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Abstract. In this paper, an appropriate substitution was introduced for distributing skew Laplace which had been 

achieved from rupturing continuous skew discrete Laplace. This distribution has been flexible and posses a closed form 

for probability function, distribution function, moment-generating function, characteristic function of probability, and 

other distribution features such as high expectation and variance. Here we deal with distribution properties like 

estimating parameters based on maximum likelihood, moments, moments modified and ratio method. We will 

determine CI for the parameters based on fisher and logic information matrix and then we will analyze necessary 

inference and hypothesis testing. We will use Monte Carlo stimulation method. 

Keywords: Skew discrete Laplace distribution, Fisher information matrix, Monte Carlo stimulation, maximum 

likelihood method 

_____________________________________________________________________________ 

 

1. INTRODUCITON 

According to significance of modeling by discrete distribution, too many models have been 

presented for rupturing a positive continuous distribution so far, but rupturing of continuous 

distribution on total R was less noticed. For example, negative binomial distribution is discrete 

form of gamma distribution [7] which is applied for modeling non-negative discrete data. Maybe 

the only possible development on total R has been rupturing normal distribution [14] and Laplace 

distribution [8]. Skew discrete Laplace distribution is another flexible model which was raised by 

Barbiero [3] and it was mentioned as a substitution for Laplace distribution introduced by Inusah. 

S, Kozubowski. T.J. It has relatively interesting properties and it this research we mostly focus 

on it. This skewed discrete distribution possesses a closed from for probability density function, 

distribution function and other distribution properties such as mathematic expectation and 

variance and it is widely applied in practice and especially in discrete lifetime data defined on 

integers. Reviewing various forms mentioned for skew Laplace distribution, in this paper first we 

will point out previous methods for constructing skewed discrete Laplace distribution. Then we 

will provide a new method according to survival function for establishing a new form of skewed 

discrete Laplace distribution. Their property will be investigated and then parameters will be dealt 

with based on maximum likelihood, torques, torques modified and ratio method. CI for the 

parameters will be determined based on Fisher and logic information matrices. Next, we will 

analyze necessary inference and hypothesis testing. We will use Monte Carlo stimulation method. 

 

2. INTRODUCING SKEWED LAPLACE DISTRIBUTION  

Since main aim of the current paper is rupturing skew Laplace distribution among different 

forms of Laplace distribution, researchers mostly concentrate on rupturing one of the best forms 

because of their top and simple properties in calculations and in practice they own more 

efficiency, so we will deal with them. 
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Following is the form introduced for distributing skew Laplace which is mostly noticed by 

researchers: 

In which 0 < 𝑝, 𝑞 < 1  

𝑓(𝑥; 𝑝, 𝑞) =
− log(𝑝) log(𝑞)

log(𝑝𝑞)
{
𝑝𝑥 𝑥 ≥ 0

𝑞−𝑥𝑥 < 0
(1) 

Also, its remaining function is as follows: 

𝑆(𝑥; 𝑝, 𝑞) =

{
 
 

 
 log(𝑞)

log(𝑝𝑞)
𝑝𝑥 𝑥 ≥ 0

1 −
log(𝑝)

log(𝑝𝑞)
𝑞−𝑥𝑥 < 0

(2) 

 

3. RUPTURING SKEW LAPLACE DISTRIBUTION 

This method was introduced by Barbiero which devoted the main discussion to itself in this 

paper. Using discretization instruction-which is regarded as difference between survival 

functions-we will have followings according to conventional forms of p and q. 

∅(𝑥) = 𝑝(𝑋𝑑 = 𝑥) = 𝑝(𝑥 ≤ 𝑋 < 𝑥) = 𝑝(𝑋 < 𝑥 + 1) − 𝑝(𝑋 < 𝑥)
= 𝑆(𝑥) − 𝑆(𝑥 + 1)𝑥𝜖𝑍(3) 

∅(𝑥; 𝑝, 𝑞) =
1

log(pq)
{
log(𝑝) [𝑞−(𝑥+1)(1 − 𝑞)]𝑥 = ⋯ ,−2,−1

log(𝑞) [𝑝𝑥(1 − 𝑝)]𝑥 = 0,1,2,…
(4) 

Above form introduces a skew discrete Laplace distribution with parameters 0 < 𝑝, 𝑞 < 1 and 

from now on we consider it as follows where figure 1 displaces sections (a), (b) and (C) of the 

distribution for p.q 

𝑋𝑑~𝐴𝐷𝑆𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑝, 𝑞) 
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Figure1: skew discrete Laplace distribution for various forms of p,q 

 

𝐹(𝑥; 𝑝, 𝑞) =

{
 
 

 
 log(𝑝)

log(𝑝𝑞)
𝑞−([𝑥]+1)𝑥 ≥ 0

1 −
log(𝑞)

log(𝑝𝑞)
𝑝[𝑥]+1𝑥 < 0

(5) 

4. Skewed discrete Laplace distribution moments 

Moment-generating function in skew discrete Laplace distribution can be achieved by easy 

calculations as follows by which we can produce raw moments in this distribution. 

𝑀(𝑡; 𝑝, 𝑞) = 𝐸[𝑒𝑡𝑋] =
1

log(𝑝𝑞)
(log(𝑞)

1 − 𝑝

1 − 𝑝𝑒𝑡
+ log(𝑝)

(1 − 𝑞)𝑒−𝑡

1 − 𝑞𝑒−𝑡
)(6) 

 

Meantime, this function is gained as follows which is a more general case of moment-

generating function: 

 

𝐶(𝑖𝑡; 𝑝, 𝑞) = 𝐸[𝑒𝑖𝑡𝑋] =
1

log(𝑝𝑞)
(log(𝑞)

1 − 𝑝

1 − 𝑝𝑒𝑖𝑡
+ log(𝑝)

(1 − 𝑞)𝑒−𝑖𝑡

1 − 𝑞𝑒−𝑖𝑡
)(7) 

 

For example, first and second order moments and their variance is calculated as follows: 

𝐸(𝑋2) =
log(𝑞)

𝑙𝑜𝑔(𝑝𝑞)
.
𝑝(1 + 𝑝)

(1 − 𝑝)2
+
𝑙𝑜𝑔(𝑝)

𝑙𝑜𝑔(𝑝𝑞)
.
1 + 𝑞

(1 − 𝑞)2
 



 

Introducing Skew Discrete Laplace 

 

2189 
 

𝜇 = 𝐸(𝑋) =
𝑙𝑜𝑔(𝑞)

𝑙𝑜𝑔(𝑝𝑞)
.
𝑝

1 − 𝑝
−
𝑙𝑜𝑔(𝑝)

𝑙𝑜𝑔(𝑝𝑞)
.
1

1 − 𝑞
 

𝑉𝑎𝑟(𝑋)

=
(1 − 𝑝)2𝑞 (log(𝑝))2 + (1 + 𝑝 + 𝑞 − 6𝑝𝑞 + 𝑝2𝑞 + 𝑝𝑞2 + 𝑝2𝑞2) log(𝑝) log(𝑞) + 𝑝(1 − 𝑞)2 (log(𝑞))2

(𝑙𝑜𝑔(𝑝𝑞))2 (1 − 𝑝)2(1 − 𝑞)2
 

Variance is a function of q and p and it can be observed in contour plot of figure 2 for 

parameters q and p. 

 

Figure 1. Contour plot for variance of skew discrete Laplace distribution based on parameters q and p 

5. SKEWNESS AND SKEWED DISCRETE LAPLACE DISTRIBUTION  

Defining formulas 𝑆𝑘(𝑥) =
𝐸(𝑥−𝜇)3

𝜎3
 for skewness and 𝐾𝑢(𝑥) =

𝐸(𝑥−𝜇)4

𝜎4
for strain, we can 

calculate skewness and strain easily for skewed discrete Laplace distribution. So that for skewness 

we will have: 𝑆𝑘(𝑥; 𝑝, 𝑞) = −𝑆𝑘(𝑥; 𝑞, 𝑝) 

 And for (𝐾𝑢)strain we have: 𝐾𝑢(𝑥; 𝑝, 𝑞) = 𝐾𝑢(𝑥; 𝑞, 𝑝) 

 

Figure3. Contour plot for skewness and skewed elongation Laplace distribution 

 

6. ESTIMATING PARAMETERS: 

6.1. Maximum likelihood method 

Likelihood logarithm function in discrete Laplace model which was calculated based on 

independent and distribution samples 𝑿 = (𝑋1, … , 𝑋𝑛) is as follows:  
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𝑙(𝑝, 𝑞; 𝑿) = 𝑙𝑜𝑔∏∅(𝑝, 𝑞; 𝑋𝑖)

𝑛

𝑖=1

= 𝑠− log (
log(𝑝)

log(𝑝𝑞)
) + 𝑠+ log (

log(𝑞)

log(𝑝𝑞)
) − −(𝑠− + ∑ 𝑥𝑖

𝑥𝑖<0

) 𝑙𝑜𝑞(𝑞)

+ 𝑠− log(1 − 𝑞) + ∑ 𝑥𝑖
𝑥𝑖≥0

log(𝑝) + 𝑠+ log(1 − 𝑝)(8) 

In which 𝑠− and 𝑠+ with definitions 𝑠− = ∑ 1𝑥𝑖<0
𝑛
𝑖=1 𝑎𝑛𝑑𝑠+ = ∑ 1𝑥𝑖≥0

𝑛
𝑖=1 indicate values of 

possible samples with negative and positive values, respectively. 

Also, first-order derivative for likelihood logarithm function is calculated as follows: 

𝜕𝑙(𝑝, 𝑞; 𝑥)

𝜕𝑝
= 𝑠−

1

𝑝𝑙𝑜𝑔(𝑝)
− 𝑛

1

𝑝𝑙𝑜𝑔(𝑝𝑞)
+ ∑

𝑥𝑖
𝑝

𝑥𝑖≥0

−
𝑠+

1 − 𝑝
 


𝜕𝑙(𝑝, 𝑞; 𝑥)

𝜕𝑞
= 𝑠+

1

𝑞𝑙𝑜𝑔(𝑞)
− 𝑛

1

𝑞𝑙𝑜𝑔(𝑝𝑞)
− ∑

𝑥𝑖
𝑞

𝑥𝑖<0

−
𝑠−

𝑞(1 − 𝑞)
 

Answer of above equations can lead to estimation of maximum likelihood in the model 

parameter which is shown by (�̂�𝑀𝐿 , �̂�𝑀𝐿). It is quite vivid that there is no close form for answering 

these equations and estimating maximum likelihood. Hence, to achieve them, we have to apply 

numerical methods. 

 

6.2. Moment method 

It is easy to achieve two first moments in skewed discrete Laplace distribution, however 

moment method can easily produce parameters q and p. In fact, equal placing of  𝐸(𝑋) and 𝐸(𝑋2) 
with equivalent sample moments can lead to non-linear equation based on q and p which can only 

be solved by numerical methods. 

6.3. Modified moment estimators 

This method is mostly noticed in discrete distributions is in this state where we can consider 

non-negative and negative samples separately as a replacing method for estimating moments. To 

do this, assume𝑥𝑖
+ = 𝑥𝑖1𝑥𝑖≥0 , and 𝑥𝑖

− = 𝑥𝑖1𝑥𝑖<0 . Then following equation and mathematical 

expectations will be gained: 

𝐸[𝑋|𝑋 ≥ 0] =
∑ 𝑥𝑖

+𝑛
𝑖=1

𝑠𝑖
+ 𝑎𝑛𝑑𝐸[𝑋|𝑋 < 0] =∑𝑥𝑖

−

𝑛

𝑖=1

/𝑠𝑖
− 

Recalling relations mentioned for conditional expectations, estimators of parameters q and p 

are achieved as follows: 

�̂�𝑀𝑀 =
∑ 𝑥𝑖

+𝑛
𝑖=1

𝑠𝑖
+ + ∑ 𝑥𝑖

+𝑛
𝑖=1

𝑎𝑛𝑑�̂�𝑀𝑀 = 1 +
𝑠𝑖
−

∑ 𝑥𝑖
−𝑛

𝑖=1

(9) 

 

6.4. Ratio method 
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Under skewed discrete Laplace model we have 𝑃(𝑋 = 0) = 𝑝0 = (1 − 𝑝) log
𝑞

log(𝑝𝑞)
 and 

𝑃(𝑋 ≥ 0) = 𝑝+ = log
𝑞

log(𝑝𝑞)
. By estimating method of Khan et al [9] we consider these two 

relations and possess a simple calculation which is as follows:  

�̂�𝑝 = 1 − 𝑝0/𝑝+                  and            �̂�𝑝 = 𝑝
𝑝+
1−𝑝+                            (10) 

 

7. ASYMPTOTIC CONFIDENCE INTERVALS OF PARAMETERS 

In this section we achieve asymptotic confidence intervals for the parameters with the help of 

Fisher information matrix so that observed Fisher information matrix 𝐼(𝑛)  in independent 

samples and distribution 𝑿 can be defined as follows: 

𝐼(𝑛) = −(
𝜕2𝑙(𝑝, 𝑞; 𝑥)/𝜕𝑝2 𝜕2𝑙(𝑝, 𝑞; 𝑥)/𝜕𝑝𝜕𝑞

𝜕2𝑙(𝑝, 𝑞; 𝑥)/𝜕𝑝𝜕𝑞 𝜕2𝑙(𝑝, 𝑞; 𝑥)/𝜕𝑞2
)(11) 

So Fisher information matrix can be defined as follows: 

(𝑝, 𝑞) = −𝐸 (
𝜕2𝑙𝑜𝑔∅(𝑝, 𝑞; 𝑥𝑖)/𝜕𝑝

2 𝜕2𝑙𝑜𝑔∅(𝑝, 𝑞; 𝑥𝑖)/𝜕𝑝𝜕𝑞

𝜕2𝑙𝑜𝑔∅(𝑝, 𝑞; 𝑥𝑖)/𝜕𝑝𝜕𝑞 𝜕2𝑙𝑜𝑔∅(𝑝, 𝑞; 𝑥𝑖)/𝜕𝑞
2 )(12) 

It is worth to mention that if accurate values of q and p are not available, then we can use 

values �̂�𝑀𝐿 and �̂�𝑀𝐿 instead of q and p, respectively. This way we will have maximum likelihood 

estimators by applying asymptotic normal properties: 

√𝑛 (
�̂�𝑀𝐿
�̂�𝑀𝐿

) → 𝑁(0, 𝑰−1(𝑝, 𝑞)) 

In other words, with the help of Fisher information matrix we can calculate sample big CI 

(1 − 𝛼) percent for parameters q and p as follows: 

�̂�𝑀𝐿 ∓ 𝑧1−𝛼
2
√𝐼(𝑛)11

−1 𝑎𝑛𝑑�̂�𝑀𝐿 ∓ 𝑧1−𝛼/2√𝐼(𝑛)22
−1 (13) 

You should notice that instead of using 𝐼(𝑛)
−1  in above relations, you may apply 𝐼−1/𝑛 and 

achieve CI. Such CI may have lower boundary less than zero (more than 1). If sample size is 

small, in these cases we have to achieve CI from left and then we can cut in zero (from right in 

one). This way modified CI can be gained. We can also gain another CI by applying variance 

stabilizing transformations such as logit conversion, since q and p will gain their values in interval 

(0,1).  

Now by defining 𝑦 = 𝑙𝑜𝑔(
𝑝

1−𝑝
)  and �̂� = 𝑙𝑜𝑔(

𝑝𝑀𝐿

1−�̂�𝑀𝐿
)  we can gain fine CI for 𝑦  which is as 

follows: 

(𝑦𝐿 , 𝑦𝑈) = �̂� ∓ 𝑧1−𝛼/2

√𝐼(𝑛)11
−1

�̂�𝑀𝐿(1 − �̂�𝑀𝐿)
 

Then appropriate CI for p is gained with photo converting logit which is as follows: 
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(𝑝𝐿 , 𝑝𝑈) = (
𝑒𝑥𝑝(𝑦𝐿)

1 + 𝑒𝑥𝑝(𝑦𝐿)
,
𝑒𝑥𝑝(𝑦𝑈)

1 + 𝑒𝑥𝑝(𝑦𝑈)
) 

We may apply a similar method for q and gain CI which is more trustable than interval created 

by Fisher information matrix and without converting logit. It is worth to mention that this interval 

for �̂�𝑀𝐿 and �̂�𝑀𝐿 is a symmetric interval. 

 

8. HYPOTHESIS TEST 

To test hypothesis 𝐻0: (𝑝, 𝑞) = (𝑝0, 𝑞0) ∈ (0,1) × (0,1) against 𝐻1: (𝑝, 𝑞) ≠ (𝑝0, 𝑞0), statistic T 

can be used as follows:  

𝑇 = −2(𝑙0 − 𝑙) (15) 

In which 𝑙 is maximum likelihood logarithm calculated in areas �̂�𝑀𝐿 and �̂�𝑀𝐿 under the title 

of maximum likelihood estimators. Also 𝑙0  is the same function in areas (𝑝0, 𝑞0). Under 𝐻0،  𝑇 

has k score distribution with two degrees of freedom asymptotically. Therefore, in a simple 

asymptotic test based on T in (1 − 𝛼) percent significance level, hypothesis 𝐻0 is rejected, if we 

have 𝑡 > 𝜒1−𝛼
2 in which 𝑡 is sample value of statistic 𝑇.  

 

9. STIMULATION STUDIES 

Now to assess performance of estimations, asymptotic CI and introduced asymptotic test, in 

the previous section we will assess topics and estimations mentioned in the third section by using 

Monte Carlo and various states for q and p, especially 0/25, /5 and 0/75 and also sample sizes of 

50, 100 and 1000. In other words, estimations of areas such as moments method (𝑀), modified 

moment method (𝑀 ), ratio method (𝑀𝑀 ) and maximum likelihood method ( 𝑃 ) will be 

determined and assessed. Meantime, (𝐶𝐿𝑠) 95 percnet of CI and T test statistic will be assessed 

for the samples took. 

As it can be observed from table 1, moment method can produce area estimators with the 

highest level of diagonal, of course this level is negative under investigating different states for q 

and p. Modified method of estimators can somehow reduce absolute value of this level and it 

produces more optimum estimators, although this value is still negative. Ratio method produces 

estimators with the least diagonal which is greatly close to maximum likelihood method. 

After argument over the-spot estimators, we will follow interval estimators which are followed 

in table 2 based on analyzed and observed Fisher information matrix for logit ratio. As it can be 

observed there is no major difference between converge rate and average width of CI calculated 

based on table values. In other words, there does not exist a significant difference between CI 

calculated for Fisher information matrix and observed one. As you can observe, converge rate for 

CI is always bigger than 80/0 and even sometime it is more than pre-assumption value (0/98 

percent confidence level). Average width is usually small and an acceptable value, although these 

values somehow improve with logit ratio in Fisher information matrix. 
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Table 1. Diagonal level and standard deviation for estimators 

 

 

 M MM P ML 

p p n 𝑏𝑖𝑎𝑠(�̂�)  Sd(�̂�) 𝑏𝑖𝑎𝑠(�̂�)  Sd(�̂�) 𝑏𝑖𝑎𝑠(�̂�)  Sd(�̂�) 𝑏𝑖𝑎𝑠(�̂�)  Sd(�̂�) 𝑏𝑖𝑎𝑠(�̂�)  Sd(�̂�) 𝑏𝑖𝑎𝑠(�̂�)  Sd(�̂�) 𝑏𝑖𝑎𝑠(�̂�)  Sd(�̂�) 𝑏𝑖𝑎𝑠(�̂�)  Sd(�̂�) 
0.25 0.25 50 -0.015 0.061 -0.014 0.069 -0.009 0.091 -0.008 0.089 0.005 0.099 0.003 0.089 -0.001 0.091 -0.018 0.089 

0.25 0.25 100 -0.014 0.069 -0.012 0.049 -0.005 0.123 -0.003 0.079 0.001 0.061 -0.001 0.060 -0.001 0.061 -0.011 0.079 

0.25 0.25 1000 -0.011 0.021 -0.009 0.261 -0.001 0.251 -0.018 0.138 -0.002 0.033 -0.001 0.049 -0.000 0.041 -0.008 0.069 

0.25 0.5 50 -0.021 0.099 -0.026 0.069 -0.016 0.161 -0.015 0.119 0.008 0.085 0006 0.089 -0.009 0.099 -0.021 0.088 

0.25 0.5 100 -0.019 0.072 -0.024 0.041 -0.010 0.041 -0.011 0.087 0.002 0.071 0.001 0.070 -0.011 0.081 -0.012 0.072 

0.25 0.5 1000 -0.013 0.161 -0.021 0.065 -0.007 0.291 -0.013 0.229 -0.002 0.054 -0.001 0.058 -0.009 0.071 -0.009 0.059 

0.25 0.75 50 -0.032 0.169 -0.016 0.309 -0.029 0.213 -0.009 0.023 0.050 0.089 0.043 0.085 -0.008 0.088 -0.023 0.099 

0.25 0.75 100 -0.027 0.081 -0.010 0.190 -0.017 0.091 -0.002 0.189 0.010 0.074 0.009 0.076 -0.007 0.061 -0.016 0.073 

0.25 0.75 1000 -0.008 0.011 -0.005 0.125 -0.006 0.097 -0.011 0.165 0.00 0.051 -0.001 0.059 -0.013 0.051 -0.008 0.053 

0.5 0.25 50 -0.042 0.0161 -0.029 0.045 -0.023 0.191 -0.007 0.082 0.001 0.096 0.00 0.088 -0.011 0.079 -0.018 0.079 

0.5 0.25 100 -0.038 0.0111 -0.027 0.029 -0.021 0.099 -0.003 0.123 -0.001 0.056 -0.002 0.059 -0.012 0.061 -0.014 0.059 

0.5 0.25 1000 -0.029 0.0147 -0.016 0.169 -0.015 0.191 -0.012 0.049 -0.001 0.049 -0.005 0.041 -0.008 0.051 -0.010 0.041 

0.5 0.5 50 -0.032 0.0264 -0.024 0.099 -0.030 0.166 -0.009 0.287 0.002 0.099 -0.006 0.087 -0.011 0.089 -0.024 0.088 

0.5 0.5 100 -0.025 0.0361 -0.017 0.124 -0.022 0.191 -0.007 0.122 -0.002 0.079 0.001 0.067 -0.012 0.070 -0.012 0.063 

0.5 0.5 1000 -0.018 0.092 -0.011 0.109 -0.016 0.235 -0.012 0.189 -0.002 0.051 -0.003 0.061 -0.006 0.059 -0.009 0.039 

0.5 0.75 50 -0.026 0.241 -0.014 0.169 -0.009 0.141 -0.012 0.115 0.001 0.086 0.002 0.088 -0.014 0.086 -0.021 0.094 

0.5 0.75 100 -0.021 0.298 -0.011 0.127 -0.006 0.021 -0.009 0.119 0.00 0.063 0.001 0.077 -0.013 0.081 -0.019 0.078 

0.5 0.75 1000 -0.016 0.071 -0.008 0.251 -0.003 0.076 -0.004 0.181 -0.001 0.043 0.004 0.059 -0.011 0.059 -0.014 0.054 

0.75 0.25 50 -0.047 0.261 -0.034 0.132 -0.031 0.123 -0.021 0.111 0.001 0.092 -0.004 0.095 -0.010 0.086 -0.019 0.092 

0.75 0.25 100 -0.042 0.069 -0.029 0.139 -0.023 0.191 -0.016 0.294 0.001 0.087 -0.003 0.089 -0.017 0.061 -0.014 0.056 

0.75 0.25 1000 -0.039 0.231 -0.018 0.168 -0.019 0.061 -0.013 0.137 0.00 0.058 -0.001 0.046 -0.014 0.051 -0.011 0.041 

0.75 0.5 50 -0.019 0.098 -0.014 0.049 -0.011 0.191 -0.008 0.059 -0.002 0.073 -0.004 0.084 -0.013 0.099 -0.026 0.089 

0.75 0.5 100 -0.015 0.232 -0.012 0.288 -0.009 0.081 -0.007 0.039 -0.001 0.061 -0.001 0.071 -0.011 0.061 -0.018 0.069 

0.75 0.5 1000 -0.007 0.081 -0.009 0.088 -0.004 0.028 -0.005 0.027 0.001 0.039 0.001 0.038 -0.012 0.085 -0.012 0.059 

0.75 0.75 50 -0.025 0.161 -0.019 0.139 -0.023 0.321 -0.017 0.231 0.001 0.098 -0.001 0.089 -0.011 0.081 -0.013 0.091 

0.75 0.75 100 -0.022 0.095 -0.017 0.123 -0.019 0.231 -0.012 0.129 -0.002 0.082 0.00 0.070 -0.012 0.061 -0.011 0.072 

0.75 0.75 1000 -0.014 0.089 -0.013 0.099 -0.008 0.121 -0.008 0.109 -0.001 0.076 0.00 0.039 -0.013 0.033 -0.008 0.050 
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Table 2: Coverage rate and average width of confidence interval for the parameters 

 

 Fisher Fisher Logit Fisher Observation Fisher Logit Observation 

p p n  Cr(p)  Cr(q)  Aw(p)  Aw(q)  Cr(p)  Cr(q)  Aw(p)  Aw(q)  Cr(p)  Cr(q)  Aw(p)  Aw(q)  Cr(p)  Cr(q)  Aw(p)  Aw(q) 

0.25 0.25 50 0.903 0.921 0.321 0.332 0.921 0.933 0.341 0.305 0.911 0.932 0.332 0.334 0.933 0.936 0.348 0.306 

0.25 0.25 100 0.912 0.911 0.296 0.386 0.916 0.902 0.299 0.375 0.917 0.918 0.292 0.381 0.910 0.913 0.295 0.377 

0.25 0.25 1000 0.971 0.903 0.341 0.243 0.982 0.911 0.364 0.237 0.976 0.911 0.349 0.240 0.987 0.915 0.365 0.232 

0.25 0.5 50 0.981 0.966 0.306 0.349 0.974 0.972 0.315 0.351 0.989 0.967 0.308 0.341 0.971 0.973 0.313 0.359 

0.25 0.5 100 0.871 0.865 0.277 0.297 0.808 0.867 0.264 0.288 0.874 0.863 0.282 0.294 0.809 0.860 0.269 0.293 

0.25 0.5 1000 0.814 0.891 0.312 0.419 0.809 0.866 0.362 0.455 0.819 0.896 0.310 0.420 0.813 0.861 0.368 0.459 

0.25 0.75 50 0.919 0.990 0.299 0.288 0.990 0.922 0.253 0.219 0.912 00.994 0.294 0.283 0.791 0.928 0.258 0.218 

0.25 0.75 100 0.923 0.955 0.314 0.354 0.964 0.938 0.331 0.378 0.927 0.953 0.317 0.356 0.968 0.930 0.339 0.373 

0.25 0.75 1000 0.876 0.897 0.255 0.315 0.855 0.832 0.241 0.319 0.870 0.891 0.252 0.311 0.851 0.845 0.242 0.310 

0.5 0.25 50 0.920 0.922 0.241 0.423 0.982 0.987 0.254 0.444 0.907 0.928 0.243 0.429 0.923 0.988 0.256 .0455 

0.5 0.25 100 0.818 0.892 0.251 0.324 0.848 0.879 0.266 0.346 0.816 0.899 0.255 0.320 0.845 0.876 0.263 0.345 

0.5 0.25 1000 0.976 0.905 0.233 0.265 0.921 0.944 0.261 0.239 0.976 0.905 0.233 0.265 0.921 0.944 0.261 0.239 

0.5 0.5 50 0.865 0.877 0.245 0.488 0.863 0.841 0.209 0.483 0.865 0.877 0.245 0.488 0.863 0.841 0.209 0.483 

0.5 0.5 100 0.915 0.932 0.321 0.231 0.926 0.910 0.341 0.225 0.915 0.932 0.321 0.231 0.826 0.911 0.341 0.225 

0.5 0.5 1000 0.823 0.881 0.342 0.356 0.863 0.874 0.378 0.309 0.823 0.881 0.342 0.356 0.863 0.874 0.378 0.309 

0.5 0.75 50 0.924 0.909 0.341 0.376 0.939 0.918 0.351 0.333 0.924 0.909 0.341 0.376 0.939 0.918 0.351 0.333 

0.5 0.75 100 0.808 0.893 0.234 0.304 0.821 0.847 0.254 0.344 0.808 0.893 0.234 0.304 0.821 0.847 0.254 0.344 

0.5 0.75 1000 0.901 0.962 0.361 0.236 0.965 0.917 0.333 0.382 0.908 0.967 0.363 0.328 0.961 0.918 0.329 0.389 

0.75 0.25 50 0.816 0.921 0.354 0.298 0.865 0.942 0.317 0.263 0.817 0.926 0.357 0.291 0.863 0.941 0.314 0.269 

0.75 0.25 100 0.903 0.982 0.352 0.356 0.951 0.941 0.348 0.392 0.912 0.989 0.353 0.360 0.958 0.947 0.340 0.396 

0.75 0.25 1000 0.820 0.911 0.451 0.345 0.864 0.962 0.439 0.391 0.832 0.910 0.459 0.357 0.861 0.966 0.431 0.395 

0.75 0.5 50 0.912 0.965 0.256 0.312 0.948 0.931 0.209 0.374 0.918 0.968 0.254 0.323 0.949 0.939 0.211 0.370 

0.75 0.5 100 0.872 0.808 0.239 0.330 0.833 0.842 0.217 0.314 0.874 0.806 0.230 0.307 0.836 0.845 0.218 0.316 

0.75 0.5 1000 0.911 0.945 0.291 0.316 0.951 0.923 0.246 0.382 0.919 0.944 0.297 0.311 0.958 0.924 0.249 0.385 

0.75 0.75 50 0.841 0.866 0.304 0.294 0.839 0.818 0.342 0.265 0.842 0.869 0.311 0.293 0.835 0.810 0.344 0.266 

0.75 0.75 100 0.931 0.977 0.310 0.311 0.989 0.906 0.372 0.393 0.938 0.975 0.311 0.314 0.988 0.905 0.377 0.392 

0.75 0.75 1000 0.871 0.889 0.308 0.313 0.838 0.825 0.329 0.354 0.873 0.886 0.311 0.324 0.830 0.826 0.322 0.358 
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10. BAYESIAN ANALYSIS 

Let 𝜃 = (𝑝, 𝑞)  be the parameters of the discrete skewed Laplace distribution with the prior 

distribution 𝜋(𝜃) = 𝜋(𝑝)𝜋(𝑞|𝑝).  Note that we assume 𝑝  and 𝑞  are independent, so 𝜋(𝜃) =
𝜋(𝑝)𝜋(𝑞). Also, the prior distribution for 𝑝 and 𝑞 are the non-informative prior 𝑈(0,1), uniform 

distribution. If 𝑓(𝑥|𝜃) be the desired distribution, then the posterior distribution of 𝜃 given 𝑥 is 

as follows: 

𝜋(𝜃|𝑥) =
𝑓(𝑥|𝜃)

∫ 𝑓(𝑥|𝜃)𝑑𝜃
𝜃

, 

Note that under square integrable loss function, the Bayes estimator for 𝜃 = (𝑝, 𝑞) is as follow 

𝜃𝐵 =
∫ 𝜃∏ 𝑓(𝑥𝑖|𝜃)𝜋(𝜃)𝑑𝜃

𝑛
𝑖=1𝜃

∫ ∏ 𝑓(𝑥𝑖|𝜃)𝜋(𝜃)𝑑𝜃
𝑛
𝑖=1𝜃

 

That leads to 

𝜃𝐵 =
𝐸[𝜃∏ 𝑓(𝑥𝑖|𝜃)𝜋(𝜃)

𝑛
𝑖=1 ]

𝐸[∏ 𝑓(𝑥𝑖|𝜃)𝜋(𝜃)
𝑛
𝑖=1 ]

 

Now, if 𝜃1, 𝜃2, … , 𝜃𝑚 be 𝑚 𝑖𝑖𝑑 sample from prior distribution 𝜋(𝜃), so we have 

1

𝑚
∑𝜃𝑗

𝑚

𝑗=1

∏𝑓(𝑥𝑖

𝑛

𝑖=1

|𝜃𝑗)
𝑎.𝑠.
→ 𝐸 [𝜃∏𝑓(𝑥𝑖

𝑛

𝑖=1

|𝜃)] ,𝑚 → ∞ 

and  

1

𝑚
∑∏𝑓(𝑥𝑖

𝑛

𝑖=1

|𝜃𝑗)

𝑚

𝑗=1

𝑎.𝑠.
→ 𝐸 [∏𝑓(𝑥𝑖

𝑛

𝑖=1

|𝜃)] ,𝑚 → ∞ 

So the empirical Bayes estimators 𝜃𝐸𝐵 is as follows 

𝜃𝐸𝐵 =

1

𝑚
∑ 𝜃𝑗
𝑚
𝑗=1 ∏ 𝑓(𝑥𝑖

𝑛
𝑖=1 |𝜃𝑗)

1

𝑚
∑ ∏ 𝑓(𝑥𝑖

𝑛
𝑖=1 |𝜃𝑗)

𝑚
𝑗=1

 

and finally the Bayes estimator �̂�𝐸𝐵 and �̂�𝐸𝐵 can be easily found. 

10.1. Simulation study 

Now, to validate our estimation method presented in this paper, we simulate 1000 sample for 

different combination of the (p, q) and compare ML estimator with empirical Bayes method. 

Note that R package /DiscreteLaplace/ from website  

http://CRAN.R-project.org/package=DiscreteLaplace (Barbiero, 2014) can be easily achieved. 

As Table 1 shows, the differences between considered amount for (p, q) and their empirical 

Bayes estimator are less than maximum likelihood method. 

Table1. Simulation study for empirical Bayes and maximum likelihood method. 

(𝑝, 𝑞) �̂�𝑀𝐿 �̂�𝑀𝐿 �̂�𝐸𝐵 �̂�𝐸𝐵 

(0.25,0.25) 0.211 0.229 0.231 0.238 

(0.25,0.5) 0.221 0.472 0.231 0.495 
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(0. 5,0.25) 0. 482 0.232 0. 491 0.239 

(0.75,0.75) 0.724 0.722 0.731 0.739 

 

11. CONCLUSION 

Skewed discrete Laplace distribution is a flexible distribution which is defined on total absolute 

value space. Rupturing this distribution led to distribution definition which can be defined on total 

absolute value. It was observed that in analyses there were so significant and could be applied for 

modeling difference between numerical data. Despite previous skewed distribution which was 

not defined on total absolute value, this distribution possessed a closed form of probability 

function, distribution function, moment-generating function, characteristic function of 

probability, mathematical expectation and variance and statistical analyses could be conducted 

much easier. The presented paper investigates Bayesian analysis for discrete skewed Laplace 

distribution and compares it to the classical estimation method, maximum likelihood estimator. 

The BIC criteria show that the empirical Bayes estimators are preferable. 
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