com 

Special Issue: The Second National Conference on Applied Research in Science and Technology 

http://dergi.cumhuriyet.edu.tr/cumuscij ©2015 Faculty of Science, Cumhuriyet University 

Probabilistic Energy Manement of micro-grids with respect to Economic and 
Environmental Criteria 

 

 Mehdi MOTEVASEL1,*, Shahriar BAZYARİ2 

1 Department of electrical engineering, Collage of engineering, Shiraz branch, Islamic azad university, Shiraz, Iran  

 2 Department of electrical engineering, Fasa Branch, Islamic Azad University, Fasa,Iran  

 Received: 01.02.2015; Accepted: 05.05.2015 

______________________________________________________________________________________________ 

Abstract. Recently, the use of renewable energy such as wind and solar energy has rapidly increased in micro-grids. 
Due to the fluctuation of wind speed and solar radiation, the scheduling of  wind turbines (WTs) and photovoltaic 
(PV) plants are difficult in micro-grids. In this paper, a probabilistic energy management system (PEMS) is used to 
optimize the operation of a grid-connected micro-grid via Economic and Environmental Criteria. For optimal 
operation of WTs and PVs with other DERs, the fluctuations of WT and PV power generation has been considered 
and a multiobjective probabilistic economic/environmental load dispatch is presented. For optimal operation of the 
micro-grid, a complete mathematical  model for energy storage system (ESS) is introduced. Finally, an efficient 
improved bacterial foraging-based fuzzy satisfactory optimization algorithm is proposed to solve the multi-objective 
problem. The results show that the PEMS can optimize total operation cost and net emissions of the micro-grid, 
simultaneously. 

Keywords: Micro-grid, probabilistic energy management system (PEMS), distributed energy resources (DERs), 
bacterial foraging optimization (BFO)  
_____________________________________________________________________________ 

 
1. INTRODUCTION 
 

In recent years, due to economical and environmental issues, the application of distributed 
energy resources (DERs) such as wind turbine (WT), photovoltaic (PV), biomass, micro-turbine 
(MT), etc; have been widespreadly increased [1].  A micro-grid comprises a low-voltage 
distribution network with DERs, storage devices and controllable loads which can operate either 
interconnected or isolated from the main distribution grid as a controlled entity [2,3]. Recently, 
many researchers have focused on control and operational planning of the micro-grids. 
Generally, their researches can be classified in three parts: modeling of micro-grid and obtaining 
proper objective functions, proposing different strategies for energy management in micro-
grids, and introducing different optimization algorithms to optimize their objective functions. 
For modeling the operation of the micro-grids, DERs and energy storage system (ESS) are the 
important parts which can play a vital role in energy management of the micro-grids. The ESS 
can reduce the fluctuations of unpredictable resources such as WTs and PVs and can improve 
the performance of the micro-grids. Some references have focused on modeling of renewable 
energy sources to optimize their operations [4,5]. Some other references have proposed different 
models for scheduling of storages in micro-grids [6,7]. But for optimal operation of the micro-
grid, only economic objectives are considered. However, because of the pollutants emission of 
the DERs, only the economic objectives may not satisfy all the requirements for optimal 
operation of the micro-grids. So, to obtain the optimal solutions, the environmental and 
economic objectives must be considered, simultaneously. To obtain the optimal set points of 
DERs in micro-grids, some literatures have considered both cost and emission objective 
functions [8]. Some literatures have used the emission as a constraint and some other have used 
the linear combination of different objectives as a weighted sum and solve the problem with 
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single objective function [9,11]. But due to conflicting meaning of emission and cost, some 
other literatures have used multi-objective optimization techniques [12-14]. To solve multi-
objective problems some literatures have considered Fuzzy algorithms [15-19]. K.M. Passino, 
proposed Bacterial Foraging Optimization (BFO) algorithm which is based on the foraging 
behavior of  E.coli bacteria [20]. Many researchers have used BFO algorithm for small-scale 
optimization. But this algorithm has poor convergence properties in the large and complex 
search space and the populations may stick around optima  [8]. In this regard, some researchers 
have proposed modified BFO to achieve the best answers [9]. In this paper, a smart energy 
management system (PEMS) is presented for optimizing the operational planning of an 
interconnected micro grid over a 24-hour time interval. The PEMS tries to schedule different 
DERs and smart ESS in such a way that the total operation cost and the net emission are 
minimized. For optimal operation of the micro-grid, a comprehensive formulation for the PEMS 
is presented. In this regard, the mathematical models for renewable energy sources (WT & PV) 
are presented. Also, a smart model for ESS which consists of practical constraints is developed. 
An efficient modified Bacterial Foraging Optimization (MBFO) algorithm is proposed to 
optimize both operating cost and net emission, while all constraints are satisfied. An interactive 
fuzzy satisfying method is also introduced to derive a satisfying solution for the decision maker 
(DM). To evaluate the feasibility and accuracy of the proposed algorithm, the mentioned 
method is applied to a test system and the results are compared with other optimization 
algorithms.  

                                                                              
 

2. OPTIMIZATION PROBLEM 
 

The aim of the proposed PEMS is to find the optimal set points of DERs, storage system and 
also the amount of exchanging power with the utility grid with respect to economical and 
environmental criteria. The objective functions which must be optimized are formulated as 
follow: 

2.1. Operating cost minimization 

The total operation cost which includes the costs of selling power of DERs, maintenance and 
shut-down and startup costs, and the cost of exchanging power with the utility grid, can be 
written as follow: 

1
1 1 1

( ) ( )( ( ) ) ( ) ( 1) ( ) ( ) ( )
g Es

gi i Sj

N NT

i gi OM gi i i j Sj
t i j

J Min u t P t B t K S u t u t u t P t B t
= = =

⎧ ⎫⎪ ⎡ ⎤ ⎡ ⎤= + + − − +⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎭⎩
∑ ∑ ∑

                 
(1)  

In above equation, gN is the number of distributed energy resources, EsN is the number of 

energy storage devices, ( )
gi
B t is the bid of thi  distributed energy resources, ( )giP t is output 

power of thi  distributed energy resources, ( )SjP t  is the power of thj ESS, ( )
Sj
B t is the bids of 

thj  ESS,  ( )iu t  indicates  off/on  states of equipments, giS is the shut-down /start-up cost of 
thi  distributed energy resources, ( )GridP t is exchanging power between micro-grid and utility 

grid, ( )GridB t  is price of energy in upstream grid, and 
iOMK  maintenance coefficient  of thi  

distributed energy resources.  

2.2.  Pollutants emission minimization 

To minimize the total emission pollutants we consider XNO , 2SO  , and 2CO . This 
objective function can be formulated as follow: 
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(2) 

In above equation, ijEF is the emission coefficient for the thi  distributed energy resources with 
thj  type. ET is the type of emission such as 

XNO , 
2SO  , and 

2CO , N is the number of 
distributed energy resources  which generate emission pollutants, and gridEF is the emission 
coefficient of the upstream grid. 

2.3. Constraints 

• Electrical balance:  

_
1 1

( ) ( ) ( ) ( )
g EsN N

gi Sj Grid L elec
i j
P t P t P t P t

= =

+ + =∑ ∑
                                                                                         

(3) 

Where _ ( )L elecP t is the electrical load of the costumers.  

• Electrical limitation: 
,min ,max

max

( ) ( ) ( )gi gi gi

Grid exch

P t P t P t

P P

≤ ≤⎧⎪
⎨

≤⎪⎩
                                                                                                        (4) 

 
• ESS limits:  

max
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3. INTERACTIVE FUZZY SATISFACTORY METHOD 
 

In this work, an interactive fuzzy satisfactory method is used to achieve the best solution for 
multi-conflicting objectives. In this method, because of the imprecise nature of the judgment of 
DM, the objective functions are converted to linear membership functions. in this regard, the 
maximum and minimum of each objective function should be obtained to calculate those 
membership functions. After that, the membership function of thi  objective function is 
calculated as[21,22]: 

max

max min

1
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θ
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(8) 

Where ( )iJ θ  is the thi objective function, and min max( )i iJ J is the minimum (maximum) of thi  

objective function. In this algorithm, the value of min
iJ and max

iJ  are calculated using the results 
obtained separately by optimizing each objective function. The value of 1 for the membership 
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function indicates that the DM is fully satisfied while the zero value shows that it is not satisfied 
at all. After calculating ( )iµ θ , the reference membership values should be chosen by DM.  . 
The reference membership values for all objective function should be chosen as a real number 
between [0, 1].  These reference membership values indicate the importance for each objective 
function. Then, to obtain the optimal solution, the following min-max problem must be solved 
[23]: 

( ) }{ ri iMin Max µ µ θ

θ

−⎡ ⎤⎣ ⎦

∈Ζ

    1,2,..., obji N=                                                                                   (9)                                      

In above min-max problem, the reference membership value of thi objective function is defined 
as riµ , objN is the number of all objective functions, and Ζ  represents the non-inferior 
solutions. After defining reference membership values, they should be updated to achieve the 
solutions which satisfy the DM. In each step, the DM verifies the obtaining solutions and 
finally, chose the most satisfying solutions. 

4. UNCERTAINTY CHARACTERIZATION BASED ON THE 2M PEM  
 

To explain the inherent uncertainties involved in the power systems, probabilistic techniques 
have been utilized [24]. These methods implement the approximate description to obtain 
statistical moments from m input random variables. Among different well-known techniques in 
this area, the First Order Second Moment Method [25] andPEMare the predominant ones. The 
most important disadvantage of this method is the dependency of the technique to the 
derivatives of nonlinear functions under study. Firstly, the original PEMwas proposed by 
Rosenbluth [26].However, its performancewas greatly depended on the numerous simulations 
required to implement the proposed technique. Therefore, extensiveefforts were established to 
overcome such deficiency. Su was the first to use 2mPEM method in the probabilistic load flow 
[27]. One of these schemes is 2m PEM[28]. Due to the variable nature of the wind speed as well 
as the uncontrollable factors related to the load demands, it is necessary to model these variables 
in a probabilistic environment. In the context of EED, the SO must be able to characterize the 
distribution functions of output random variables (i.e. total electrical energy cost and total fuel 
combustion emission) through the distributionfunctions of input random uncertainties (i.e. load 
demand and wind speed). Basically, the Deterministic Wind-thermal Economic Dispatch or 
Deterministic Wind-thermal Emission Dispatch can be mathematically defined as a function of 
the input set of variables named z as shown in Eq. (10). Note that T is a nonlinear function as 
described in Section 2. Mathematically, the deterministic EOM of the MGs can beexpressed as: 
 

( )S f v=                                                                                                                                  (10) 
 
where v is the set of input variables, S is the output of EOM problem and f is the set of the 
energy and operation cost equations. In order to solve the deterministic EOM problem, all IRVs 
are considered equal to their forecasted values. However, the real values for some variables may 
differ from their forecasted values [29] such as the errors in the forecasted available output 
powers of the WT and PV units. The function f transfers the uncertainty from the IRVs to the 
output variable. Considering m IRVs, (10) can be written as: 
 

( )1 2, , ,..., mS f c z z z=                                                                                                             (11) 
where c is the set of certain variables, ( 1,..., )iz i m= are input variables under uncertainty with 
the probability function 

1z
Df The idea behind the PEM is to calculate the statistical information 

of the output variables using the solution set of the deterministic EOM problem for only few 
estimated values of IRVs. In order to find the statistical moments of the output random variable, 
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2m PEM needs only first few central moments of the IRVs, i.e. the mean plµ ,variance plσ
 

and skewness coefficients. This attribute is a remarkable advantage of the point  estimate 
methods where implementing the features of IRVs is a difficult task to reach [21]. The 2m PEM 
produces two probability concentrations for each IRV, ( ),1 ,1,l lz w  

and ( ),2 ,2,l lz w  
. The ,l poz  

( 1,2po = ) is called the poth location of lz and  ,l pow  ( 1,2po = ) is aweighting factor which 
specifies the importance of the corresponding location in evaluating the statisticalmoments of 
the output randomvariable. The deterministic EOMis simulated 2m times in the proposed 
probabilistic method. In each simulation, one of the IRV is fixed to one of its locations, and the 
other IRVs are equal to their mean value as follows: 

 
 
( ) 1 2 ,, ( , , ,..., ,..., )

1,2,...,
mz z l po zl poS f c z

l m

µ µ µ=

=           
1,2po =                                                                    (12) 

 
Where 

,1lz   and 
,2lz are the specified locations of the IRV 1z , and 

1Z
µ  is the mean value of the 

left over IRVs. Once the solutions of  2m deterministic EOM, ( ),l poS , are explored, the mean 

and the standard deviation of the output random variable can be estimated. 
 
5. THE PROPOSED MBFO ALGORITHM  

The classical BFO has been successfully used for low-dimensioned optimization problems. 
But this algorithm indicates poor convergence properties for large scale search space and the 
populations may stick around optima. Therefore, to obtain the best answers in such a complex 
problem, the algorithm must be modified. In this paper, two modifications for BFO algorithm 
are considered. These modifications are presented as follow:                                  1) In classical 
BFO, Elimination and Dispersal prevent bacteria from being trapped in local optima [9]. But 
this process is not efficient for finding global optima in a large constrained problem. For solving 
this problem, a mutation strategy is proposed. In this regard, after each chemotactic step, the 
mutation strategy to update the positions of the bacteria is used. By using this strategy, the 
bacterium can have a better movement and the accuracy of the optimization algorithm for 
finding the local and global solutions is significantly improved. This mutation strategy can be 
presented as follow: 

 assume that 1kθ , 2kθ  and 3kθ  are the position of 3 random bacterium and  1k , 2k  and 3k  are 

random and integer numbers in [0,S] where 1 2 3k k k≠ ≠ . Then, by considering the mutation 
strategy, the position of the mutation bacterium can be calculated as follow: 

( )31 2( , , ) ( , , ) ( , , ) ( , , )kk k
mut j k l j k l F j k l j k lθ θ θ θ= + × −                                         (13)                

where F is the mutation factor and is considered between [0.1, 1]. After that, let 

1 2 3, ,i i i i
NEW new new newθ θ θ θ
→

⎡ ⎤= ⎣ ⎦  the position vector which elements are the new positions of the 

bacteria. These new positions can be obtained as follow: 

1

i
i
new

mut

θ
θ

θ

⎧⎪
= ⎨
⎪⎩

 1Cr rand
else

>

,       
2

i
i
new

best

θ
θ

θ

⎧⎪
= ⎨
⎪⎩

 2Cr rand
else

>

  ,      
3

besti
new

mut

θ
θ

θ

⎧⎪
= ⎨
⎪⎩

 3Cr rand
else

>

          (14)
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Where 1 2,Cr Cr and 3Cr  are chosen in [0, 1] and bestθ  is the position of bacteria which has the 

least value of the objective function. After calculating  1 2,i i
new newθ θ  and 3

i
newθ , their related 

objective function values should be obtained and if those values are less than the value of 
( )iJ θ , then their positions must be replaced with iθ .  

2) The length unit step of the bacteria plays an important role in accuracy and speed of 
convergence in BFO algorithm. If the step size is very high, then the precision of global optima 
decreases, and if it is very small, the convergence speed becomes low. The authors in [9], have 
proposed a non-linear decreasing dynamic step size which can improve the capability and 
accuracy of optima searching. In this research, dynamic function instead of constant step size is 
used. This dynamic step size is shown as follow: 
 

( , ) ( )( , 1) ( )
( )

C
C

C C

C i j C NC i j N j
N C N

⎛ ⎞−
+ = −⎜ ⎟

+⎝ ⎠                                                                                     (15) 
 
6. RESULTS AND DISCUSSION 

In this part, the proposed PEMS is applied to optimize the operation of a typical grid-
connected micro-grid, for 24-hour time interval.The micro-grid consists of WT, PV, MT, FC, 
and smart ESS. The micro-grid can exchange limited power with upstream grid for supplying 
the customer’s load demand with respect to economical and environmental criteria All 
information from the micro-grid is sent to PEMS and finally, the PEMS obtains the optimal set 
points of  DERs and storage devices, in such a way that the total operation cost and the net 
emission are simultaneously minimized. All DERs generate electrical power according to their 
limits. The power limitation of the DERs and their related shut-down /Start-up costs and the 
emission factors are represented in table 1(a) and 1(b), respectively. The electrical load demands 
in kW is tabulated in table 2. The DERs bid, storage bid and the hourly electricity prices of 
utility grid in Euro/kW are taken in table 3 [13]. The normalized forcasted WT &PV power 
generation is shown in figure 1. It also be mentioned that for the energy storage 
system, max 150 (0) 5S SE kWandE kW= = .   

.	        

Figure 1. Normalized forcasted WT &PV power generation 
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 Table 1. (a)Installed DG sources (b)Emission factors 

 
 
 
 
 
 
 

(a) 
                

 
 
                                                                                                                     

          
                                          

(b) 
 
Table 2. Micro-grid electrical load demands in kW. 
 

Hour 
1 

Hour 
2 

Hour 
3 

Hour 
4 

Hour 
5 

Hour 
6 

Hour 
7 

Hour 
8 

Hour 
9 

Hour 
10 

Hour 
11 

Hour 
12 

52 50 50 51 56 63 70 75 76 80 78 74 
Hour 

13 
Hour 

14 
Hour 

15 
Hour 

16 
Hour 

17 
Hour 

18 
Hour 

19 
Hour 

20 
Hour 

21 
Hour 

22 
Hour 

23 
Hour 

24 
72 72 76 80 85 88 90 87 78 71 65 56 

 
Table 3. DERs and storage bids. 
  

Hour MT 
(Euro /kWh) 

FC 
 (Euro /kWh) 

PV 
(Euro/kWh) 

WT 
(Euro/kWh) 

Battery 
(Euro/kWh) 

utility Price 
(Euro/kWh) 

1 0.0823 0.1277 0 0.021 0.1192 0.033 
2 0.0823 0.1277 0 0.017 0.1192 0.027 
3 0.0831 0.1285 0 0.0125 0.1269 0.02 
4 0.0831 0.129 0 0.011 0.1346 0.017 
5 0.0838 0.1285 0 0.001 0.1423 0.017 
6 0.0838 0.1292 0 0.015 0.15 0.029 
7 0.0846 0.1292 0 0.021 0.1577 0.033 
8 0.0854 0.13 0.0646 0.033 0.1608 0.054 
9 0.0862 0.1308 0.0654 0.062 0.1662 0.215 

10 0.0862 0.1315 0.0662 0.125 0.1677 0.572 
11 0.0892 0.1323 0.0669 0.15 0.1731 0.572 
12 0.09 0.1315 0.0677 0.155 0.1769 0.572 
13 0.0885 0.1308 0.0662 0.125 0.1692 0.215 
14 0.0885 0.1308 0.0654 0.135 0.16 0.572 
15 0.0885 0.1308 0.0646 0.115 0.1538 0.286 
16 0.09 0.1315 0.0638 0.085 0.15 0.279 
17 0.0908 0.1331 0.6538 0.035 0.1523 0.086 
18 0.0915 0.1331 0.0662 0.025 0.15 0.059 
19 0.0908 0.1338 0 0.02 0.1462 0.05 
20 0.0885 0.1331 0 0.23 0.1462 0.061 
21 0.0862 0.1315 0 0.033 0.1431 0.181 
22 0.0846 0.1308 0 0.015 0.1385 0.077 
23 0.0838 0.13 0 0.021 0.1346 0.043 
24 0.0831 0.1285 0 0.017 0.1269 0.037 

 

In the first step, the PEMS is applied to grid-connected micro-grid and then, we minimize the 
operation cost and the net emission, separately. To prove the effectiveness and accuracy of the 
proposed algorithm, the results are compared with some other optimization algorithms such as 

ID type Min power 
(kW) 

Max Power 
(kW) 

Start up/shut 
down cost 
(Euro/kW) 

1 MT 6 30 0.107 
2 FC 3 30 0.138 
3 PV 0 25 0 
4 WT 0 20 0 
 5 ESS -30 30 0 

Emission 
type 

Emission factors (kg/MWh) 
MT FC Boiler Grid 

NOX 0.2 0.0136 1.812 2.295 
CO2 724 489 845 922 
SO2 0.0036 0.0027 2.545 3.583 
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genetic algorithm and (particle swarm optimization). In this regard, the statistical indices of 
average and standard deviation for these algorithms are evaluated. These results are shown in 
tables 4. By comparing the results we come to the conclusion that the proposed MBFO 
algorithm is efficient for solving such a high-dimensioned problem and has better indices of 
average and standard deviation.  According to the results, the total operating cost is = 48.73073 
Euro for a day ahead interval. In the last step, the proposed Multi-objective MBFO algorithm is 
used to minimize both objective functions (total operation cost and net emission), 
simultaneously. The results of are shown in table 12. In the optimization process, three different 
reference memberships are considered as the interactive input values. Then, the values of 
membership function and objective function are calculated for each reference membership 
values. As shown in table 12, in the first interaction all of reference membership values are set 
to one. After inputting reference membership values, the proposed algorithm solves the min-
max problem (equation 9). The results indicate that the optimum nonferior solutions can not 
satisfy the DM. In interaction two, 1rµ  and 2rµ  are updated ( 1 20.6 0.65r randµ µ= = ). The 

results represent that with new 1rµ and 2rµ , the operating cost and the emission is improved. In 

third interaction, to obtain the better solution, a smaller values are given to 1rµ and 2rµ   
( 1 20.5 0.55r randµ µ= = ). In this interaction, the outputs are improved in both operation cost and 
emission which can satisfy the DM. In this interaction, the outputs are improved in both 
operation cost and emission which can satisfy the DM. 

 
Table 4. The minimum total operating cost of the micro-grid. 

 
 
Table 5. Results of the Multi-objective MBFO algorithm. 

Interaction Reference membership function 
value Membership function value Total cost function and emission 

1 1 1rµ =  

2 1rµ =  

1 0.6712µ =  

2 0.5482µ =  
1 112.5642EuroJ =  

2 876.258J Kg=  

2 1 0.6rµ =  

2 0.65rµ =  
1 0.4925µ =  

2 0.6135µ =  

1 107.1857EuroJ =  

2 846.834J kg=  

3 
1 0.5rµ =  

2 0.55rµ =  
1 0.4999µ =  

2 0.5001µ =  
1 103.6767EuroJ =  

2 847.7009J kg=  

 
  

7. CONCLUSION 

In this paper, a new multi-objective PEMS is proposed to optimize the operation of a micro-
grid in such a way that the total operating cost and the net emission are simultaneously 
minimized. To reduce the net emission of the micro-grid, renewable energy sources such as WT 
and PV are used and their comprehensive mathematical models are extracted. A smart ESS 
model with practical constraints is also introduced to decrease the both emission and operating 

Optimization  
algorithm 

Best solution 
 Worst solution ( Euro ) Average ( Euro ) Standard deviation (Euro) 

operating 
cost 

( Euro ) 

net 
emission 

(kg) 

operating 
cost 

( Euro ) 

net 
emission 

(kg) 

operating 
cost 

( Euro ) 

net 
emission 

(kg) 

operating 
cost 

( Euro ) 

net 
emission 

(kg) 
GA 55.573 715.162 59.364 721.258 57.825 718.21 0.3845 1.321 
PSO 52.356 711.489 57.245 716.254 54.853 713.281 0.2841 1.232 

MBFO 48.73073 703.234 48.986 704.673 48.815 703.682 0.0951 0.1255 
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cost and improves the micro-grid performances. The PEMS optimization module uses an 
improved bacterial foraging-based fuzzy satisfactory optimization algorithm to optimize the 
multi-objective problem. Comparing the results with other optimization algorithms shows that 
the PEMS works very well and can determine the optimal set points of DERs, battery storage, 
and also the amount of exchanging power between utility and micro-grid, with respect to 
economical and environmental issues.  
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