
Cumhuriyet Üniversitesi Fen Fakültesi 
Fen Bilimleri Dergisi (CFD), Cilt:36, No: 3 Özel Sayı (2015) 

ISSN: 1300-1949 

 
 

Cumhuriyet University Faculty of Science 
Science Journal (CSJ), Vol. 36, No: 3 Special Issue (2015) 

ISSN: 1300-1949 

 

 

_____________ 

noormandi_r@iausirjan.ac.ir :Email addressCorresponding author. *  

The Second National Conference on Applied Research in Science and TechnologySpecial Issue:  

http://dergi.cumhuriyet.edu.tr/ojs/index.php/fenbilimleri ©2015 Faculty of Science, Cumhuriyet University 

Resource-provision scheduling in cloud datacenter 

 
Anis VOSOOGH1, Reza NOURMANDİ-POUR2,* 

1Department of computer engineering, Sirjan Science and research branch, Islamic azad university, Sirjan, Iran & 

Department of computer engineering, Sirjan branch, Islamic azad university, Sirjan, Iran 

2Department of computer engineering, Sirjan branch, Islamic azad university, Sirjan, Iran 

Received: 01.02.2015; Accepted: 05.05.2015 

 

Abstract. Cloud computing, the long-held dream of computing as a utility, has the potential to transform a large part 

of the IT industry, making software even more attractive as a service and shaping the way in which hardware is designed 

and purchased. We review the new cloud computing technologies, and indicate the main challenges for their 

development in future, among which resource management problem stands out and attracts our attention. Combining 

the current scheduling theories, we propose cloud scheduling hierarchy to deal with different requirements of cloud 

services. we settle the evaluation problem for on-line schedulability tests in cloud computing. We propose a concept of 

test reliability to express the probability that a random task set could pass a given schedulability test. The larger the 

probability is, the more reliable the test is. From the aspect of system, a test with high reliability can guarantee high 

system utilization. From the practical aspect, we develop a simulator to model MapReduce framework. This simulator 

offers a simulated environment directly used by MapReduce theoretical researchers. The users of SimMapReduce only 

concentrate on specific research issues without getting concerned about finer implementation details for diverse service 

models, so that they can accelerate study progress of new cloud technologies. 
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1. INTRODUCTION 
 

When we open any IT magazines, websites, radios or TV channels, ”cloud” will definitely catch 

our eye. The cloud has reached into our daily life and led to a broader range of innovations, but 

people often misunderstand what cloud computing is. Built on many old IT technologies, cloud 

computing is actually an evolutionary approach that completely changes how computing services 

are produced, priced and delivered. It allows to access services that reside in a distant datacenter, 

other than local computers or other Internet-connected devices. Cloud services are charged 

according to the amount consumed by worldwide users. Such an idea of computing as a utility is 

a long-held dream in the computer industry, but it is still immature until the advent of low-cost 

datacenters that will enable this dream to come true. 

1.1. Objectives And Contributions 

This thesis studies resource management problems related to cloud computing, such as resource 

allocation, scheduling and simulation. The major contributions are as follows. 

• A survey of current trends and research opportunities in cloud computing. Weinvestigate 

the state-of-the-art efforts on cloud computing, from both industry and academic standpoints. 

Through comparison with other related technologies and computing paradigms, we identify 

several challenges from the cloud adoption perspective. We also highlight the resource 

management issue that deserves substantial research and development. 
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• A cloud scheduling hierarchy to distinguish different requirements of cloud services. 

We systemize the scheduling problem in cloud computing, and present a cloud scheduling 

hierarchy, mainly splitting into user-level and system-level. Economic models are investigated 

for resource provision issues between providers and customers, while heuristics are discussed for 

meta-task execution on system-level scheduling. Moreover, priority scheduling algorithms are 

complemented for real-time scheduling. 

• A game theoretical resource allocation algorithm in clouds. We introduce game theory to 

solve the user-centric resource competition problem in cloud market. Our algorithm substitutes 

the expenditure of time and cost in resource consumption, and allows cloud customers to make a 

reasonable balance between budget and deadline requirements. We supplement the bid-shared 

auction scheme in Cloudsim to support on-line task submission and execution. Under sequential 

games, a Nash equilibrium allocation among cloud users can be achieved. 

• A price prediction method for games with incomplete information. We propose an effective 

method to forecast the future price of resources in sequent games, especially when common 

knowledge is inadequate. This problem arises from the nature of an open market, which enables 

customers holding different tasks to arrive in datacenters without a prior fixed arrangement. 

Besides that, the independent customers have little or limited knowledge about others. In that 

case, our Bayesian learning prediction has stable performance, which can accelerate the search of 

Nash equilibrium allocation. 

• A theoretical utilization bound for real-time tasks on MapReduce cluster. We address the 

scheduling problem of real-time tasks on MapReduce cluster. Since MapReduce consists of two 

sequential stages, segmentation execution enables cluster scheduling to be more flexible. We 

analyze how the segmentation between Map and Reduce influences cluster utilization. Through 

finding out the worst pattern for schedulable task set, we deduce the upper bound of cluster 

utilization, which can be used for on-line schedulability test in time complexity O(1). This 

theoretical bound generalizes the classic Liu’s result, and even performs better when there is a 

proper segmentation between Map and Reduce. 

• A reliability indicator for real-time admission control test. We settle the comparison 

difficulty among real-time admission control tests. Admission control test aims at determining 

whether an arriving task can be scheduled together with the tasks already running in a system, so 

it can prevent system from overload and collapse. We introduce a concept of test reliability to 

evaluate the probability that a random task set can pass a given test, and define an indicator to 

show the test reliability. Our method is useful as a criterion 

to compare the effectiveness of different tests. In addition, an insufficient argument in previous 

literature is questioned and then completed. 

• A performance analysis for schedulability test on MapReduce cluster. We examine accepted 

ratio of several most used priority-driven schedulability tests on a simulated MapReduce cluster. 

The development of ubiquitous intelligence increases the real-time requirements for a cloud 

datacenter. If one real-time computation does not complete before its deadline, it is as serious as 

that the computation was never executed at all. To avoid ineffective computation, the datacenter 

needs a schedulability test to ensure its stability. From both realizability analysis and experimental 

results, we find out that the performance discrepancy of schedulability test is determined by a 

prerequisite pattern. This pattern can be deduced by a reliability indicator, so it may help system 

designers choose a good schedulability test in advance. 

• A simulation toolkit to model the MapReduce framework. We develop a MapReduce 

simulator, named SimMapReduce, to facilitate research on resource management and 
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performance evaluation. SimMapReduce endeavors to model a vivid MapReduce environment, 

considering some special features such as data locality and dependence between Map and Reduce, 

and it provides essential entity services that can be predefined in XML format. With this 

simulator, researchers are free to implement scheduling algorithms and resource allocation 

policies by inheriting the provided java classes without implementation details concerns. 

1.2 Deployment Models 

Clouds are deployed in different fashions, depending on the usage scopes. There are four primary 

cloud deployment models. 

• Public cloud is the standard cloud computing paradigm, in which a service provider makes 

resources, such as applications and storage, available to the general public over Internet. Service 

providers charge on a fine-grained utility computing basis. Examples of public clouds include 

Amazon Elastic Compute Cloud (EC2), IBM’s Blue Cloud, Sun Cloud, Google AppEngine and 

Windows Azure Services Platform. 

• Private cloud looks more like a marketing concept than the traditional mainstreamsense. It 

describes a proprietary computing architecture that provides services to a limited number of 

people on internal networks. Organizations needing accurate control over their data will prefer 

private cloud, so they can get all the scalability, metering, and agility benefits of a public cloud 

without ceding control, security, and recurring costs to a service provider. Both eBay and HP 

CloudStart yield private cloud deployments. 

• Hybrid cloud uses a combination of public cloud, private cloud and even local infrastructures, 

which is typical for most IT vendors. Hybrid strategy is proper placement of workloads depending 

upon cost and operational and compliance factors. Major vendors including HP, IBM, Oracle and 

VMware create appropriate plans to leverage a mixed environment, with the aim of delivering 

services to the business. Users can deploy an application hosted on a hybrid infrastructure, in 

which some nodes are running on real physical hardware and some are running on cloud server 

instances. 

• Community cloud overlaps with Grids to some extent. It mentions that several organizations 

in a private community share cloud infrastructure. The organizations usually have similar 

concerns about mission, security requirements, policy, and compliance considerations. 

Community cloud can be further aggregated by public cloud to build up a cross-boundary 

structure. 

1.3. Getting Ready For Cloud 

• Datacenter: Even faster than Moore’s law, the number of servers and datacenters has increased 

dramatically in past few years. Datacenter has become the reincarnation of the mainframe 

concept. It is easier to build a large-scale commodity-computer datacenter than ever before, just 

gathering these building blocks together on a parking lot and plugging them into the Internet . 

• Internet: Recently, network performance has improved rapidly. Wired, wireless and 4th 

generation mobile communication make Internet available to most of the planet. Cities and towns 

are wired with hotspots. The transportation such as air, train, or ship also equips with satellite 

based wi-fi or undersea fiber-optic cable. People can connect to the Internet anywhere and at 

anytime. The universal, high-speed, broadband Internet lays the foundation for the widespread 

applications of cloud computing. 

• Terminals: PC is not the only central computing device, various electronic devices including 

MP3, SmartPhone, Tablet, Set-top box, PDA, notebook are new terminals that have the 

requirement of personal computing. Besides, repeated data synchronization among different 
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terminals is time-consuming so that faults occur frequently. In such cases, a solution that allows 

individuals to access to personal data anywhere and from any device is needed. 

 

2. A BRIEF HISTORY 

Along with the maturity of objective conditions (software, hardware), plenty of existing 

technologies, results, and ideas can be realized, updated, merged and further developed. Amazon 

played a key role in the development of cloud computing by initially renting their datacenter to 

external customers for the use of personal computing. In 2006, they launched Amazon EC2 and 

S3 on a utility computing basis. After that, several major vendors released cloud solutions one 

after another, including Google, IBM, Sun, HP, Microsoft, Forces.com, Yahoo and so on. Since 

2007, the number of trademarks covering cloud computing brands, goods and services has 

increased at an almost exponential rate. Cloud computing is also a much favored research topic. 

In 2007, Google, IBM and a number of universities announced a research project, Academic 

Cloud Computing Initiative (ACCI), aiming at addressing the challenges of large-scale distributed 

computing. Since 2008, several open source projects have gradually appeared. For example, 

Eucalyptus is the first API-compatible platform for deploying private clouds. OpenNebula 

deploys private and hybrid clouds and federates different modes of clouds. In July 2010, 

SiteonMobile was announced by 

HP for emerging markets where people are more likely to access the Internet via mobile phones 

rather than computers. With more and more people owning smartphones, mobile cloud computing 

has turned out to be a potent trend. Several mobile network operators such as Orange, Vodafone 

and Verizon have started to offer cloud computing services for companies. In March 2011, Open 

Networking Foundation consisting of 23 IT companies was founded by Deutsche Telecom, 

Facebook, Google, Microsoft, Verizon, and Yahoo. This nonprofit organization supports a new 

cloud initiative called Software-Defined Networking. The initiative is meant to speed innovation 

through simple software changes in telecommunications networks, wireless networks, data 

centers and other networking areas. 

 

2.1 Comparison With Related Technologies 

Cloud computing is a natural evolution of widespread adoption of virtualization, serviceoriented 

architecture, autonomic and utility computing. It emerges as a new computing paradigm to 

provide reliable, customized and quality services that guarantee dynamic computing 

environments for end-users, so it is easily confused with several similar computing paradigms 

such as grid computing, utility computing and autonomic computing. 

 

2.2 Utility Computing 

Utility computing was initialized in the 1960s, John McCarthy coined the computer utility in a 

speech given to celebrate MIT’s centennial “If computers of the kind I have advocated become 

the computers of the future, then computing may someday be organized as a public utility just as 

the telephone system is. The computer utility could become the basis of a new and important 

industry.” Generally, utility computing considers the computing and storage resources as a 

metered service like water, electricity, gas and telephony utility. The customers can use the utility 

services immediately whenever and wherever they need without paying the initial cost of the 

devices. This idea was very popular in the late 1960s, but faded by the mid- 1970s as the devices 

and technologies of that time were simply not ready. Recently, the utility idea has resurfaced in 
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new forms such as grid and cloud computing. Utility computing is highly virtualized so that the 

amount of storage or computing power available is considerably larger than that of a single time-

sharing computer. The back-end servers such as computer cluster and supercomputer are used to 

realize the virtualization. Since the late 90’s, utility computing has resurfaced. HP launched the 

Utility Datacenter to provide the IP billing-on-tap services. PolyServe Inc. built a clustered file 

system that created highly available utility computing environments for mission-critical 

applications and workload optimized solutions. With utility including database and file service, 

custumers of vertical industry such as financial services, seismic processing, and content serving 

can independently add servers or storage as needed. 

2.3 Grid Computing 

Grid computing emerged in the mid 90’s. Ian Foster integrated distributed computing, 

objectoriented programming and web services to coin the grid computing infrastructure. “A Grid 

is a type of parallel and distributed system that enables the sharing, selection, and aggregation of 

geographically distributed autonomous resources dynamically at runtime depending on their 

availability, capability, performance, cost, and users’ quality-of-service requirements.”[1] The 

definition explains that a gird is actually a cluster of networked, loosely coupled computers which 

works as a super and virtual mainframe to perform thousands of tasks. It can divide the huge 

application job into several subjobs and make each run on large-scale machines. Generally 

speaking, grid computing goes through three different generations [2]. The first generation is 

marked by early metacomputing environment, such as FAFNER and I-WAY. The second 

generation is represented by the development of core grid technologies, grid resource 

management (e.g., GLOBUS, LEGION), resource brokers and schedulers (e.g., CONDOR, PBS) 

and grid portals (e.g., GRID SPHERE). The third generation merges grid computing and web 

services technologies (e.g., WSRF, OGSI), and moves to a more service oriented approach that 

exposes the grid protocols using web service standards. 

2.3.1 Autonomic computing 

Autonomic computing, proposed by IBM in 2001, performs tasks that IT professionals choose to 

delegate to the technology according to policies. [3] Adaptable policy rather than hard coded 

procedure determines the types of decisions and actions that autonomic capabilities perform. 

Considering the sharply increasing number of devices, the heterogeneous and distributed 

computing systems are more and more difficult to anticipate, design and maintain. The complexity 

of management is becoming the limiting factor of future development. Autonomic computing 

focuses on the self-management ability of the computer system. It overcomes the rapidly growing 

complexity of computing systems management and reduces the barriers that the complexity poses 

on further growth. In the area of multi-agent systems, several self-regulating frameworks have 

been proposed, with centralized architectures. These architectures reduce management costs, but 

seldom consider the issues of enabling complex software systems and providing innovative 

services. IBM proposed the self-managing system that can automatically process, including 

configuration of the components (Self-Configuration), automatic monitoring and control of 

resources to ensure the optimal (Self-Healing), monitor and optimize the resources (Self-

Optimization) and proactive identification and protection from arbitrary attacks (Self-Protection), 

only with the input information of policies defined by humans [73]. In other words, the autonomic 

system useshigh-level rules to check its status and automatically adapt itself to changing 

conditions. According to the above introductions of the three computing paradigms, we conclude 

the relationship among them. Utility computing concerns whether the packing computing 

resources can be used as a metered service on the basis of the user’s need. It is indifferent to the 

organization of the resources, both in the centralized and distributed systems. Grid computing is 

conceptually similar to the canonical Foster definition of cloud computing, but it does not take 

economic entities into account. Autonomic computing stresses the self management of computer 
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systems, which is only one feature of cloud computing. All in all, cloud computing is actually a 

natural next step from the grid-utility model, having grid technologies, autonomic characteristics 

and utility bills. 

2.3.2. Technical aspects 

Technical characteristics are the foundation that ensures other functional and economical 

requirements. Not every technology is absolutely new, but is enhanced to realize a specific 

feature, directly or as a pre condition. 

• Virtualization is an essential characteristic of cloud computing. Virtualization in clouds refers 

to multilayer hardware platforms, operating systems, storage devices, network resources, etc. The 

first prominent feature of virtualization is the ability to hide the technical complexity from users, 

so it can improve independence of cloud services. Secondly, physical resource can be efficiently 

configured and utilized, considering that multiple applications are run on the same machine. 

Thirdly, quick recovery and fault tolerance are permitted. Virtual environment can be easily 

backed up and migrated with no interruption in service[4]. 

• Multi-tenancy is a highly requisite issue in clouds, which allows sharing of resources and costs 

across multiple users. Multi-tenancy brings resource providers many benefits, for example, 

centralization of infrastructure in locations with lower costs and improvement of utilization and 

efficiency with high peakload capacity. Tenancy information, which is stored in a separate 

database but altered concurrently, should be well maintained for isolated tenants. Otherwise some 

problems such as data protection will arise. 

• Security is one of the major concerns for adoption of cloud computing. There is no reason to 

doubt the importance of security in any system dealing with sensitive and private data. In order 

to obtain the trust of potential clients, providers must supply the certificate of security. For 

example, data should be fully segregated from one to another, and an efficient replication and 

recovery mechanism should be prepared if disasters occur. The complexity of security is increased 

when data is distributed over a wider area and shared by unrelated users. However, the complexity 

reduction is necessary, owing to the fact that ease-of-use ability can attract more potential clients. 

• Programming environment is essential to exploit cloud features. It should be capable of 

addressing issues such as multiple administrative domains, large variations in resource 

heterogeneity, performance stability, exception handling in highly dynamic environments, etc. 

System interface adopts web services APIs, which provide a standards-based framework for 

accessing and integrating with and among cloud services. Browser, applied as the interface, has 

attributes such as being intuitive, easy-to-use, standards-based, serviceindependent and multi-

platform supported. Through pre-defined APIs, users can access, configure and program cloud 

services. 

2.3.3. Resource-provision scheduling in cloud datacenter 

2.3.3.1. Introduction 

Clouds gradually change the way we use computing resources. In cloud computing, everything 

can be treated as a service, which is customized and easily purchased in the market, like other 

consumption goods. This evolution is mainly caused by developed virtualization technology, 

which hides heterogeneous configuration details from customers. Therefore, the resource 

allocation problem in cloud computing needs to take market dealing behaviors into consideration, 

not only match-making scheduling tasks and machines [22]. Market mechanism is used as an 

effective method to control electronic resources, but the existing market models are dedicated 

either to maximizing suppliers’ revenue, or to balancing the supply-demand relationship [40]. In 
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this chapter, we shall focus on helping a cloud customer make a reasonable decision in a 

competitive market. Game theory studies multi-person decision making problems. If no one wants 

to deviate from a strategy, the strategy is in a state of equilibrium. Although there has been 

researches on allocation strategies using game theory [5, 6, 7, 8, 9, 10, 11, 12], none suits the new 

computing service market perfectly. In order to establish a proper model for clouds, several 

important consumer characters should be highlighted. Firstly, cloud users are egocentric and 

rational, wishing to get better service at a lower cost. Secondly, these buyers have more than one 

behavioral constraint, so they have to make a trade-off of one constraint for another in 

management practice. Thirdly, the pay-as-you-go feature means that transactions are never static, 

but repeated gambling processes. Each user can adjust its bid price according to prior behaviors 

of other competitors. Fourthly, cloud customers are distributed globally, so they do not know each 

other very well. In other words, there is no common purchasing knowledge in the whole system. 

Fifthly, tasks arrive in datacenter without a prior arrangement. Sixthly, the accurate forecast 

becomes more challenging in such a complex scenario, so a good allocation model integrating 

compromise, competition and prediction should be further generalized and well evaluated. Given 

the above challenges, we therefore use game theoretical auctions to solve the resource allocation 

problem in clouds, and propose practicable algorithms for user bidding and auctioneer pricing. 

With Bayesian learning prediction, resource allocation can reach Nash equilibrium among non-

cooperative users even if common knowledge is lacking or dynamically updated. The rest of this 

chapter is organized as follows. A short tutorial on game theory is given first, covering the 

different classes of games and their applications, payoff choice and utility function, as well as 

strategic choice and Nash equilibrium. Next, a non-cooperative game for resource allocation is 

built. The scheduling model includes bid-shared auction, user bid function, price forecasting and 

equilibrium analysis. Based on equilibrium allocation, we propose simulation algorithms running 

on the Cloudsim platform. After that Nash equilibrium and forecasting accuracy are evaluated. 

2.4. Game Theory 

Game theory models strategic situations, in which an individual’s payoff depends on the choices 

of others. It provides a theoretical basis for the field of economics, business, politics, logic, 

computer science, and is an effective approach to achieve equilibrium in multi-agent systems, 

computational auctions, peer-to-peer systems, and security and information markets. With the 

development of cloud service market, game theory is useful to address the resource allocation 

problems in cloud systems where agents are autonomous and self-interested. 

2.4.1. Normal Formulation 

Game is an interactive environment where the benefit for an individual choice depends on the 

behaviors of other competitors. A normal game consists of all conceivable strategies, and their 

corresponding payoffs, of every player. There are several important terms to characterize a normal 

form of game [13]. 

Player is the game participant. There is a finite set of players P = {1, 2, · · · ,m}. 

Strategy is the action taken by one player. Each player k in P has a particular strategy space 

containing finite number of strategies, Strategy space is S = 

S1 × S2 × · · · × Sm. The game outcome is a combination of strategies of m players s = (s1, s2, · 

· · ,sm), si ∈ Si. 

Payoff is the utility received by a single player at the outcome of one game, which determines the 

player’s preference. For resource allocation, payoff stands for the amount of resource received, 

for example, ui(s) represents the payoff of player i when the output of the game is s, s ∈ S. Payoff 
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function U = {u1(S), u2(S), · · · , um(S)} specifies for each player in the player set P. Therefore, 

the normal form of a game is a structure as: 

G =< P, S,U > (4.1) 

2.4.2. Types of games 

Although classes of games are various, we only list three common criteria in cloud computing 

market. 

2.4.3. Non-cooperative or cooperative players 

A Non-cooperative game is characterized by a set of independent players who optimize their own 

payoff. This model is most used in a competitive market. We take cloud service market for 

instance. There are a great number of small and medium-sized enterprises as well as widely 

distributed customers. Efficient communication and cooperation among them are insufficient and 

impossible, so the non-cooperation game suits for analyzing the behaviors of these egocentric 

cloud agents. On the contrary, a cooperative game is the one where players from different 

coalitions may make cooperative decisions, so competition here is between coalitions, rather than 

between individual players. Cooperative game is useful when several agents have a common goal. 

For example, the users in P2P file-sharing network have the same object, maximizing the 

availability of desirable files. With the development of electronic commerce, worldwide cloud 

markets 

are collective and localized, such as Groupon and Google offers. Compared with the above games, 

non-cooperative games model situations to the finest details, while cooperative games focus on 

the game at large. 

2.5. Simultaneous or sequential actions 

A simultaneous game is the one where all players make their decisions simultaneously, without 

knowledge of the strategies chosen by other players. Simultaneous game model is used in sealed-

bid auctions in tendering for leases, where no one knows bids of other competitors. A repeated 

game is the one consisting of some number of repetitions of simultaneous game. A player has to 

take into account the impact of his action on the future actions of other players, and makes the 

current decision based on past experience. In a repeated game, the threat of retaliation is real, 

since one will play the game again with the same competitors. Proxy bidding on eBay is an 

example of repeated game, in which the current highest bid is always displayed. 

Under a sophisticated mechanism, rational players bid the maximum amount on their first round, 

and never raise their bids. In a sequential game, one player chooses his strategy before the others 

do, so the later one 

has some knowledge about the earlier players. The sequential game model is easily applied in 

English auction, where players bid openly against one another, with each subsequent bid higher 

than the previous one. 

2.6. Complete or incomplete information 

Information refers to the game characteristic including the number of players as well as their 

strategy spaces and payoffs. A game of complete information is the one in which information is 

available to all players. Each participant knows all strategies and corresponding payoffs, but does 

not necessarily know the actions taken by other players inside the game. Complete information is 

a strict assumption, which is difficult to be implemented in reality. For example in a sealed-bid 
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auction each player knows his own valuation for the service but does not know competitors’ 

valuations. Although private information is not common knowledge 

among players, everyone has some beliefs about what his competitors know. In the situation of 

asymmetric information, we assume that every player knows his own payoff function, but is 

uncertain about others’. 

2.7. Payoff choice and utility function 

In cloud computing market, service providers and their customers have their own preferences. 

Providers balance the investments on capital, operation, labor and device. Customers have 

different QoS requirements, such as cost, execution time, access speed, throughput and stability. 

All these preferences impact on agents’ choices, thus an integrated indication to guide agents’ 

behaviors is necessary. Utility is a measure of relative satisfaction in economics. It is often 

expressed as a function to describe the payoff of agents. More specifically, utility function 

combines more than one service requirements and analyzes Pareto efficiency under certain 

assumptions such as service consumption, time spending, money possession. Therefore, utility is 

very useful when a cloud agent tries to make a wise decision. High value of utility stands for great 

preference of service when the inputs are the same. One key property of utility function is constant 

elasticity of substitution (CES). It combines two or more types of consumption into an aggregate 

quantity. The CES function is 

 

C is aggregate consumption, ci is individual consumptions, such as energy, labor, time, capital, 

etc. The coefficient ai is share parameter, and s is elasticity of substitution. These consumptions 

are perfect substitutes when s approaches infinity, and are perfect complements when s 

approaches zero. The preferences for one factor over another always change, so the marginal rate 

of substitution is not constant. For the sake of simplicity, s equals one in the following analysis. 

Let r = (s − 1)/s, we obtain 

 

Apply l’Hopital’s rule, 

 

If   the consumption function has constant returns to scale, which means that the 

consumption increased by the same percentage as the rate of growth of each consumption good. 

If every ai is increased by 20%, C increases by 20% accordingly. If   the returns 

to scale decrease, on the contrary, returns to scale increase. We take two QoS requirements, speed 

and stability, for example. The CES function is shown in Figure 1. 
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Figure 1. CES functions. 

The contour plot beneath the surface signifies a collection of indifference curves, which can 

represents observable demand patterns over good bundles. Every curve shows different bundles 

of goods, between which a consumer has no preference for one bundle over another. One can 

equivalently refer to each point on the indifference curve as rendering the same level of utility for 

the customer. Especially, CES function is a general expression of Cobb Douglas function. Cobb 

Douglas function has been widely used in consumption, production and other social welfare 

analysis. It can build a utility function. In a generalized form, where c1, c2, · · · , cn are the 

quantities consumed of n goods, the utility function representing the same preferences is written 

as: 

 

with c = (c1, c2, · · · , cn).   we obtain the function   

which is strictly monotone for c > 0. 

 

represents the same preferences. Setting ρi = ai/a it can be shown that 

 

The problem of maximum utility is solved by looking at the logarithm of the utility 

 

2.8. Strategy choice and Nash equilibrium 

Nash equilibrium is a certain combination of strategy choices, under which no player can benefit 

by unilaterally changing his strategy while the other players keep theirs unchanged. Nash 

equilibrium is under the assumption that all players are rational and that their rationality is 

common knowledge. A formal definition of Nash equilibrium is as follows. Let G =< P, S,U > be 

a game and si be a strategy profile of all players except for player i. After each player i has chosen 

their strategies, player i obtains payoff ui(s1, · · · , sn). Note that the payoff depends on the strategy 

chosen by player i as well as the strategies chosen by all the other players. A strategy profile {s∗1 
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, · · · , s∗ n} ∈ S is a Nash equilibrium if no unilateral deviation in strategy by any single player 

is profitable for that player, that is 

 

Nash equilibrium analyzes a strategy profile under the assumption of complete information. 

However, if some information is private, and not known to all players, the players with incomplete 

information have to evaluate the possible strategy profiles. In particular, every rational player tries 

to take an action which maximizes its own expected payoffs, supposing a particular probability 

distribution of actions taken by other competitors. Therefore, the belief about which strategies 

other players will choose is crucial. Only based on a correct belief, players can make the best 

responses. Each strategy is the best response to all other strategies in Bayesian Nash equilibrium. 

In Bayesian games, a type space Ti of player i is introduced, and each Ti has a probability 

distribution Di. Assume that all players know D1, · · · ,Dn, and the type ti of player i is the 

outcome drawn from Di independently. Bayesian Nash equilibrium is defined as a strategy profile 

with which every type of players is maximizing their expected payoffs given other type-

contingent strategies. Especially for player i with the strategy si : Ti → Si, a strategy profile {s∗1 

, · · · , s∗ n} ∈ S is Bayesian Nash equilibrium if 

 

However, Nash equilibrium may not be Pareto optimal from the global view. Nash equilibrium 

checks whether a profitable payoff exists when other payoffs are unchanged. Pareto efficiency 

examines whether a profitable payoff exists without reducing others payoffs. Therefore, for the 

egocentric agents in cloud market, Nash equilibrium is more suitable than Perato efficiency to 

evaluate the allocation decisions. 

2.9. Motivation from equilibrium allocation 

Market mechanism has been proven as a useful approach for many resource management systems, 

such as agent system [16], telecommunication networks [14], data mining [15], cluster computing 

[17] and grid computing [18]. In these systems, various management contexts including 

bandwidth pricing, TCP congestion control, contents delivery and routing are studied. The 

conventional market models are further categorized by modes of pricing and transition, including 

commodity model, contract model, bartering model and auction-related models. These models 

have their own strengths and weaknesses, so they are applied in different application scenarios. 

Stuer [19] preferred the commodity model, in which the price is balanced by analyzing the 

demand and supply values from the market participants. Stratford [20] developed an architecture 

based on the contract model. This model uses dynamic pricing as a congestion feedback 

mechanism, and enables system policy to control adaptation decisions, so it supports scalability 

and application specific adaptation. The bartering model [21] is studied as an alternative, because 

it realizes mutual resource cooperation in the way that one user obtains remote resources for free, 

letting others use its privacy resource in return. Moreover, various auction models including bid-

wined and bid-shared schemes are widely used for resource management. In the bid-wined model, 

the highest bidder wins the resources and pays as much as the bid. Lynar [22] evaluates three 

types of bid-wined auctions and finds out the substantial difference in completion time and energy 

consumption. The bid-shared auction is inclined to solve cooperative problems which belong to 

a single administrative domain [23], so the companies as cloud suppliers are in accordance with 

bid-shared auction. so it supports scalability and application specific adaptation. The bartering 

model [24] is studied as an alternative, because it realizes mutual resource cooperation in the way 

that one user obtains remote resources for free, letting others use its privacy resource in return. 

Moreover, various auction models including bid-wined and bid-shared schemes are widely used 
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for resource management. In the bid-wined model, the highest bidder wins the resources and pays 

as much as the bid. Lynar [25] evaluates three types of bid-wined auctions and finds out the 

substantial difference in completion time and energy consumption. The bid-shared auction is 

inclined to solve cooperative problems which belong to a single administrative domain [26], so 

the companies as cloud suppliers are in accordance with bid-shared auction. Nash equilibrium 

analyzes how individuals make rational decisions in non-cooperative games, so it is used in the 

research of allocation strategies in mobile-agent and grid systems. Galstyan [27] studied a 

minimalist decentralized algorithm for resource allocation in grid environment. The agents using 

a particular resource are rewarded if their number does not exceed the resource capacity, and 

penalized otherwise. Thus, the system can fully utilize resources by adjusting its capacity. The 

limitation of this algorithm is that the number of agents can not be too large. Bredin [28] 

developed decentralized negotiation strategies in auctioning divisible resources. Mobile agents 

are given budget constraints in advance, and plan expenditures in the series of tasks to complete. 

Maheswaran [29] generalized Bredin’s result, and investigated a divisible auction structure that 

allows for a quasi linear characterization of a wide variety of agent tasks. He also proved that the 

auction has a unique Nash equilibrium. This fundamental research inspires us to solve the 

allocation problem by sharing, rather than assigning an entire resource to a single user in a cloud 

market. A common flaw exists in both studies, that 

is, their decentralized models idealize the competitive environment. The mobile agents know 

other competitors’ information well, which is difficult to achieve in a real market. Kwok [30] 

pioneered the consideration of a hierarchical game theoretic model in grids. Kwok also derived 

both equilibrium and optimal strategies for general cases, based on a skillful utility function. This 

result can serve as valuable reference for designing appropriate strategies in a grid, and even in 

an exchanging cloud. An [31] presented a proportional resource allocation mechanism for multi-

agent systems and provided analysis of the existence of equilibrium. Trading agents can optimize 

resource allocation results by updating beliefs and resubmitting bids. The upturn includes more 

variables (for example budget constraints and time constraints) into the current mechanism. Wei 

[32] considered a cloud-based resource provisioning problem, taking both optimization and 

fairness into account. Wei used approximated methods to solve independent optimization by 

binary integer programming, and to minimize their efficiency losses by an evolutionary game 

theoretic mechanism. However, the approximation ratio and time complexity should be further 

reduced to make the solution more practical. 

2.10. Game-theoretical allocation model 

Virtualization technology hides heterogeneous configuration details fromcustomers, and makes 

computation services functionally identical. Cloud users only need to choose a proper computing 

capacity that meets their requirements and pay according to the amount of usage. Cloud suppliers 

offer their customers more than one payment solution. For example, Amazon EC2 provides three 

different purchasing options: on-demand model, reserved model and spot model. Each model has 

different applicable scopes and limitations[33]. In order to satisfy more specific demands, we 

study bid-based model as a complementary payment option to give users the flexibility to 

optimize their costs. 

2.11. Bid-shared auction 

In a cloud market, there are N users asking for services, each having a sequence of tasks to 

complete. The maximum number of tasks is K. Cloud provider entirely virtualizes K resources, 

each of which can render a specific service with a fixed finite capacity C. C = [C1,C2, . . . ,CK] 

(4.11) We characterize one task by its size, which means the amount of computing capability 

required to complete the task. 
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Not all users have the same task itinerary, the size of an inexistent task is zero in the above matrix 

q. If a task qik can occupy its corresponding resource Ck, the computation is processed fastest, at 

a speed of ωik 

. However, in our model, resource capacity is never for exclusive use but 

shared by multi users. It is reasonable and fair that resource partition is proportional to the user’s 

outlay. We assume that a resource is always fully utilized and unaffected by how it is partitioned 

among users. In the real commodity market, consumers needing the same commodity are 

competitors, and are reluctant to cooperate with each other. Thus, resource allocation in clouds is 

a noncooperative allocation problem. Every user has a bidding function, which decides the bid in 

any round considering task size, priority, QoS requirement, budget and deadline. The repeated 

bidding behavior is considered as a stochastic process indexed by a discrete time set. The outputs 

are random variables that have certain distributions, when these above deterministic arguments 

and time are fixed. 

 

Where Bi is the money that a user is willing to pay for one unit of resource per second. User i bids 

for task k at price  bi
k, which can be treated as a sample for  

 

The sum  of total bids for task k indicates the resource price. 

 

Meanwhile,  is given as the sum of other bids except bid  bi
k  

Bid-shared model indicates that resource k obtained by the user i is proportional to his bid price. 

The portion is  and obviously,  Time spent on task k is 

defined by 

 

Cost taken to complete task k is 
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Two illuminations are obtained from the time and cost functions. 

2.12. Non-cooperative game 

Both time and expenditure depend not only on bi
k that an user is willing to pay, but also on   

that other competitors will pay. We therefore construct a non-cooperative game to analyze the 

bid-shared model. In games, the set of players is denoted by N cloud users. Any player i 

independently chooses the strategy bi
k from his strategy space Bi. The preference is determined 

by payoff, for example, we take computationtime  as the payoff. Every player wishes his tasks 

to becomputed as fast as possible, so the payoff value is the lower the better. Regardless of the 

valueof    the dominated strategy of player i is a low value of bi
k if he wants to get the optimal 

payoff. On the contrary, when we choose cost as the game payoff, the dominated strategy is high 

value of bi
k which is different from the former dominated strategy. This difference alerts us that 

the payoff must be carefully selected in order to indicate the outcome preference of a game. 

Absolute dependence on time or money is unreasonable. We combine cost expense and 

computation time into an aggregate quantity, which stands for the total amount of substituted 

consumption. Similar to utility function discussed above, constant elasticity of substitution 

function indicates the players’ payoff. 

 

Where ρe, ρt are the output elasticities of cost and time, respectively. 

2.13. Bid function 

In a cloud market, customers are rational decision makers who seek to minimize their 

consumption, and have constraints of cost E = [E1,E2, . . . ,EN] and time T = T[T1, T2, . . . , 

TN].With a limited budget Ei and deadline Ti, the optimal object function of user i is: 

 

The Hamilton equation is built by introducing the Lagrangian 
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L is a function of three variables of   To obtain the dynamic extreme point, 

gradient vector is set to zero.  

 

1. Take partial derivative with respect to  

 

which gives 

 

A similar result is obtained by setting the gradient of L at  bi
j to zero   

 

For user i, the capital sum  and time sum  remain the same for any two tasks, we 

could therefore determine the relationship between any two bids in one task sequence, which is: 

 

Then bid k is expressed by bid j,   

2. Take partial derivative with respect to  

 

Substituting  for  the equation is expanded  
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Simplifying the above equation, user i will bid for task k at price 

 

 

3. Take partial derivative with respect to   

The expanded expression is obtained 

 

The above equation is further simplified by 

 
2.14. Parameter estimation 

The existence of Nash Equilibrium with complete information has been proved by Bredin[37]. 

However, new problems arise when buyers do not intend to expose their bids to other competitors 

or when they are allowed to join or leave a datacenter from time to time. How does one deal with 

the lack of information? How do users predict the price trend on the basis of inadequate 

knowledge? We record historical purchasing prices   in past auctions, and then use 

statistical forecasting method to evaluate the future price. In probability theory, Bayes’ theorem 

shows how the probability of a hypothesis depends on its inverse if observed evidence is given. 

The posteriori distribution can be calculated from the priori  and its likelihood function 

 is: 

 

The posteriori hyperparameters  can be achieved by using the Bayesian learning 

mechanism, the value of which determines the maximum likelihood prediction of resource price. 

So future bids are forecasted as: 
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Three parameters  and   are introduced, which stand for information from other 

competitors.  

 

deadline is extended, the solid budget curve meets the dashed deadline curve at a lower position. 

It indicates that the possible bid should be above the solid deadline curve in order to complete all 

tasks in finite time. For the same reason, if one user holds more funds, the intersection moves 

right along the solid deadline curve, so the left side of solid budget curve will contain the possible 

bids. The bid region is surrounded by cross and plus curves. Specifically, the crosses mean that 

all capital is used up with time remaining, while the pluses mean that deadline is reached with 

redundant money. Outside this region, there is no feasible bidding solution, which indicates the 

given constraints are over rigid. Users must loosen either of the two constraints slightly if they 

still wish to accomplish this impossible mission. 

2.15. Cloudsim toolkit 

Cloudsim [43] is designed to emulate cloud-based infrastructure and application service, and can 

be used in research of economy driven resource management policies on large scale cloud 

computing systems. Researchers benefit from focusing on resource allocation problems without 

implementation details. These features are not supported by other cloud simulators [43]. We apply 

Cloudsim as our simulation framework, but make some improvements aiming at the following 

shortcomings. Firstly, sequential auctions are complemented, accompanied by several specific 

policies. Secondly, Cloudsim only supports static assignment with predetermined resources and 

tasks. We realize that multi-users can submit their tasks over time according to certain arrival rate 

or probability distribution and that resource nodes can freely join or leave cloud datacenter. The 

assignment in our simulation model is much closer to a real market than before. 

2.16. Communication among entities 

There are four types of entities to be simulated. CIS Registry provides a database level 

matchmaking service for mapping application requests to datacenter. Datacenter integrates 

distributed hardware, database, storage devices, application software and operating systems to 

build a resource pool, and is in charge of virtualizing applicable computing resources according 

to users’ requests. Cloud users have independent task sequences, and they purchase resources 

from datacenter to execute tasks. All these users bid according to their economic capabilities and 

priorities under different constraints. Auctioneer is the middleman in charge of maintaining an 

open, fair and equitable market environment. In accordance with the rules of market economy, 

auctioneer fixes an equilibrium price for non-cooperative users to avoid blind competition. 

Figure 1 depicts the flow of communication among main entities. At the beginning, datacenter 

initializes current available hosts, generating provision information and registers in CIS. 

Meanwhile, cloud users who have new tasks report to auctioneer and queue up in order of arrival 

time. At regular intervals, auctioneer collects information and requests datacenter to virtualize 
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corresponding resources. Once virtual machines are ready according to users’ service 

requirements, datacenter sends the provision information to the auctioneer, and successive 

auctions start. In each auction stage, users ask the auctioneer individually about configuration 

information such as virtual machine provision policy, time zone, bandwidth, residual computing 

processors, and bid according to their asset valuations. Auctioneer collects all bids then informs 

users of the sum of bids. Under the game of incomplete information, cloud users only know their 

own price functions as well as the incurred sum of bids. They dynamically predicate 

 

Figure 1. Flowchart of communication among entities. 

the future resource price, and update competitors’ information  

Subsequently, holding all price functions auctioneer makes an equilibrium allocation decision and 

inquires whether everyone is satisfied with the result. If the result is agreeable, auctioneer 

publishes allocation proportions to datacenter and users. Users then execute their tasks and pay 

for the resource allocated. At the end, datacenter deletes the used VMs and waits for new service 

demands. 

2.17. Implementation algorithm 

Concrete algorithms for users and auctioneer are explained in more details by Algorithm 1 and 

Algorithm 2. From an user’s point of view, after task submission, observer focuses on analyzing 

the received messages that prescribe user’s next move. If auctioneer announces a new auction, 

user adds it to the auction list. If bids are called, an appropriate bid is calculated and reported to 

auctioneer. If user receives the message calling for parameters, he examines the historical prices 

and estimates the future bid sum by Bayesian learning mechanism, then sends information back. 
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Finally, if user receives resource price and proportion, he immediately updates his price list and 

begins to execute the task. 

 

Froman auctioneer’s perspective, a new auction is triggered off whenever a new type of task 

arrives. Once an auction begins, auctioneer broadcasts the bid calling message to current users. 

As soon as all proposals arrive, auctioneer informs users the sum . Similarly, auctioneer 

collects bidding function parameters from all the bidders, and then decides a reasonable bound. 

If the bound is too narrow, poor users quit gambling. Resource price is modified repeatedly until 

the difference between is less than a predetermined threshold. Once the 

equilibrium price is found, allocation proportions are broadcast to all cloud users. After that 

auctioneer deletes the current auction and waits for a new task request. 
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2.18. Evaluation 

2.18.1. Experiment Setup 

We now present the simulated experiments in Cloudsim. Datecenter is usually composed of a set 

of hosts, each of which represents a physical computing node in the cloud. In our simulation, 60 

hosts are created with heterogeneous configuration characteristics randomly picked in Table1 

Table 1. Resource characteristics 
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To model cloud users, we create application tasks that contain information related to execution 

details such as task processing requirements, disk I/O operations and the size of input files. We 

simulate 32 users in a cloud system, and each with an exponentially distributed number of tasks. 

Two common distributions, Normal and Pareto, signify preferences about the prices. 

2.18.2. Nash equilibrium allocation 

Firstly, normal distribution is used to describe the financial capability of the users. Bidding 

function Bi has mean μi and variance σ2. We choose one user as our observable object, and assign 

a mean purchasing price of 10$/s and bid variance of 0.1. Other mean bids are generated randomly 

in the range of 1-100$/s. This user is unaware of other economic situations, but keeps on 

estimating others from their prior behaviors. Figure 2 illustrates how closing price changes as 

time goes by. We conclude that budget exerts a huge influence on preliminary equilibrium price, 

because selfish but rational users always wish to seek extra benefits from others. With limited 

budget, the user will behave conservatively at the initial stages, to avoid overrunning the budget 

and to save enough money to complete remaining tasks. Therefore, in the beginning, the 

equilibrium price is lower than the mean price. On the contrary, if the user has sufficient capital, 

he is eager to improve current payment to get a larger proportion. Competition leads equilibrium 

price to rise, higher than the anticipated cost. However, with the money available for the current 

job decreasing, the user 

 

Figure 2. Convergence of Nash equilibrium bid. 

becomes less aggressive. As bidding is underway, price will gradually converge to the original 

mean value. 

 

Figure 3. Prediction of resource price 
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Next the accuracy of Bayesian learning prediction is evaluated when the cloud market is full of 

uncertainties, such as insufficient common knowledge and on-line task submitting. Figure 3 

exhibits the predication of resource price in dynamic game of incomplete information. If the 

common knowledge is insufficient, the user experientially predicts other bids using the published 

equilibrium prices. When the bidding variance is low, no more than 0.01, the estimation works 

quite well. Our policy differs a little from the scheme that hypothesizes that all users’ information 

is fixed and public. If users perform unstably in the gambling process and the offered bids are 

more random, accurate price forecast becomes difficult. Provided 

that rivals’ information is learned iteratively, experiment results show that resource price still 

converges to the equilibrium price stage by stage. 

2.18.3. Comparison of forecasting methods 

Three forecasting methods are compared, including Bayesian learning, historical averaging and 

last-value following. 

 

Figure 4. Forecast errors with normal distribution. 

Figure 4 shows the standard deviations of three forecast methods versus time series. All three 

forecasting methods are able to converge to the result with perfect information, as long as the user 

keeps on training his belief of others’ bid functions over time. The cases with abundant budgets 

are examined. Some users would like to increase bids to get more resource, so the price keeps 

rising, to much higher than the estimated bid. If all the historical prices are used for prediction, 

the history averaging method behaves poorly at the beginning of auctions, and is less stable than 

other two methods. Compared with the last-value method, Bayesian learning converges in a 

smoother manner, because historical prices are used to calculate the likelihood function rather 

than simply following the price in the previous auction as last-value method. Now we apply 

another distribution, Pareto, to express users’ bidding rules, meanwhile keeping other experiment 

setups the same. A similar conclusion can be reached in Figure 5, except that the worst forecast 

is last-value method. The result is due to the attribute of Pareto distribution. The Pareto principle 

stands for the probability that the variable is greater than its minimum, while normal distribution 

reveals how close data clusters are around its mean. For one specific round of bidding, it’s more 

difficult to estimate the precise value with Pareto distribution than with normal distribution. In 

other words, the more historical data is accumulated, 
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Figure 5. Forecast errors with Pareto distribution. 

the more accurate the forecast would be. In Figure 5, convergence of Bayesian learning is still the 

most stable one of the three schemes. As a result, it is recommended as a forecast method in 

practical applications. 

 

3. CONCLUSIONS 

In this chapter, we solve the resource allocation problem in the user-level of cloud scheduling. 

We survey game theory, covering the different classes of games and their applications, payoff 

choice and utility function, as well as strategic choice and Nash equilibrium. Based on that, we 

build a non-cooperative game to solve the multi-user allocation problem in cloud scenario. The 

scheduling model includes bid-shared auction, user strategy (bid function), price forecasting and 

equilibrium analysis. We propose game theoretical algorithms for user bidding and auctioneer 

pricing, and then supplement bid-shared auction schemes in a cloud simulation framework, named 

Cloudsim, in order to realize sequential games. Results show that resource allocation reaches 

Nash equilibrium among non-cooperative users when common knowledge is insufficient and that 

Bayesian learning forecast has the best and most stable performance. Our algorithms can support 

financially smart customers with an effective forecasting method, and can help auctioneer decide 

an equilibrium resource price. Therefore, they are potential to solve resource allocation problems 

in cloud computing. 
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