
Cumhuriyet Üniversitesi Fen Fakültesi 
Fen Bilimleri Dergisi (CFD), Cilt:36, No: 3 Özel Sayı (2015) 

ISSN: 1300-1949 
 

 

Cumhuriyet University Faculty of Science 
Science Journal (CSJ), Vol. 36, No: 3 Special Issue (2015) 

ISSN: 1300-1949 
 

	  

_____________ 

*Corresponding author. Email address: eghbalahmadimh@ripi.ir 

Special Issue: The Second National Conference on Applied Research in Science and Technology 

http://dergi.cumhuriyet.edu.tr/cumuscij ©2015 Faculty of Science, Cumhuriyet University 

Data reconciliation and gross error detection: application in chemical processes 

 
Mohammad Hosein EGHBAL AHMADİ 

Research Assistant, Process Development and Equipment Technology Division, Research Institute of Petroleum 
Industry (RIPI), P.O. Box 18745-4163, Tehran, Iran 

 Received: 01.02.2015; Accepted: 05.05.2015 

______________________________________________________________________________________________ 

 
Abstract. Measured data are normally corrupted by different kinds of errors in many chemical processes. In this 
work, a brief overview in data reconciliation and gross error detection believed as the most efficient technique in 
reducing the measurement errors and obtaining accurate information about the process is presented. In addition to 
defining the basic problem and a survey of recent developments in this area that is categorized in “Real Time 
Optimization” field, we will describe about advanced optimization methods in nonlinear cases. At the end, 
implementation of data reconciliation is illustrated on a challenging process of Claus as a case study and as a result, a 
modified and consistent model with regard to measured data is presented by simultaneous estimation of key model 
parameters. In our case study, automation capability of ASPEN HYSYS is used to provide interface environment to 
reach global optimum. 
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1. INTRODUCTION 
 

Today, with the advent of modern desktop computers, hundreds or thousands of process 
measurements are simultaneously measured and stored in massive storage media for the 
continuous monitoring of the process behavior and for performing process studies, such as 
development of robust process models and the online optimization of the process operation. 
Hence, Industrial plants may provide very detailed and rich data sets for development of 
fundamental modeling studies. Yet, measured data are normally corrupted by different kinds of 
errors. As a consequence, the collected data generally do not satisfy the process constraints, 
including mass and energy balances as well as other relationships between process variables. 
For this reason, implementation of data rectification procedures is essential for obtainment of 
accurate and reliable information about the process behavior. The data rectification procedure 
comprises different steps, namely, variable classification, data reconciliation (DR) and gross 
error detection (GED). Variable classification is required in order to determine if the available 
information is sufficient for solving the proposed reconciliation problem and to identify sets of 
observable and non-observable process variables. Different solutions have been proposed for 
the variable classification problem during the last four decades and detailed description of 
published procedures can be found in Romagnoli and Sanchez [1] or Narasimhan and Jordache 
[2]. 

Data reconciliation may be defined as the adjustment of process measurements and 
parameters in order to satisfy the process constraints, while minimizing some sort of objective 
function that formulated as deviations between corrected and observed plant values [3]. This 
procedure is used in different applications, such as process control and optimization, process 
monitoring, plant safety, plant operational efficiency improvement, fault detection, among 
others [4]. Consequently, data reconciliation represents an important step for many engineering 
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activities in industrial processes. It is necessary to mention that the principal difference between 
data reconciliation and other filtering techniques is that data reconciliation explicitly makes use 
of process model constraints, so that adjusted and estimated measurements satisfy the 
constraints. 

Unfortunately, if we adjust the measurements to conform to the conservation laws but in the 
presence of biases, all of the adjustments are greatly affected by such biases and would not be 
reliable indicators of the state of the process. Thus biases, or generally gross errors, must be 
both detected and identified, then the measurements be corrected or discarded. Commonly, 
statistical tests for the treatment of gross errors are adopted [5]. 

In chemical engineering, Kuehn and Davidson [6] were the first to publish an analysis of 
data reconciliation in the early sixties, presenting the general solution when all flows are 
measured. Later other researchers focus on more complex problems. There are various numbers 
of techniques and strategies which have been adopted for tackling the problem of data 
reconciliation as well as gross error detection (and identification) which are described in the 
following sections. 

 

2. DATA RECONCILIATION – DR 

Generally, data reconciliation is a constrained optimization problem. The constraints may be 
linear in the simplest case but are in general nonlinear. The objective function is some sort of 
quadratic form in the adjustments to the measurements that is a general weighted sum of 
squares. Data reconciliation procedure is based on measurement redundancy. This concept may 
be classified in two types of sensor and topological (spatial) redundancy. The former arising 
from multiple sensors of the same quantity at the same time at the same place and the latter 
related to model information where a single variable can be estimated in several independent 
ways, from separate sets of measurements with regard to plant structure. Data reconciliation 
uses information redundancy and conservation laws to correct measurements and convert them 
into accurate and reliable information. As a result, the reconciled values exhibit a lower variance 
compared to original raw measurements. 

The classical general data reconciliation problem deals with a weighted least-squares 
minimization of the measurement adjustments subject to the model constraints: 

,0 , (1)n v vAx A R x R= ∈ ∈   

Where x is the state of the process and A describes the constraints with rank (A) = n 
according to the fact that the constraints are independent. The measurement devices give the 
information  

(0, ) (2)x x N Vε ε= +% :  

Whereε is a vector of random errors characterized by a normal probability density function 
(pdf) with a diagonal variance matrix V. Solution procedure to minimize a classical least-
squares objective function (eq.(3)), subject to process constraints (steady state or dynamic 
constraints), gives the accurate estimate of x. 
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Problems related to DR could be categorizes in linear, bilinear and nonlinear systems. If we 
wish to take into consideration nonlinear relationships such as thermodynamic equilibrium ones, 
nonlinear data reconciliation (NDR) must be used. In addition if we impose bounds on the 
estimate of variables or other feasibility constraints, constrained data reconciliation solution 
techniques must be used.  

In chemical engineering, Kuehn and Davidson [6] were the first to publish an analysis of 
data reconciliation. Since then, many articles on this subject have appeared in the literature. 
General reviews of data reconciliation have been published by Hlavacek [7], Tamhane and Mah 
[8], Mah [9], Madron [10], Crowe [5] and Bagajewicz [11]. The minimization of objective 
function subject to equality or inequality constraints can be achieved by using optimization 
techniques. Method of Lagrange multiplier [12], using Newton–Raphson iterative method 
which is based on a quasi-Newton linearization of the nonlinear model [13], method of 
successive linear data reconciliation [14], Nonlinear Programming method (NLP) such as 
Sequential Quadratic Programming (SQP) [15&16], Generalized Reduced Gradient (GRG) 
method [17&18] among many others are solution methods which are reported in literature. 

 
3. OPTIMIZATION ALGORITHMS FOR DATA RECONCILIATION 

Data reconciliation problems are inherently difficult to solve with conventional optimization 
methods especially in nonlinear cases, because of the likely existence of multiple local minima 
[20]. Heuristic optimization methods, such as Particle Swarm Optimization (PSO) [21], 
Simulated Annealing (SA) and Genetic Algorithm (GA) can be used to overcome these 
difficulties. The first study regarding the use of heuristic approaches to solve DR problems was 
reported by Parsopoulos et al. [22]. These methods also present some additional advantages, 
such as the global character of the search (which avoid local minima), the unnecessary 
computation of derivatives and the simplicity of the implementation, although they are usually 
characterized by the high number of objective function evaluations, which may require more 
CPU time than conventional methods. However, the computed values of the objective function 
can be used for rigorous statistical analyses of the confidence regions of parameter estimates, 
which can also constitute an important benefit of these algorithms [21]. 

 

4. GROSS ERROR 

Commonly, the technique of classical data reconciliation depends on the assumption that 
only random errors are present in the data and systematic or gross errors (instrument biases and 
leaks) either in the measurements or the model equations are not present [2]. Detection of gross 
errors is of fundamental importance for adequate model building and interpretation of process 
data, as poor input data generally lead to very poor model responses. 

Any comprehensive gross error treatment strategy should preferably possess the capabilities 
of detecting the presence of one or more gross errors in data, identifying the type and location of 
the gross error, locating and identifying multiple gross errors which may be present 
simultaneously in the data and finally (but not necessary) ability to estimate the magnitude of 
the gross errors. There are two main approaches for treatment of gross errors. In the first 
approach, prior to data reconciliation operations, gross errors have to be detected and eliminated 
(or compensated). Another approach is to treat gross errors simultaneously with data 
reconciliation problem. It could be performed by utilizing robust objective functions which are 
less sensitive to large errors or adding terms in objective function, and as a result, some sort of 
penalty is imposed for increasing the number of gross errors. In this approach, the 



 
EGHBAL AHMADİ 

1908	  
	  

	  

measurements containing a gross error are not removed prior to solving the data reconciliation 
problem [23].  

The most common test used for detection of gross errors is statistical hypothesis testing, 
which requires selection of a proper statistics for the test. A gross error is declared when the 
computed test statistics exceeds a critical value. Many traditional methods, such as the Global 
Test (GT) [24], the Measurement Test (MT) [25], the Nodal Test (NT) [24], the Generalized 
Likelihood Ratio Test (GLR) [26], the Maximum Power Test (MP) [27], the Bonferroni Test 
[28], and Principal Component Test [29], among others, have been developed to handle the 
problem of detecting single or multiple gross errors in raw measured data. Combinations among 
these statistical tests have also been proposed [30&31]. 

In order to deal simultaneously with the DR and multiple gross error detection (MGED) 
problems, alternative approaches based on cluster analysis [19] and robust estimators [23&32] 
have been proposed in the literature. The use of robust estimators for data analysis is becoming 
increasingly popular, including real industrial applications, as some of examples are illustrated 
in Table 1. These studies have shown the many advantages of using robust statistics to perform 
DR in the presence of gross errors, such as the low sensitivity to possible model mismatches and 
atypical measurements. 

Table 1. Examples of robust estimators used for DR and GED 

References Estimator 
Johnson and Kramer [33] Contaminated normal and Lorentzian 

Zhou et al [34] Huber 
Arora and Biegler [35] Fair and Hampel 
Lid and Skogestad [36] Contaminated Normal 

Wang and Romagnoli [37] Generalized T (GT) 
Siyi Jin et al  [38] New target function 

 

The benefits derived from data reconciliation and gross error detection in chemical processes 
are numerous. They include improvement of measurement layout, fewer routine analyses, 
reduced frequency of sensor calibration (only faulty sensors need to be calibrated), removal of 
systematic measurement errors, systematic improvement of process data, a clear picture of plant 
operating conditions, and reduced measurement noise for key variables. Moreover, monitoring 
through data reconciliation leads to early detection of sensor deviation and equipment 
performance degradation, actual plant balances for accounting and performance follow-up, safe 
operation closer to the process limits and improved quality and performance at the process level. 

 

5. INDUSTRIAL APPLICATIONS OF DATA RECONCILIATION AND GROSS 
ERROR DETECTION 

The number of works that report the use of DR and GED techniques in real industrial 
applications is small. This is particularly true when one considers problems with the 
simultaneous estimation of model parameters [3]. Some of these were based on actual data in 
real processes and some on artificial data. Relatively fewer applications have been published on 
raw plant data. Table 2 presents some of works which have been applied for industrial plants. 
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Table 2. Real industrial applications of DR and GED techniques. 

References Industrial plant 
Sanchez et al. [39] Ethylene plant 

Dempf and List [40] Vinyl acetate and ketene plant 
Bagajewicz and Cabrera [41] Gas pipeline systems 

Al-Arfaj [42] Methyl-terc-butyl-ether plant 
Hu and Shao [43] Coking plant 

Shunji. H et al [44] Nuclear plan 
 
6. CASE STUDY 

As a case study, in this section application of data reconciliation using a new approach by 
applying automation capability of a simulator on Claus process is illustrated.  

The Claus process that is a part of sulfur recovery unit (SRU) is a chemical process for 
converting gaseous hydrogen sulfide (H2S) found in sour gases derived from refining petroleum 
crude oil and other industrial facilities into elemental sulfur. In the straight through process, up 
to 70% of sulfur conversion occurs in the reaction furnace (RF) and waste heat boiler (WHB) 
that are referred as thermal stage in Claus process. The cooled gases are sent to catalytic stages 
for further sulfur recovery [45]. 

Fig.1 depicts typical thermal stage in Claus process. 

 

Figure 1. Thermal stage (RF +WHB) of Claus process [46]. 
 

Numerous known and unknown reactions occur in the RF. Both methods of using 
equilibrium and empirical correlations fail to accurately predict the behavior of RF. It is due to 
not considering the kinetic limitations and complexity of reactions encountered in the actual RF 
as well. Kinetic modeling was proved as the best approach to model reaction furnace [47&48]. 
However, there is not a comprehensive and accurate kinetic model data in open literature. The 
main reactions in RF are presented in table 3.  
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Table 3. Main reactions in RF. 

4 2 2 2

4 2 2

2 6 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2

1) 2 2
2) 1.5 2
3) 3.5 2 3
4)3 2
5) 0.5 0.5
6)

CH O CO H O
CH O CO H O
C H O CO H O
H S O H S SO H O
H S O S H O
H S O H SO

+ → +

+ → +

+ → +

+ → + +

+ → +

+ → +

 

2 2 2 2

2 2 2

2

4 2 2 2

7)2 1.5 2
8) 0.5
9)2 2
10) 2 2

H S SO S H O
H S S H
CO S COS
CH S CS H S

+ ↔ +

↔ +

+ ↔

+ → +

 

 

Four categories of measurements were taken at 4 different times for entering and leaving 
streams of RF which are assumed to be free of gross error are considered as measured data. In 
order to properly predict the behavior of RF, by using data reconciliation technique, the 
accuracy of measurements were improved and kinetic parameters were estimated 
simultaneously. As a result, modified model of RF which is consistent to measurement data is 
presented. To increase the accuracy and reliability of optimum results, ASPEN HYSYS was 
applied as simulator and its connectivity capability with optimization algorithm was utilized.  

For simulating the RF, combustion reactions are defined in Gibbs reactors (reactions 1 to 6), 
while the kinetic reactor was chosen for other reactions (reactions 7 to 10). The best kinetic 
models of these reactions taken from literature [49&50] are presented in following. 

2 2 2 2 2

0.5 0.75
1 1 2 2

3 1 1.5 1
1 1

3 1 1.75 1
2 2

7
exp( / ) exp( / )

488.69 ( . . .Pa ) 208580 (J. )

0.879 ( . . .Pa ) 187682 (J. )

H S H S SO H O S

reaction
r k E RT P P k E RT P P

k mol m s E mol
k mol m s E mol

− − − −

− − − −

= − − −

= =

= =

 

2 2 2 2 2 2

0.5
3 3 4 4

6 3 1 1 1
3 3

9 1.5 0.5 1 1
4 4

8
exp( / ) , exp( / )

3.46 10 ( . . ) 131300 ( / )

2.26 10 ( . . ) 216600 ( / )

H H S H S H S S

recation
r k E RT C C r k E RT C C

k m mol s E J mol
k m mol s E J mol

− − −

− − −

− = − − = −

= × =

= × =  

2

2( )
5 5 6 6

3 1 1 1
5 5

6 3 1 1 1
6 6

9
exp( / ) 2 exp( / )

318 ( . ) 55703.8 ( . )

2.18 10 ( . ) 179831.8 ( . )

n
COS CO S COS

reaction
r k E RT C C k E RT C

k m mol s E J mol
k m mol s E J mol

− − −

− − −

= − − −

= =

= × =  

2 4 27 7

7 3 1 1 1
7 7

10
exp( / )

5.53 10 ( . . ) 160630 ( . )
CS CH S

reaction
r k E RT C C

k m mol s E J mole− − −

= −

= × =
  

Between above kinetic parameters, some are less precise than others and were candidate for 
being re-optimized through data reconciliation procedure.  

Optimum values for kinetic parameters as well as reconciled data were obtained for RF 
(Fig.2) are presented in table 4. It should be mentioned that averaged data during 4 different 
times were reported in table 4. SQP algorithm was applied to achieve optimal solution. 
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Figure 2. RF schematic view. 
 

Table 4. Reconciliation solution for RF. 
Measurements 

Var Name Before reconciliation After reconciliation 
Date 1 Date 2 Date 3 Date 4 Date 1 Date 2 Date 3 Date 4 

Fl
ow

/ 
kg

m
ol

.s
-1

  

Stream 1 0.00200 0.00194 0.00193 0.00187 0.00186 0.00186 0.00193 0.00193 
Stream 2 0.00347 0.00371 0.00374 0.00360 0.00365 0.00365 0.00351 0.00351 
Stream 3 0.00022 0.00021 0.00022 0.00022 0.00021 0.00021 0.00022 0.00022 
Stream 4 0.00573 0.00573 0.00583 0.00578 0.00576 0.000576 0.00576 0.00576 

Te
m

pe
r

at
ur

e/
�

C
  

Stream 1 50.19 50.08 51.45 48.13 50.51 50.53 50.48 50.45 
Stream 2 57.59 59.81 60 .46 59.60 58.61 58.65 58.54 58.52 
Stream 3 25.58 25.84 26.27 24.97 25.25 25.26 25.25 25.24 
Stream 4 1214.19 1238.26 1144.01 1129.40 1188.24 1188.24 1188.24 1188.24 

 
Parameters 

name Optimum value name Optimum value name Optimum value 

1k  
493.58 

4k  
2280955772 

7k  
55853000 

2k  
0.888 

6k  
2201800  

3k  
3494600 n  

2.02 

 

7. CONCLUSIONS 

Application of data reconciliation and gross error detection in chemical engineering and 
some recent developments were reviewed. It was discussed that the more complex problems 
arising from nonlinear cases need the more robust algorithms such as using heuristic 
optimization methods and new strategies for detection of gross errors. Afterward, some 
industrial case studies reported in literature were presented and it was demonstrated that number 
of works that report the use of DR and GED techniques in real industrial applications is small 
particularly in cases of simultaneous estimation of model parameters. Finally application of data 
reconciliation on a reaction furnace (RF) of Claus process has investigated. Having utilized the 
automation capability of ASPEN HYSYS as a simulator, key kinetic parameters of RF have 
been estimated so that a consistent and up to dated model was presented considering reconciled 
measured data. 

 
 
 
REFERENCES 

[1]  Romagnoli, J. A., & Sanchez, M. C., Academic Press, (1999). 



 
EGHBAL AHMADİ 

1912	  
	  

[2]  Narasimhan, S., & Jordache, C, Gulf Professional Publishing, (1999). 
[3]  Prata, D. M., Schwaab, M., Lima, E. L., & Pinto, J. C., Chem. Eng. Sci., 64, 3953, 

(2009). 
[4]  Martinez Prata, D., Schwaab, M., Luis Lima, E., & Carlos Pinto, J., Chem. Eng. Sci., 

65, 4943, (2010). 
[5]  Crowe, C. M., J. Process. Contr, 6, 89, (1996). 
[6]  Kuehn, D. R., & Davidson, H., Chem. Eng. Prog, 57, 44, (1961). 
[7]  Hlaváček, V., Comput. Chem. Eng., 1, 75, (1977). 
[8]  Tamhane, A. C., & Mah, R. S., Technometrics, 27, 409, (1985). 
[9]  Mah, R. S., & Mah, R. S. Butterworths, Boston, 1990. 
[10]  Madron, F., Ellis Horwood, Chichester, 1992. 
[11]  Bagajewicz, M. J., Latin. Am. Appl. Res, 30 (4) (2000) 335-342. 
[12]  Britt, H. I., & Luecke, R. H., Technometrics, 15, 233, (1973). 
[13]  Stephenson, G. R., & Shewchuk, C. F., AICHE. J, 32, 247, (1986). 
[14]  Serth, R. W., Valero, C. M., & Heenan, W. A., Chem. Eng. Commun, 51, 89, (1987). 
[15]  Han, S., J. Optimiz. Theory. App. 22, 297, (1977). 
[16]  Chen, H. S., & Stadtherr, M. A., Comput. Chem. Eng, 8, 229, (1984). 
[17]  J. Abadie, Sijthoff and Noordhoff, Holland, (1978). 
[18]  Lasdon, L. S., & Waren, A. D., Sijthoff and Noordhoff, Holland, (1978). 
[19]  Chen, J., & Romagnoli, J. A., Comput. Chem. Eng, 22, 559, (1998). 
[20]  Wongrat, W., Srinophakun, T., & Srinophakun, P., Comput. Chem. Eng, 29, 1059, 

(2005). 
[21]  Schwaab, M., Biscaia Jr, E. C., Monteiro, J. L., & Pinto, J. C., Chem. Eng. Sci, 63, 

1542, (2008). 
[22]  Parsopoulos, K. E., Laskari, E. C., & Vrahatis, M. N. Proceedings of the Conference on 

Artificial Intelligence and Applications, USA, (2001). 
[23]  Özyurt, D. B., & Pike, R. W., Comput. Chem. Eng, 28, 381, (2004). 
[24]  Reilly, P. M., & Carpani, R. E, Proceedings of the 13th Canadian Chemical Engineering 

Conference, Montreal, Quebec, 1963. 
[25]  Mah, R. S. H., & Tamhane, A. C., AICHE. J, 28, 828, (1982). 
[26]  Narasimhan, S., & Mah, R. S. H., AICHE. J, 33, 1514, (1987). 
[27]  Crowe, C. M., AICHE. J, 35, 563, (1985). 
[28]  Rollins, D. K., & Davis, J. F., AICHE. J, 38, 563, (1992). 
[29]  H. Tong, C.M. Crowe., AICHE. J, 41, 1712, (1995). 
[30]  Yang, Y., Ten, R., & Jao, L. Comput. Chem. Eng, 19, 217, (1995). 
[31]  Wang, F., Jia, X. P., Zheng, S. Q., & Yue, J. C. Comput. Chem. Eng, 28, 2189, (2004). 
[32]  Prata, D. M., Pinto, J. C., & Lima, E. L., Comp. Aid. Ch, 25, 501, (2008). 
[33]  Johnston, L. P., & Kramer, M. A., AICHE. J, 41, 2415, (1995). 
[34]  L. Zhou, H. Su, J. Chu, Chinese. J. Chem. Eng, 14, 357, (2006). 
[35]  Arora, N., & Biegler, L. T., Comput. Chem. Eng, 25, 1585, (2001). 
[36]  Lid, T., & Skogestad, S. J. Process. Contr, 18, 320, (2008). 
[37]  Wang, D., & Romagnoli, J. A., Ind. Eng. Chem. Res, 42, 3075, (2003). 
[38]  Jin, S., Li, X., Huang, Z., & Liu, M., Ind. Eng. Chem. Res, 51, 10220, (2012). 
[39]  Sanchez, M., Bandoni, A., & Romagnoli, J., Comput. Chem. Eng, 16, 499, (1992). 
[40]  Dempf, D., & List, T. Comput. Chem. Eng, 22, S1023, (1998). 
[41]  Bagajewicz, M. J., & Cabrera, E. Ind. Eng. Chem. Res, 42, 5596, (2003). 



 
Data reconciliation and gross error detection: application in chemical processes 

 

1913	  
	  

[42]  Al Arfaj, M. A. AICHE. J, 52, 414, (2006).  
[43]  Hu, M., & Shao, H., Ind. Eng. Chem. Res, 45, 8973, (2006). 
[44]  Homma, S., Watanabe, M., Koga, J., & Matsumoto, S., J. Nucl. Sci. Technol, 48, 1285, 

(2011). 
[45]  K.A. Hawbolt, Ph.D. thesis, The University of Calgary, Canada, (1998). 
[46]  Manenti, G., Papasidero, D., Manenti, F., Bozzano, G., & Pierucci, S., Procedia. 

Eng., 42, 376, (2012). 
[47]  Karan, K., Mehrotra, A. K., & Behie, L. A. Ind. Eng. Chem. Res, 37, 4609, (1998). 
[48]  Monnery, W. D., Hawboldt, K. A., Pollock, A. E., & Svrcek, W. Y., Ind. Eng. Chem. 

Res, 40, 144, (2001). 
[49]  Monnery, W. D., Hawboldt, K. A., Pollock, A., & Svrcek, W. Y. Chem. Eng. Sci, 55, 

5141, (2000). 
[50]  Hawboldt, K. A., Monnery, W. D., & Svrcek, W. Y., Chem. Eng. Sci, 55, 957, (2000). 


