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______________________________________________________________________________________________ 

Abstract. The spectrum and damping factor of plasma and magnetoplasma waves in a two-dimensional electron gas 

at low temperatures on the Graphene are calculated, taking into account local electron states at impurity atoms. It is 

shown that localization of electrons decreases the frequency of long-wave plasmons and rear ranges the 

magnetoplasma spectrum in the vicinity of resonant frequencies of electron transitions between the Landau levels and 

local levels. As a result, the plasma absorption peak is displaced towards low frequencies, and the magnetoplasma 

peak splits. The characteristics of plasmons and magnetoplasmons are calculated for parameters on the Graphene at 

the boundary between silicon and silicon dioxide. 
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1. INTRODUCTION  

 

Two-dimensional plasmons in the inversion layer at the boundary between silicon and 

silicon dioxide at low temperatures were observed for the first time by Allen et al. who excited 

plasma waves by linearly polarized infrared radiation incident on the grating deposited on the 

surface of a semitransparent shutter [1,2]. Since the wavelength of the radiation is much larger 

than the thickness Graphene, the latter can be treated as a conducting plane z=0 with a two-

dimensional conductivity tensor. The calculations [2] made in the approximation of an infinitely 

large conductivity of the shutter without taking into account delay effects proved that the 

plasmon frequency can be written in the form 
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where m and e are the electron mass and charge, n is the electron number density in the 

Graphene, es and ed are the static permittivities of the semiconductor and the insulator, ds and dd 

their thicknesses, and q is the two-dimensional wave vector. Collisionless damping of long-

wave plasmons in a two-dimensional degenerate electron gas is not observed. Their damping is 

mainly determined by collision of electrons with impurity atoms. The damping of such plas-

mons is mainly determined by collisions of electrons with impurity atoms. The damping factor 

is equal to / 2 , where v is the collision frequency determined by the potential electron-impurity 

scattering. The absorption of the electromagnetic radiation by the Graphene is determined by the 

real component of the quantity      , , / ,q q q       where  and ε are the 

conductivity and permittivity of the two-dimensional electron gas, which are functions of the 

wave vector q and frequency 2 In the vicinity of frequency (1), we have 
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where 
q is the spectrum of plasmons (1) and 

q is the damping factor. This expression 

shows that plasma waves are manifested in the presence of a clear peak on the curve describing 

the frequency dependence of absorption, which is superimposed on the high-frequency Drude 

background [2]. 

2 2Re / ( ).e n m    

In a magnetic field perpendicular to the Graphene, plasma resonance is transformed into 

magnetoplasma resonance. Such a resonance was observed for the first time by Theis et al.[3] 

and is manifested in the presence of a peak on the dependence of absorption P on the magnetic 

field strength or radiation frequency. The peak lies at the magnetoplasmon frequency [2]. 
 

(0) 2 2 1/2[ ( )] ,q c c q            (3) 

where c  is the cyclotron frequency of electrons. The peak width is given by  

(0) 2 (0)2(1 / ).
2

q c q


            (4) 

In the vicinity of the peak, the real component of   is given by formula (2) as in the 

absence of the field, but q  and q  are defined by (3) and (4). 

It was noted in Refs. [1-3] that the experimentally observed properties of plasmons and 

magnetoplasmons in the inversion layer at the Si-Si02 boundary are satisfactorily described by 

the classical formulas (l)-(4) only for a large electron number density. In the case of a low 

density 
16 2( 10 )n m  deviations from the classical theory of conductivity of a two-

dimensional electron gas become significant. For example, Allen et al.[1] noted that the plasma 

peak on the ( )P   curve for low electron densities is shifted from the value predicted by 

formula (1) towards low frequencies. According to Allen et al.,[1] such a displacement is due to 

an increase in the effective mass m or electron localization. Theis et al.[3] proved that for small 

n the magnetoplasma peak splits into two peaks. One of them lies below the peak described by 

formula (3), while the other peak lies above it. In order to explain this phenomenon, the effects 

associated with a nonlocal nature of conductivity of a two-dimensional electron gas in a 

magnetic field were taken into account [2,4]. The conductivity contains a correction of the 

order of (ql)[2] (l is the magnetic length) with a resonance at a frequency 2 c . The interaction 

of a magnetoplasmon with the subharmonic structure of the cyclotron resonance leads to 

magnetoplasmon peak splitting. It was noted in Refs. [2,4], however, that this interaction is too 

weak to be responsible for the observed splitting. For this reason, the problem of the plasma 

absorption line Graphene cannot be regarded as solved completely. 

In the present paper, we consider the effect of local electron states in the field of impurity 

atoms on the spectrum and absorption of plasmons and magnetoplasmons in a two- 

dimensional electron gas. We used the model and the computational method described in Refs. 

[5,6]. It will be shown that electron localization leads to a displacement of the plasma peak on 

the ( )P  curve towards the low-frequency region. The inclusion of resonant transitions of 

electrons between Landau levels arid local levels causes a rearrangement of magnetoplasmon 

spectrum in the vicinity of resonant frequencies similar to the crossover in the theory of 

coupled waves.[7] This leads to the splitting of the magnetoplasmon peak mentioned above. 

In Sec. 2, we consider the properties of magnetoplasmons near the frequency 

0c     of resonant electron transitions from a local level to the Landau level lying above 

it ( 0  is the separation between a Landau level and the local level split from it by an attracting 

impurity). The neighborhood of the frequency 0c     corresponding to transitions from 
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a Landau level to a local level will be analyzed in Sec. 3. The spectrum and damping of 

plasmons taking into account electron localization in zero magnetic field are considered in Sec. 

4. The obtained results are summarized in Conclusion, where the theoretical results are 

compared with experimental data. 

2. EFFECT OF LOCAL ELECTRON STATES ON THE PROPERTIES OF TWO-

DIMENSIONAL MAGNETOPLASMONS ON THE GRAPHENE 

 

It was proved in Ref. 6 that local electron states in a quantizing magnetic field perpendicular 

to the Graphene are manifested in the presence of resonant terms in the tensor or high-

frequency conductivity of a two-dimensional electron gas. For example, the transverse 

conductivity xx in the vicinity of the frequency 0c     corresponding to electron 

transitions between a local level and a Landau level contains the term 
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is the oscillator force of a resonant transition and  the width of the local level labeled by N- 1 

and participating in transitions. Here in is the number density of impurity atoms, Nr the 

residue of the amplitude of the electron-impurity scattering at the pole 
l

N i   , and   the 

Fermi function; the quantum constant is assumed to be equal to unity. The difference in the 

Fermi functions in (6) takes into account the Pauli exclusion principle in electron transitions 

from the local level 1

l

N  to the Landau level
 

N  We assume that the Fermi boundary F of 

two-dimensional electrons lies between the levels 1N  and 
l

N and ql . In this case, the 

expression for the oscillator force contains only one term (6), and spatial dispersion of 

conductivity (5) can be neglected. 

Expression (5) must be taken into account in the dispersion equation for magnetoplasma 

waves[2]: 

4
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 This equation can be written in the form 

2 2 2 1 2 11 ( / ) ( 1)cA x A x x    

       ,      (8) 

Where 

/ ,x    

2 2 1.4 [ ( coth coth )]s s d dA e nq m qd qd    

  
     (9) 

In the absence of local levels ( 0)  , the solution of Eq. (8) is the function (3). The 

inclusion of electron localization leads to a rearrangement of themagnetoplasmon spectrum in 

the vicinity of frequency . As a matter of fact, the straight line    intersects the 

dispersion curve (3) at the point 
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where we assume that qds   and qdd    Consequently, in the vicinity of this point we 

have a crossover situation similar to that observed in the spectrum of a lattice with quasilocal 

vibrations.7 Equation (8) has two real positive roots x1 and x2, one of which lies below the 

magnetoplasmon frequency (3), while the other lies above this frequency. The results of 

numerical solution of the dispersion equation (8) for values of parameters of the graphene at the 

Si-Si02 boundary in a magnetic field of induction B = 0.1 T. The dashed curve describes the 

function (3), while the lower and upper curves present x1 and x2 as functions of the ratio of the 

wave number q to the Fermi wave number kF. The following values of parameters are used: m 

= 0.2m0 (m0 is the free electron mass), (ni/ne = 0.1, n=1016m~2, es + ed=l5, and  =0.1).  In this 

case, N= 196, which allows us to neglect the effect of magnetic field on the scattering 

amplitude residue. In zero field, it is given by[6] lr 2 / m,   where l is the position of the 

local level in the field of an attracting impurity. The residue r is obtained for F l/ 2    For 

such values of parameters, we have 
2 1

0q 1.5 10 m   and 
10 19.8 10 s .

   The damping 

factor for magnetoplasmons with the spectrum 
(i) (i 1,2   is the number of the branch) is 

given by 
(i) g (i)
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The term (10) in the decrement, which is associated with the local level, has a peak at the 

frequency   of electron transitions from the local level 
l

N 1  to the Landau level N . The 

existence of two roots of the dispersion equation (8) indicates that the plasma peak on the curve 

describing the frequency dependence of absorption of electromagnetic radiation splits into two 

peaks. In the vicinity of the zth peak, the absorption is proportional to 
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s d q (i)2 2 2

i q c2 2 2

m( )
Re (q, ) ( )

32 e nq

   
    



(i) 2 (i)2 1

q q[( ) ] .                                  (11) 

The position of the peak of (11) is determined by the energy- momentum relation 
(i)

q for 

magnetoplasmons, and the peak width is determined by the damping factor 
(i)

q . 

 

3. MAGNETOPLASMONS IN THE VICINITY OF FREQUENCY 

 

Ind the vicinity of frequency c 0    , the conductivity of resonant transition of 

electrons from a landau level to the nighboring local level differs from (5) in the resonance 

frequency and oscillator force. The latter quantity is defined as  

1 2 li N
c 0 N 1 N2 4
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[1 (1 N )(1 2 / ) ] [f ( ) f ( )],

2 mn l

 

 



          
  

 

where N is the number of the local level participating in transitions.The dispersion equation 

(7) for magnetoplasma waves in the vicinity of frequency   can be obtained from Eq. (8) by 

replacing the subscript "+" by "—" This equation has two roots 1,2 1,2y /     lying below 

and above (3). Figure 2 shows the solution of the dispersion equation for the values of 
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parameters used in Sec. 2 and for B =1 T. In this case, N= 20, and the residue Nr  should be 

calculated by taking into account the magnetic field. For 0 c  , it is given by[6] 

2

0r 2 (l ) .    The contribution of the local level to the damping factor for magnetoplasmons 

can be obtained from formula (10) by replacing the subsctipt "+" by " —" and by changing the 

sign of c . This leads to a peak against the background of a smooth dependence of the 

damping factor (4) on the plasroon frequency. The position of the peak is determined by the 

resonance frequency  , and its width by the broadening of the local level. The ratio of the 

maximum value of decrement (10) to (4) is equal to 3.3 for all values of pqrameters indicated in 

Sec. 2 and for 11 110 s .    As in Sec. 2, the magnetoplasma peak on the curve describing 

the frequency dependence of absorption splits into two peaks. The absorption in the vicinity of 

the peak is proportional to expression (11) in which we must substitute the frequency
(i)

q and 

the damping factor 
(i)

q of magneto- plasma waves obtained in this section. The ratio of Lie 

maximum absorption to the background 
2

2 2 2 2 2

c c

e nv
Re ( ) ( )

m

      

is 1k 0.02  for the low-frequency branch and 2k 21.4 for the high-frequency branch in. It 

should be noted that this ratio for magnetoplasmons in the absence of electron localization is 

0k 0.6. The calculations were made for the above values of parameters and for 
4 -1q 10  m . 

In this case, 
10 1 (0) 11 1

P q3.2 10 s , 9.5 10 s ,       and 
11 18 10 s .

    

 

4. CONCLUSIONS 

 

In this paper, we considered the effect of electron localization in the field of isolated 

impurity atoms on the spectrum and damping of plasma and magnetoplasma waves in a two-

dimensional electron gas. We also considered the plasma absorption of electromagnetic 

radiation incident on the electron layer, lt was proved that electron localization reduces the 

frequency of long-wave plasmons as compared to its value in the absence of local levels. Such 

a decrease was observed by Allen et al.[1] who studied plasmons in the inversion layer at the 

boundary between Si and SiO2 and explained the freezing out of charge carriers to local levels. 

But this is not the only effect observed in this case. Ionization of electrons localized at 

impurities by an electromagnetic field is accompanied by the emergence of a noticeable 

contribution to the high-frequency conductivity, which must be taken into account in the 

dispersion equation for plasmons. This also leads to a decrease in the plasmon frequency, 

which is manifested in a shift of the plasma peak on the curve describing the frequency 

dependence of absorption towards the low-frequency region.  

In a quantizing magnetic field perpendicular to the electron layer, a system of local levels 

alternating with Landau levels is formed. Electron transitions between these levels, which are 

induced by the magnetic field, lead to resonant corrections to the conductivity of the two-

dimensional electron gas. A rearrangement of the magnetoplasmon spectrum similar to the 

crossover in the theory of coupled waves is observed in the vicinity of the resonant transitions 

frequencies. As a result, the magnetoplasma peak on the frequency dependence of absorption 

splits into two peaks. Such a splitting was observed by Theis et al. [1] who studied the depen-

dence of absorption on the magnetic field in the inversion layers at the Si-SiO2 boundary. 

According to calculations, for a fixed radiation frequency  (following Ref. 3, we put 

3.7 meV), the resonant fields 1B and 2B for which absorption has the maximum value are 
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1B  6.88T and The 2B  5.69T positions of the peaks and their separation B  1.2T  are 

in good agreement with the experimental data [3]. However, the theory gives higher heights of 

the peaks as in the case of zero magnetic field. This is apparently due to the existence of 

mechanisms of electron scattering in inversion layers, which were not taken into account in this 

research. 
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