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Abstract. Distribution function, other than goodness-of-fit test, is also used in point estimation approach, especially in 

distributions with closed-form distribution functions. In this paper, the goal is to estimate parameters with minimum 

distance between empirical and theoretical distribution functions by means of Hellinger and Jeffrey distance measures. 

Monte Carlo simulation for estimating parameters of generalized Pareto distribution with three parameters represents 

acceptable results. This distribution does not have any close form moment for obtaining MME and also the estimation 

of parameters by MLE needs some numerical ways. Finally, the introduced methods is implemented to real data and 

compared to classical estimators. 
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1. INTRODUCTION 

There are various methods to obtain point estimators, such as method of moments estimation 

(MME), maximum likelihood estimation (MLE), least square estimation, bayesian method, 

minimum chi square and minimum distance. To choose the best estimator, there are several 

criteria that retaining the domain of unknown parameter, unbiaseness, efficiency and consistency 

are of the most important. 

Using classic estimation methods such as MME and MLE requires obtaining preliminary 

moments and maximizing the likelihood function, respectively, and weakness of these methods 

shows up with appearance of multi parametric distributions, distributions without closed-form 

moments, or which requires numerical solutions for attaining estimators. The estimation of 

parameters by minimum distance between theoretical and estimation of parameters by 

transformation, which is mostly used  in testing hypothesis, was first officially used by Beran 

(1977) in point estimation. He used the difference between theoretical and empirical density 

function and showed that the point estimators obtained by Hellinger distance act robust on the 

presence of outliers, which usually results unreasonable estimates. The statistic used in these tests 

is called distance measure, which must get minimized. Recently, in addition to distance between 

theoretical and empirical distribution functions, distance between other distribution 

characteristics has been of interest. Sim and Ong (2010) considered some estimators based on the 

generalization of Hellinger and some other distances between probability generating function 

(pgf) and the empirical probabiliey generating function (epgf) for negative binomial (NB) 

distribution that are robust estimators. Also Sharifdoust et al. (2014) studied the behavior of pgf 

based Hellinger and Jeffrey distances for NB and some distribution in presence and without 

presence of outliers and compared the results with other estimators including Hellinger MME and 

MLE [3, 4]. 

In this paper, we are going to use this method for some distributions with closed-form 

distribution function in which MLE does not have closed-form or classical estimators do not show 
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good properties. These distributions do not have any close form moment for obtaining MME and 

also the estimation of parameters by MLE needs some numerical ways. To discuss optimal 

conditions of the estimator, generalized Pareto distribution is used in simulation. Therefore, we 

try to estimate the parameters of generalized Pareto distribution by minimizing the distance 

between theoretical and empirical distribution functions. In other words, estimator, which results 

the minimum distance between distribution of data and theoretical distribution, will be chosen. 

Among the available statistical distances, we consider Hellinger and Jeffrey robust distances [2, 

3]. To compare suggested estimators, we use biasness and mean squared error. 

So, for this purpose, in the second section, we introduce the suggested distances between two 

functions, that are named Jeffery and Hellinger distances. In the third section, we represent the 

estimating method and in the fourth section, to evaluate the proposed estimating method and to 

compare it with classic estimators, we apply Monte Carlo simulation to three-parameter 

generalized Pareto distribution. In the fifth section, we fit the three-parameter generalized Pareto 

distribution to real data and estimate parameters. And finally in the sixth section, a brief review 

of the results will be discussed. 

 

2. DISTANCE BETWEEN FUNCTIONS 

Mathematical distances are quantities used for calculating between two mathematical objects. 

These distances are usually meter and not necessarily symmetric [4]. In probability theory, f-

divergent is a function that measure the difference between two probability distributions. This 

divergence was first introduced and studied by Morimoto (1963). Hellinger's distance was first 

introduced by Hellinger (1909) to determine the similarity between two probability distributions. 

This distance is a special form of f-divergent in the condition f = (√t − 1)
2
. If P and Q are 

probability measures which are strictly continuous with respect to probability measure 𝜆, the 

second exponent of Hellinger distance between P and Q will have the form 

𝐻2(𝑃, 𝑄) =
1

2
∫(√

𝑑𝑃

𝑑λ
−√

𝑑𝑄

𝑑λ
)

2

𝑑λ                                                                                                     (1) 

where  
𝑑𝑃

𝑑λ
 and   

𝑑𝑄

𝑑λ
 are Radon-Nikodin derives of P and Q, respectively. Since this definition does 

not depend on 𝜆, thus Hellinger distance between P and Q will not be changed when 𝜆 is replaced 

by another probability measure in which P and Q are also strictly continuous. So the distance can 

be represented in following form: 

𝐻2(𝑃, 𝑄) =
1

2
∫(√𝑑𝑃 − √𝑑𝑄)

2
                                                                                                             (2) 

The Kulback-Leibler distance is an asymmetric measure of difference between two probability 

distribution P and Q and determines a measure of missing information when is used for 

approximating. In fact, P shows the real distribution of data or observations and Q is an 

approximation of P. This distance, which is a special case of f-divergent at the condition f = 𝑡𝑙𝑛𝑡, 
has been of interest in many researches of engineering and reliability theory such as Moreno et 

al. (2004) and Seghouane and Amari (2007) [7, 8]. Let P and Q be probability measures on 

set Ω and P be strictly continuous with respect to Q. Then Kullback-Leibler distance will have 

the following form: 

𝐷𝐾𝐿(𝑃‖𝑄) = ∫ 𝑙𝑛 (
𝑑𝑃

𝑑𝑄
)

𝛺

𝑑𝑃                                                                                                                    (3) 
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where  
𝑑𝑃

𝑑𝑄
 is the Radon-Nikodin derive of P according to Q. The big problem in using Kullbak-

Leibler distance is its asymmetric form. Jeffrey distance is a symmetric version of Kullback-

Leibler distance; If P and Q are discrete distribution functions, this distance will be determined 

as below [9]:  

𝐷𝑗(𝑃, 𝑄) = 𝐷𝐾𝐿(𝑃‖𝑄) + 𝐷𝐾𝐿(𝑄‖𝑃) =∑(𝑝(𝑖) − 𝑞(𝑖))𝑙𝑛
𝑝(𝑖)

𝑞(𝑖)
𝑖

                                                    (4) 

The Jeffrey distance, which is not determined in p(i)=0 and q(i)=0, has many usages like 

classification of multimedia data [7]. 

 

3. ESTIMATING WITH METHOD OF MINIMUM DISTANCE BETWEEN 

DISTRIBUTION AND SAMPLE CHARACTERISTICS 

In many distributions, probability distribution function has a simpler form than other 

distribution characteristics like probability generating function or density function. Therefore, we 

can use distribution function instead of other characteristics. In this paper we use Hellinger and 

Jeffrey distances based on distribution function, which are as followed: 

H(FX(x), Fn(x)) =  ∫(√FX(x) − √dn(x))
2
dx                                                                                   (5) 

J(FX(x), Fn(x)) =  ∫(FX(x) − Fn(x)) log
FX(x)

Fn(x)
dx                                                                           (6) 

where FX(x) and Fn(x) are empirical distribution functions. The empirical distribution function 

of n observation  X1, X2, . . . , Xn  will be obtained from equation below: 

Fn(t) =
# 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 ≤ t

n
=
1

n
∑I{xi ≤ t}                                                                                   (7)

n

i=1

 

where I(A) is the indicator function of event A. Estimators obtained by minimizing equations (5) 

and (6) are called MHDE and MJDE, respectively.  

To evaluate the goodness of the method of estimation, we use this strategy that as smaller the 

quantity of the distances, the estimation of the parameters are more suitable with this data.. In 

fact, this appropriateness shows that model parameters are well-estimated. Thus we can say that 

parameter values, which distances in equations (5) and (6) are minimized, are best estimates for 

parameters. 

Since the classic MLE sometimes need to be solved numerically and is not even unique or 

domain-retaining in many cases, are also MME does not have acceptable results in small samples, 

and many distributions does not have moment generating functions with closed form, using the 

distance between distribution characteristics or even distribution function itself can be so helpful. 

4. SIMULATION 

In this section, the aim is to discuss and compare the estimating methods of minimum distance 

between theoretical and experimental distribution functions and classic estimators; MLE and 

MME. For this purpose, we use generalized Pareto distribution with three parameters (GPD3). As 

we know, this distribution is a schema for many social-economical phenomena. This distribution, 

which is compatible with skew phenomena, is very important in studying life time of creatures 

and reliability theory [11]. The GPD3 contains a big family of heavy-tailed distributions, 
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exponential distribution family and a subclass of Beta distributions and distributions with 

bounded support. Distribution function and density function of this distribution is represented in 

equations (8) and (9), respectively. 

𝐹𝑋(𝑥) =

{
 
 

 
 
1 − (1 −

𝑎(𝑥 − 𝑐)

𝑏
)

1

𝑎

    ;      𝑎 ≠ 0

1 − 𝑒𝑥𝑝 {−
𝑥 − 𝑐

𝑏
}         ;      𝑎 = 0

                                                                                    (8) 

𝑓𝑋(𝑥) =

{
 
 

 
 1

𝑏
[1 −

𝑎(𝑥 − 𝑐)

𝑏
]

1

𝑎
−1

    ;      𝑎 ≠ 0

1

𝑏
𝑒𝑥𝑝 {−

𝑥 − 𝑐

𝑏
}           ;      𝑎 = 0

                                                                                       (9) 

where a is shape parameter, b scale parameter, and c is location parameter. Afterward, for different 

sample sizes 10, 20, 30, 50, 100, 200, and 500 from GPD3 distribution, simulation is done, 

parameters are estimated with by the classic ML and MM and the proposed methods MHD and 

MJD for each sample size, and biasness and MSE are obtained and calculated in Table 1.  

In cases, which complex integrals cannot be solved with common integrating methods, we use 

numerical methods to approximate the integrals. 

As it can be seen on Table 1, bias value of MME decreases as sample size increases. Although 

this decrement is very negligible, it holds for all three parameters of distribution. MSE value is 

also invariant as sample size increases. 

On the other hand, we see that MLE also decreases for different sample sizes and has an invert 

relevance with sample size. But for the threshold variable, bias value tends to zero as sample size 

get bigger. MSE is almost invariant for shape and scale parameters and tends to zero for threshold 

variable. Proposed estimator act more suitable that classic ones since bias and MSE values are 

smaller that values of classic methods. Also two methods MHDE and MJDE are very similar, 

their values of bias and MSE for all parameters are the same and the only difference is MHDE 

needs more time for calculation than MJDE. Thus, as a result, MHDE and MJDE are at least as 

good as MLE and MME.  
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 .Parameter BIAS and MSE under MME, MLE, MJDE and MHDE for simulation of different sizes fromGPD3  .Table1 

MJDE MHDE MLE MME  

c  b a c b a c b a c b a  

0.03349968 

 

68668.00.0 

6866700.0 

 

688402406 

68660.266 

 

680666028 

68627064.8 

 

686606008.6 

686406080 

 

680674448 

686224420 

 

680.6600 

60668086/6 

 

66080078/6  

64.764/6  

 

6474242./6  

60266000/6  

 

660660072/

6 

66.28776/6-  

 

66400048/6  

666007./6  

 

8662.00/6  

66666./6 

 

0.08067/6  

BIAS 

 

MSE 

n=66 

6860066808 

 

68666208.04 

0.0777186 

 

684677.40 

684667.46 

 

682760628 

686..46400 

 

686660.0620 

686667060 

 

684067.70 

6868.04664 

 

688404280 

68.04664/6  

 

668200026/

6 

6000700/6-  

 

660660064/

6 

62006082/6  

 

666060000/

6 

66286000/6-  

 

6600.0680/6  

607.2770/6  

 

6062604/6  

60086800/6  

 

2407007/6  

BIAS 

 

MSE 

 

n=46 

6866440.66 

 

68666760064 

0.06543971 

 

0.1504346 

0.06603979 

 

0.2217627 

0.01441773 

 

0.00081602 

6860624068 

 

684478260 

686.400680 

 

68470.672 

62207.02/6  

 

664607070/

6 

62020840/6-  

 

664076002/

6 

64006000/6  

 

6660.2.4./

6 

66644..80/6

- 

 

662876767/6  

68078878/6  

 

6687862/6  

60046680/6  

 

6.8006./6  

BIAS 

 

MSE 

n=26 

68660.27.2. 

 

68666426824 

0.05605263 

 

0.1188617 

0.06120184 

 

0.1457336 

0.009295387 

 

0.000348476 

6860070848 

 

686.82406 

686.620877 

 

68460.70 

64648404/6  

 

666770260/

6 

64440008/6-  

 

666.62.40/

6 

660.6882/6  

 

666277660/

6 

66627000./6  

 

66460.668/6  

62206.02/6  

 

600608.8/6  

68626604/6  

 

6000884./6  

BIAS 

 

MSE 

n=06 

68662026720 

 

7820E –680 

0.03413785 

 

0.08388194 

0.02523923 

 

0.09494305 

0.005087456 

 

0.000104675 

6860664600 

 

6860466.0 

6868206400 

 

686048077 

66607887/6  

 

66644660./

6 

666.722/6-  

 

666607800/

6 

66.602.24/

6 

 

6666600.8/

6 

6620008./6-  

 

666687664/6  

667.626/6  

 

64880740/6  

66407467/6  

 

68060220/6  

BIAS 

 

MSE 

n= 

666 

68666020048 

 

6876E – 0.5 

0.02404 

 

0.0696732 

0.01211024 

 

0.06808303 

0.002583457 

 

2.62E – 0.5 

6860480020 

 

686820200 

68620.6622 

 

686406660 

6866026844

4 

 

5.85E –0.5 

-

0.00509732

1 

 

8802E −680 

68662040.0

2 

 

2.65E −0.5 

-

0.000198754 

 

0.000463979 

0.00490901 

 

0.0117486 

686606.0.0

6 

 

686466.000 

BIAS 

 

MSE 

n= 

466 

0.000554769 

 

4/ 66 E 60-  

0.02813257 

 

0.07828963 

0.01145132 

 

0.05394872 

0.001041942 

 

4.37E – 680 

6860026066 

 

686080087 

6864000222 

 

6866.8.70 

0.00197699 

 

7.52E −0.6 

−68666.20.

02 

 

0800E −680 

0.00145057

8 

 

3.49E −0.6 

-

0.000264417 

 

0.000192197 

0.00018365

6 

 

686687.022 

6866660066

0-  

6866..6264

4 

BIAS 

 

MSE 

n= 

566 
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5. RESULTS OF REAL DATA 

In this section, we consider the river flooding data, fit the GP3 distribution to them, and 

estimate the parameters with classic and proposed methods and compare results. 

River flooding data have been used by Dumonceaux and Antel (1973). This data, which is 

mostly about maximum level of river flooding in Pennsylvania state, has been recorded in a four-

year period from 1890 to 1969 with million cube feet per minute [13]. The data is listed in Table 

2. 

 
Table 2. The river flooding data 

4076.6 8806.6 2606.6 0626.6 0086.6 

2420.6 2706.6 8426.6 2706.6 8646.6 

8086.6 8646.6 86.6.6 786.6 4006.6 

4006.6 8.86.6 2046.6 22.6.6 8606.6 

 

This data is skew to right with skew coefficient 1.156, thus the GP3 distribution can be a good 

candidate for fitting. Now we estimate parameters of model with classic and proposed methods. 

Estimated values of river flooding data by means of different methods is represented in Table 3. 

 
Table 3. The different estimation of parameters for river flooding data 

 MME MLE MHDE MJDE 

a 484062.6.6 6-66  ×84062.4 066  ×466766.. 066  ×.06748.. 

b 6.077604.6 066  ×60606..0 066  ×.20072.6 866  ×0.7470.. 

c 6608864..6- 400.6 0-66  ×6.6 4-66  ×0.00.2 

 

 

6. CONCLUSION 

In this paper, we use Hellinger and Jeffrey distances between theoretical and empirical 

distribution functions to obtain the estimates of parameters that classic methods cannot have a 

closed-form distribution function. To evaluate the functionality of proposed methods, we use 

generalized Pareto distribution with three parameters. Simulation results shows suitable function 

of proposed methods in comparison to classic ones. Finally, proposed and classic methods were 

applied for a skew to right set of data. 
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