İleri Teknoloji Bilimleri Dergisi

Journal of Advanced Technology Sciences

ISSN:2147-3455

GÜÇ SİSTEMLERİNDE HARMONİKLERİN KRİTİK DEĞERLERE ETKİSİ

Yusuf ALAŞAHAN¹ İsmail ERCAN² Ali ÖZTÜRK³ Salih TOSUN⁴

^{1,4} Düzce Üniv., Teknoloji Fak., Elektrik Elektronik. Müh. Bölümü, 81620, Düzce, TÜRKİYE
 ² Düzce Üniv., Teknik Eğitim Fak., Elektrik Eğitimi Bölümü, 81620, Düzce, TÜRKİYE
 ³ Düzce Üniv., Mühendislik Fak., Elektrik Elektronik. Müh. Bölümü, 81620, Düzce, TÜRKİYE

yusufalasahan@duzce.edu.tr ismailercan@duzce.edu.tr aliozturk@duzce.edu.tr salihtosun@duzce.edu.tr

Günümüz dünyasında gelişen teknoloji ile birlikte her geçen gün insan hayatına yeni cihazlar girmektedir. Bunun sonucunda ise enerji ihtiyacı gerek bireysel gerekse endüstriyel olarak artmaktadır. Bu artış "Enerji Kalitesi" kavramını ortaya çıkarmıştır. Enerji kalitesini etkileyen unsurlardan biri de "Harmonikler"dir. Bu çalışmada "Güç Sisteminin Kritik Değerleri" dediğimiz, sistemde taşınacak maksimum güç ve sistemin kritik gerilim değerlerine harmoniklerin etkisi incelenecektir. Bu kapsamda örnek bir sistemde Harmonik Güç Akışı yapılacak; sonra da bu işlemin sonucunda bulunacak olan sistemdeki baralara ait aktif ve reaktif güç değerleri ile gerilim genlik ve faz açısı değerleri kullanılarak elde edilen PV eğrisi üzerinden sistemde harmonik bileşenlerin olması halinde kritik değerlerdeki değişim hakkında bir yargıya varılacaktır.

Anahtar Kelimeler- Enerji Kalitesi, Güç Akışı, Harmonikler, Kritik Değerler

THE EFFECTS OF HARMONICS TO CRITICAL VALUES AT THE POWER SYSTEMS

At the today world, together technological development new devices to be inserted to the personal life. Of this result, the necessity of energy to be increased selfly or industrial. The concept of energy quality is to arise together this increase. In addition to effect factors of energy quality is "Harmonics". In this study the effects of we saying "critical values to power system" maximum power and critical voltage values are transmission to harmonics to power systems will be analysised. For this, basic power flow solution and harmonic power flow solution will be realized at a pattern system; than the values of active powers, the values of reactive powers, the values of voltages and the values of voltage angles will be found for all buses at the system. The curves of PV will be ploted using this values and the about effects of harmonics to critical values at power systems will be to draw a conclusion.

Key Words- Critical Values, Energy Quality, Harmonics, Power Flow Solution

1. GİRİŞ (INTRODUCTION)

1.1. Harmonik Tanımı(Idendify of Harmonic)

Elektrik güç sistemlerinde enerjinin üretilmesi, iletilmesi ve dağıtımı sırasında, akım ve gerilimin 50 Hz frekansta salınan ve sinüsoidal dalga seklinde olması istenir. Bu durum, elektrik enerjisinin kalitesini belirleyen ana faktörlerden biridir. Ancak işletmeden kaynaklanan bazı etkilerle (bu etkilerin baslıca nedeni, cihazların elektrik ve magnetik devrelerinde bulunan lineer olmayan elemanlardır) akım ve gerilim sinüs formundan uzaklaşır. Bu anlamda harmonik; Güç sistemlerinde akım veva gerilimin va da her ikisinin dalga seklinde mevdana gelen periyodik sürekli hal bozulmaları olarak tanımlanabilir[1]. Harmonikler, devrede lineer olmayan elemanların veya sinüsoidal olmayan kaynakların bulunması yeya bunların her ikisinin de olması durumunda meydana gelirler. Bu şekilde çeşitli elemanların veya olayların etkisi sonucunda enerji sistemindeki sinüsoidal dalga biçimi bozulur. Bu bozuk dalgalar "Nonlineerlineer olmayan-dalga" olarak adlandırılır[1]. Sinüsoidal olmayan dalga biçimleri, periyodik olmakla birlikte sinüsoidal dalga(Temel Dalga) ile frekans ve genliği farklı diğer sinüsoidal dalgaların toplamından oluşmaktadır. Temel dalga dışındaki sinüsoidal dalgalara "harmonik bileşen" adı verilir[1,2]. Güç sistemlerinde sinüsoidal dalganın simetrisinden dolayı 3., 5., 7.,11,.... gibi tek harmonik bileşenleri bulunur. Çift harmonikli bileşenler bulunmaz. Şekil 1.1'de yarı periyottaki temel bileşen ve harmonik bileşenler gösterilmiştir[1].

Sekil 1.1. Harmonik Bileşenler[1]. (Harmonic Components)

1.2. Harmoniklerin Matematiksel Analizi(Mathematical Analysis Of Harmonics)

Güç sistemlerinde akım ve gerilim dalga şeklinin ideal olarak sinüsoidal olmasını istenir. Ancak nonlineer elemanlar ve sistemdeki bazı olaylar nedeniyle bu her zaman mümkün olmaz ve dalga bozulur. Bozulmuş olan dalgaya Nonsinüsoidal Dalga (Sinüsoidal Olmayan Dalga) denir[3]. Nonsinüsoidal Dalgalar'ın analizi Fourier Serileri ile yapılır. Fransız Fizikçi ve Matematikçi Joseph Fourier nonsinüsoidal periyodik dalgaların genlik ve frekansları farklı birçok sinüsoidal dalganın toplamından meydana geldiğini diğer bir ifadeyle bu tür dalgaların genlik ve frekansları farklı (temel dalga frekansının tam katları) olan sinüsoidal dalgalara bölünebileceğini göstermiştir. Periyodik dalganın fourier serisine açılabilmesi için "Dirichlet Koşulları" olarak bilinen koşulların sağlanması gereklidir[3,4]. Bu koşullar:

- 1) *T* periyodu içerisinde sonlu sayıda süreksizlik noktası bulunmalıdır.
- 2) Fonksiyonun T periyodu için ortalaması sonlu değer olmalıdır.

3) Fonksiyonun sonlu sayıda minimum ve maksimum noktaları olmalıdır.

Elektrik güç sistemlerindeki dalga şekilleri her zaman bu şartları sağlar dolayısı ile her zaman fourier serileri elde edilebilir[3].

1.2.1. Fourier Dönüşümü(Fuorier Transform)

Bir f(t) fonksiyonunun Fourier dönüşümü:

$$F(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t}dt$$
(1.1)

Şeklinde ifade edilir[3]. $F(\omega)$ 'nın ters fourier dönüşümü:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{-j\omega t} dt$$
(1.2)

Şeklindedir[3]. Nonsinüsoidal periyodik bir fonksiyonun Fourier Analizi sonrasında zaman domenindeki ifadesi aşağıdaki denklemlerden biri ile gösterilir[3,4].

$$f(t) = A_0 + \sum_{n=1}^{\infty} (A_n * Sin(nt) + B_n * Cos(nt))$$
(1.3)

$$f(t) = A_0 + \sum_{n=1}^{\infty} C_n * Sin(nt + \phi_n)$$
(1.4)

$$f(t) = A_0 + \sum_{n=1}^{\infty} C_n * Cos(nt + \phi_n)$$
(1.5)

 $C_1 * Sin(t + \omega t)$ terimine f(t) fonksiyonunun birinci harmoniği veya temel dalga denir. (Elektrik devrelerinde temel bileşen olarak ifade edilir.)

2. YÖNTEM (METHOD)

2.1. Newton Raphson Yöntemi(Newton Raphson Method)

Bir f(x) fonksiyonunun kökünün ilk tahmini x_i ise fonksiyonun eğrisine (x_i , f(x_i)) noktasında teğet olan doğru uzatılabilir. Teğetin (x) eksenini kestiği nokta kökün daha iyi bir tahminidir. Bu durum grafiksel olarak şekil 2.1'deki gibi ifade edilir[5].

Şekil 2.1. Newton-Raphson Yönteminin Matematiksel İfadesi[5].

(Graphical Form Of Newton-Raphson Method)

X noktasındaki birinci türev

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}}$$
(2.1)

Şeklinde olur[5]. Bu ifade düzenlenirse (i+1). İterasyondaki x değerleri

$$x_{(i+1)} = x_i - \frac{f(x_i)}{f'(x_i)}$$
(2.2)

İfadesi ile hesaplanır[5]. Eğer birden fazla sayıda fonksiyon varsa bu durumda matrisel çözüm yapılır[5].

2.2. Newton Raphson Yönteminin Lineer Güç Sistemlerine Uygulanması (The Application Of Newton Raphson Method To Linear Power Systems)

Nonlineer bir matris denklemi

$$\begin{bmatrix} f1(x) \\ f2(x) \\ f3(x) \\ \vdots \\ \vdots \\ fn(x) \end{bmatrix} = \begin{bmatrix} y \end{bmatrix}$$
(2.3)

Şeklinde verilsin.[6,7] Bu eşitlik Taylor Serisi'ne açılıp 2. ve daha yüksek dereceli terimler ihmal edilirse (i+1). iterasyonda bu eşitliği sağlayan x değerleri,

$$[x(i+1)] = [x(i)] + [j(i)]^{-1} * [y - f(x(i)]]$$
(2.4)

Eşitliği ile hesaplanır[6,7]. Herhangi bir iterasyonda

$$(x_{(i+1)} - x_{(i)}) \le \varepsilon \tag{2.5}$$

Eşitsizliği sağlanırsa algoritma durur; sağlanmazsa bir önceki iterasyonda bulunan x değerleri başlangıç değerleri olarak alınır ve yeniden (i+1). İterasyondaki x değerleri hesaplanır [6,7].

x ,y ve f(x) vektörleri

$$x = \begin{bmatrix} \delta_2, \delta_3, \delta_4, \dots \delta_n, v_{ng+1}, v_{ng+2}, \dots v_n \end{bmatrix}^T$$
(2.6)

-

$$y = \left[phat_2, phat_3, phat_4, \dots, phat_n, qhat_{ng+1}, qhat_{ng+2}, \dots, qhat_n\right]^T$$
(2.7)

$$f(x) = \left[p_2, p_3, p_4, \dots, p_n, q_{ng+1}, q_{ng+2}, \dots, q_n\right]^T$$
(2.8)

Şeklindedir[6,7]. Burada vektörlerin üzerindeki (T) simgesi transpozeyi gösterir. Yani bu vektörler normalde sütun vektörüdür. x vektörü sistemdeki bara gerilim genlikleri ve faz açılarından, y vektörü hatlardan akan aktif ve reaktif güçlerden, f(x) vektörü ise baraların aktif ve reaktif güçlerinden oluşmaktadır. y-f(x) vektörü baralara ait aktif ve reaktif güç denge denklemlerinin sonuçlarından oluşmaktadır. J vektörü Jacobian Matris olup bara sayısı (n) olmak üzere (n*n) boyutunda bir matristir. Jacobian Matris'in genel ifadesi aşağıdadır [6,7].

$$[J(i)] = \begin{bmatrix} \frac{df}{dx} \end{bmatrix}_{x=x(i)} = \begin{bmatrix} \frac{\frac{df_1}{dx_1}}{\frac{dt_2}{dx_2}} & \frac{\frac{df_1}{dx_2}}{\frac{dt_2}{dx_2}} & \frac{\frac{df_2}{dx_1}}{\frac{dt_2}{dx_2}} & \frac{\frac{df_2}{dx_1}}{\frac{dt_2}{dx_2}} \end{bmatrix}_{x=x(i)}$$
(2.9)

Jacobian Matris, matris denklemini oluşturan her bir fonksiyonun, hesaplanması istenen değişkenlerin her birine göre kısmi türevlerinden oluşur.

2.3. Güç Sistemlerinde Harmonik Güç Akışı (Harmonic Power Flow At The Power Systems)

Harmonik güç akışı çalışması, hatlardaki ve baralardaki akım ve gerilimlerin temel bileşen ve harmonik bileşenlerinin hesaplandığı bir analizdir. Harmonik güç akışında şebeke gerilim ve akımları Fourier serileri formunda ifade edilir veya grafik şeklinde bilinen yük akımı Fast Fourier Transformu (FFT) yardımıyla elde edilir. Harmonik güç akışı işleminde akım-gerilim karakteristiği lineer olan elemanların bağlı olduğu baralar "Lineer Baralar" olarak tanımlanır[1]. Lineer yüklü sistemlerde güç akışı için tanımlanan üretim (PV) baraları ve yük (PQ) baraları harmonik güç akışında lineer baralar olarak göz önüne alınır. Bir üretim barası olan salınım barası da lineer baradır. Nonlineer karakteristikli elemanların bulunduğu baralar ise "Nonlineer Baralar" (doğrusal olmayan baralar) olarak adlandırılır. Harmonik Güç Akışı Hesaplamaları'nda Newton Raphson Yöntemi kullanılabilir ancak algoritmada ve matrislerin yapısında bazı değişikliklerin yapılması gerekir. Newton-Raphson Metodu'nun genel ifadesi (2.4) eşitliğinde belirtilmişti. Harmonikli sistemde bu ifadedeki matrislerin yapısı aşağıdaki şekilde olur [3,7]. X vektörü bara gerilim genlik ve faz açıları ile nonlineer eleman parametrelerinden oluşur. Genel gösterimi aşağıdaki şekildedir. Gösterimlerdeki (*T*) simgesi transpozeyi gösterir. Yani bu vektörler normalde sütun matrisidir [3,7].

$$x = \left[\Delta\delta^{(1)}, \Delta\nu^{(1)}, \Delta\delta^{(5)}, \Delta\nu^{(5)}, \Delta\delta^{(7)}, \Delta\nu^{(7)}, \dots \Delta\delta^{(h)}, \Delta\nu^{(h)}, \Delta\phi\right]^{T}$$
(2.10)

$$\Delta \delta^{(1)} = \left[\delta_2^{(1)}, \delta_3^{(1)}, \dots \delta_n^{(1)}\right]^T$$
(2.11)

$$\Delta v^{(1)} = \left[v_{ng+1}^{(1)}, v_{ng+2}^{(1)}, \dots, v_n^{(1)} \right]^T$$
(2.12)

 $\Delta \delta^{(1)}$ ve $\Delta v^{(1)}$ vektörleri ana harmonik bara gerilim genlik ve faz açılarından oluşur.

$$\Delta \delta^{(h)} = \begin{bmatrix} \delta_1^{(h)}, \delta_2^{(h)}, \dots \delta_n^{(h)} \end{bmatrix}^T$$
(2.13)

$$\Delta v^{(h)} = \left[v_1^{(h)}, v_2^{(h)}, \dots v_n^{(h)} \right]^{t}$$
(2.14)

 $\Delta \delta^{(5)}$, $\Delta v^{(5)}$, $\Delta \delta^{(7)}$, $\Delta v^{(7)}$... $\Delta \delta^{(h)}$, $\Delta v^{(h)}$ vektörleri ise ana harmonik dışında göz önüne alınan yani hesaplamaya konu olan harmonik mertebelerindeki bara gerilim genlik ve faz açılarından oluşur. $\Delta \Phi$ Vektörü ise her nonlineer bara için tanımlanan nonlineer eleman parametrelerinden oluşur. Örneğin bir invertör için bu parametreler tetikleme açısı (α) ve yük direnci (R) değerleri olabilir [3,7].

$$\Delta \phi = \left[\Delta \alpha_m, \Delta R_m, \dots \Delta \alpha_n, \Delta R_n\right]^T \tag{2.15}$$

$$y = \left[phat_2, phat_3, phat_4, \dots, phat_n, qhat_{ng+1}, qhat_{ng+2}, \dots, qhat_n \right]^T$$
(2.16)

$$y - f(x) = \left[\Delta p, \Delta q, \Delta I_r^{(5)}, \Delta I_i^{(5)}, \dots \Delta I_r^{(h)}, \Delta I_r^{(h)}, \Delta I_r^{(1)}, \Delta I_i^{(1)}\right]^T$$
(2.17)

Bu gösterimlerde 1=İlk lineer bara numarası, m=ilk nonlineer bara numarası, n= sistemdeki bara sayısı Olarak kullanılmaktadır [3,7]. Yani buradaki gösterimde 1. baradan N. baraya kadar olan baralar lineer baralar, m. baradan n. baraya kadar olan baralar ise nonlineer baralardır [3,7].

3. BULGULAR (FINDINGS)

Bu çalışmada Institute of Electrical and Electronics Engineers (IEEE)'in 9 Baralı sistemi kullanılmıştır. Sistemde 1, 2, ve 3 nolu baralar generatör barası diğer baralar ise yük barasıdır. Generatör baralarından (1) nolu generatör barası salınım barası olarak alınmıştır. Öncelikle sistemin standart verileri ile Temel Bileşen Güç Akışı yapılmıştır. Daha sonra da sistemde sırasıyla 5, 7 ve 9 numaralı yük baralarındaki yüklerin kaldırılarak bu yüklerin yerine her seferinde ana harmonikte çektiği aktif güç 0.60 pu ve ana harmonikte çektiği reaktif güç ise 0.70 pu olan bir nonlineer yükün bağlandığı Kabul edilmiştir. Sistemde Ana Harmonik ile birlikte sadece 5. Harmonik bileşen göz önüne alınmıştır.

Şekil 3.1. IEEE Standart 9 Baralı Sistemi.[8](IEEE Standart 9 Bus System)

3.1.1.1. Sisteme İlişkin Veriler (System Datas)

Sisteme ilişkin hat verileri tablo 3.1'de, generatör ve yük verileri ise tablo 3.2 de verilmiştir.

I abio	Land J.L. Hat Vennell[0]. (Line Datas)									
HAT NO	R(pu)	X(pu)	B(pu)							
14	0	0.0576	0							
45	0.017	0.092	0.158							
65	0.039	0.17	0.358							
36	0	0.1008	0							
67	0.0119	0.072	0.149							
87	0.0085	0.072	0.149							
28	0	0.0625	0							
89	0.032	0.161	0.306							
49	0.01	0.085	0.176							

 Tablo 3.1. Hat Verileri[8]. (Line Datas)

BARA NO	BARA TİPİ	ÜRETİM		YÜK		GERİLİM	REAKTIF GÜÇ LİMİTLE	
		P(MW)	Q(MVAr)	P(MW)	Q(MVAr)	(b)	Qmin(MVAr)	Qmax(MVAr)
1	PV	SALINI	M BARASI			1.04		
2	PV	163	0			1.03	-40	40
3	PV	85	0			1.04	-40	40
4	PQ							
5	PQ			90	30			
6	PO							

7	PQ		100	35		
8	PQ					
9	PQ		125	50		

Güç Akışı Algoritması'nda kolaylık sağlaması açısından Ana Harmonik Akımları ve Nonlineer Eleman Parametreleri ihmal edilmiştir. Yani Jacobian Matris'te Ana Harmonik Akımları'na ve Nonlineer Eleman Parametreleri'ne göre türevler ihmal edilmiştir. Nonlineer Eleman'nın akım eşitlikleri aşağıda tablo 3.3 'de verilmiştir.

Tablo 3.3 Nonlieer Yük Harmonikli Akım Eşitlikleri[3].(Current Equalties Of Nonlinear Load)

Nonliener Yük	$g_r^{(5)} = 0.25 * (v_5^{(1)})^3 * \cos(3*\delta_5^{(1)}) + 0.15 * (v_5^{(5)})^2 * \cos(2*\delta_5^{(5)})$
5. Baraya Bağlı	$g_i^{(5)} = 0.25 * (v_5^{(1)})^3 * \sin(3 * \delta_5^{(1)}) + 0.15 * (v_5^{(5)})^2 * \sin(2 * \delta_5^{(5)})$
Nonliener Yük	$g_r^{(5)} = 0,25 * (v_7^{(1)})^3 * \cos(3 * \delta_7^{(1)}) + 0,15 * (v_7^{(5)})^2 * \cos(2 * \delta_7^{(5)})$
7. Baraya Bağlı	$g_i^{(5)} = 0.25 * (v_7^{(1)})^3 * \sin(3 * \delta_7^{(1)}) + 0.15 * (v_7^{(5)})^2 * \sin(2 * \delta_7^{(5)})$
Nonliener Yük	$g_r^{(5)} = 0.25 * (v_9^{(1)})^3 * \cos(3 * \delta_9^{(1)}) + 0.15 * (v_9^{(5)})^2 * \cos(2 * \delta_9^{(5)})$
9. Baraya Bağlı	$g_i^{(5)} = 0.25 * (v_9^{(1)})^3 * \sin(3 * \delta_9^{(1)}) + 0.15 * (v_9^{(5)})^2 * \sin(2 * \delta_9^{(5)})$

Bu şartlar altında güç akışı işlemleri yapıldığında Harmoniksiz sistem için ana harmonik (50Hz) güç akışı sonuçları tablo 3.4'deki gibi elde edilmiştir.

|--|

Bara Numarası	Gerilim Genliği V (PU)	Gerilim Faz Açısı(δ) (Derece)	Generatör Aktif Güçleri(PU)	Generatör Reaktif Güçleri (PU)	Hatlardan Akan Aktif Güçler (PU)	Hatlardan Akan Reaktif Güçler (PU)
1	1.0400	0	0.7160	0.2244	0.7160	0.2244
2	1.0300	9.2667	1.6300	0.0454	1.6300	0.0454
3	1.0400	6.2313	0.8500	0.0248	0.8500	0.0248
4	1.0283	-2.2100			-0.00001362	0.000003045
5	1.0176	-3.7448			-0.9000	-0.3000
6	1.0409	1.6916			-0.00002338	0.0000005893
7	1.0243	0.8434			-1.0000	-0.3500
8	1.0320	3.7669			-0.000016744	0.0000010287
9	0.9996	-3.9315			-1.2500	-0.5000

5 nolu baraya harmonikli yük bağlı iken elde edilen temel bileşen ve 5. Harmonik bileşen için güç akışı sonuçları sırasıyla tablo 3.5. ve tablo 3.6.'da verilmiştir. Bu çalışmada kullanılan harmonikli güç akışı algoritmasında her harmonik bileşen için ayrı olarak hesaplama yapılmaktadır. Bu nedenle sonuçlar ayrı tablolarda verilmiştir.

	ANA HARMONİK									
Bara Numarası	Gerilim Genliği	n Gerilim Faz Açısı i Delta1 (Derece)		Generatör Aktif	Generatör Reaktif	Hatlardan Akan Aktif Güçler	Hatlardan Akan Reaktif Güçler			
	V1(PU)	Gerçek Değerler	Esas Ölçüler	Güçleri(PU)	Güçleri(PU)	(PU)	(PU)			
1	1.0400	0	0	0.4192	0.4840	0.4192	0.4840			
2	1.0300	10.8295	10.8295	1.6300	0.1389	1.6300	0.1389			
3	1.0400	8.2033	8.2033	0.8500	0.1435	0.8500	0.1435			
4	1.0135	-1.3126	358.6874			-0.1186e-006	0.6307e-008			
5	0.9804	-1.3013	358.6987			-0.6000	-0.7000			
6	1.0294	3.6129	3.6129			0.0000	-2.0e-15			

Tablo 3.5. Harmonik Güç Akışı Sonuçları (Ana Harmonik).(Harmonic Power Flow Solutions For Main Harmonic)

7	1.0155	2.5376	2.5376	-1.0000	-0.3500
8	1.0264	5.2994	5.2994	-1.0e-15	3.0e-15
9	0.9867	-2.8864	357.1136	-1.2500	-0.5000

Tablo 3.6. Harmonik Güç Akışı Sonuçları(5. Harmonik).(Harmonic Power Flow Solutions For 5th. Harmonic)

Bara Numarası	Gerilim Genliği	5 Gerilim Faz Açısı Delta5(Derece)		<u>. HARMONIK</u> Generatör Aktif	Generatör Reaktif	Hatlardan Akan Aktif	Hatlardan Akan Reaktif Güçler
	V5 (PU)	Gerçek Değerler (1.0e+004 *)	Esas Ölçüler	Güçleri(PU)	Güçleri(PU)	Güçler P5 (PU)	Q5 (PU)
1	-0.0001	0.1166	85.7720	0.4192	0.4840	0	0
2	0.00002323	0.2427	267.0243	1.6300	0.1389	0	0
3	-0.00003253	0.0446	86.1563	0.8500	0.1435	0	0
4	0.0386	0.1346	265.7720			0	0
5	0.1081	0.0265	264.5119			7.2217e-004	0.0253
6	-0.0328	0.0806	86.1563			0	0
7	0.0238	0.1707	266.5184			0	0
8	-0.0145	-1.6833	87.0243			0	0
9	0.0307	0.0266	265.7903			0	0

Yukarıdaki tablolarda verilen sonuçlar göz önüne alınarak sistemin harmonikli durumda ana harmonik ve 5. harmonik bileşenleri için elde edilen PV eğrileri şekil 3.2'de verilmiştir.

Şekil 3.2. 5 Numaralı Bara Ana Harmonik ve 5. Harmonik İçin PV Eğrileri (Main Harmonic and 5th. Harmonic PV Curves For 5th. Bus)

Şekil 3.2'deki PV eğrileri üzerinden ana harmonik ve 5. harmonik bileşen için elde edilen kritik değerler birlikte değerlendirildiğinde 5 numaralı barada harmonik bileşenlerin bulunması durumunda bu baraya ait kritik güç ve kritik gerilim değerlerinin her ikisinin de arttığı görülmektedir. Hesaplanan kritik değerler tablo 3.7'de verilmiştir.

Harmonic and 5th. Harmonic Critical Values For 5th. Bus)								
	Ana Harmonik	5.Harmonik	Ana Harmonik+5.Harmonik Birlikte Etkisi					
P _{kr}	473.9 MW	8.468 MW	$\sqrt{((473.9)^2 + (8.468)^2)} = 473.9756502 \text{ MW}$					

 $\sqrt{((179.2)^2 + (48.75)^2)} = 185.712688 \text{ KV}$

 V_{kr}

179.2 KV

48.75 KV

Tablo 3.7. 5 Numaralı Bara Ana Harmonik ve 5. Harmonik İçin Kritik Değerler. (Main
Harmonic and 5th. Harmonic Critical Values For 5th. Bus)

7 nolu baraya harmonikli yük bağlı iken elde edilen temel bileşen ve 5. Harmonik bileşen güç akışı sonuçları sırasıyla tablo 3.8. ve tablo 3.9.'de verilmiştir.

ANA HARMONIK									
Bara Numarası V1(P	Gerilim	Gerilim Faz Açısı Delta1 (Derece)		Generatör	Generatör	Hatlardan Akan	Hatlardan Akan		
	Genliği V1(PU)	Gerçek Değerler	Esas Ölçüler	Aktif Güçleri(PU)	Reaktif Güçleri(PU)	Aktif Guçler (PU)	Reaktıf Güçler (PU)		
1	1.0400	0	0	0.3368	0.3608	0.3368	0.3608		
2	1.0300	13.5711	13.5711	1.6300	0.2441	1.6300	0.2441		
3	1.0400	10.5031	10.5031	0.8500	0.1748	0.8500	0.1748		
4	1.0202	-1.0477	358.9523			-00.114e-11	0.71e-12		
5	1.0050	-1.5931	358.4069			-0.9000	-0.3000		
6	1.0264	5.8991	5.8991			-0.884e-11	0.84e-12		
7	0.9996	5.9093	5.9093			-0.6000	-0.7000		
8	1.0200	8.0065	8.0065			0.188408e-06	0.12859e-07		
9	0.9869	-1.8199	358.1801			-1.2500	-0.5000		

Tablo 3.8. Harmonik Güç Akışı Sonuçları (Ana Harmonik).(Harmonic Power Flow Solutions For Main Harmonic)

Tablo 3.9. Harmonik Güç Akışı Sonuçları(5. Harmonik).(Harmonic Power Flow Solutions For 5th. Harmonic)

5. HAKMONIK							
Bara Numarası	Gerilim Genliği	Gerilim F Delta5(D	az Açısı Perece)	Generatör Aktif	Generatör Reaktif	Hatlardan Akan Aktif	Hatlardan Akan Reaktif Güçler
	V5 (PU)	Gerçek Değerler (1.0e+003 *)	Esas Ölçüler	Güçleri(PU)	Guçleri(PU)	GuçlerP5 (PU)	Q5 (PU)
1	0.0000233	-0.0711	288.8717	0.3368	0.3608	0	0
2	0.0001	0.6474	287.3712	1.6300	0.2441	0	0
3	0.00004574	1.0074	287.3924	0.8500	0.1748	0	0
4	-0.0134	-0.2511	108.8717			0	0
5	-0.0253	-0.2520	108.0267			0	0
6	0.0462	-0.0726	287.3924			0	0
7	0.0871	-0.0733	286.6907			3.6516e-004	0.0216
8	0.0376	-0.0726	287.3712			0	0
9	-0.0221	-0.2518	108.1874			0	0

Yukarıdaki tablolarda verilen sonuçlar göz önüne alınarak sistemin harmonikli durumda ana harmonik ve 5. harmonik bileşenleri için elde edilen PV eğrileri şekil 3.3'de verilmiştir.

Ana Harmonik PV Eğrisi	5. Harmonik PV Eğrisi

Şekil 3.3'deki PV eğrileri üzerinden ana harmonik ve 5. harmonik bileşen için elde edilen kritik değerler birlikte değerlendirildiğinde 7 numaralı barada harmonik bileşenlerin bulunması durumunda bu baraya ait kritik güç ve kritik gerilim değerlerinin her ikisinin de arttığı görülmektedir. Hesaplanan kritik değerler tablo 3.10'da verilmiştir.

Tablo 3.10 7 Nu	maralı Bara	Ana Harn	nonik ve 5.	Harmonik İçir	ı Kritik Değerl	er. (Main
Ha	armonic and	7th. Harn	nonic Critic	al Values For	7th. Bus)	

	Ana Harmonik	5.Harmonik	Ana Harmonik+5.Harmonik Birlikte Etkisi
P _{kr}	289.2 MW	0.2234 MW	$\sqrt{((289.2)^2 + (0.2234)^2)} = 289.2000863 \text{ MW}$
V _{kr}	170.8 KV	3.161 KV	$\sqrt{((170.8)^2 + (3.161)^2)} = 170.8292479 \text{ KV}$

9 nolu baraya harmonikli yük bağlı iken elde edilen temel bileşen ve 5. Harmonik bileşen güç akışı sonuçları sırasıyla tablo 3.11. ve tablo 3.112.'de verilmiştir.

ANA HARMONİK							
Bara Numarası	Gerilim Genliği	Gerilim I Delta1 (Faz Açısı Derece)	Generatör Aktif	Generatör Reaktif	Hatlardan Akan Aktif Güçler (PU)	Hatlardan Akan Reaktif Güçler (PU)
	V1(PU)	Gerçek Değerler	Esas Ölçüler	Güçleri(PU)	Güçleri(PU)		
1	1.0400	0	0	1.3411	0.8224	1.3411	0.8224
2	1.0300	5.4848	5.4848	1.6300	0.3958	1.6300	0.3958
3	1.0400	2.9031	2.9031	0.8500	0.1637	0.8500	0.1637
4	0.9972	-4.2716	355.7284			-0.0000	0.0000
5	0.9920	-6.3908	353.6092			-0.9000	-0.3000
6	1.0274	-1.6961	358.3039			0.0000	0.0000
7	1.0066	-2.8614	357.1386			-1.0000	-0.3500
8	1.0108	-0.1305	359.8695			0.0000	0.0000
9	0.9167	-8.7690	351.2310			-1.8500	-1.2000

Tablo 3.11. Harmonik Güç Akışı Sonuçları (Ana Harmonik).(Harmonic Power Flow Solutions For Main Harmonic)

Tablo 3.12. Harmonik Güç Akışı Sonuçları(5. Harmonik).(Harmonic Power Flow Solutions For 5th. Harmonic)

		5	5. HARMONIK			
Bara	Gerilim	Gerilim Faz Açısı	Generatör	Generatör	Hatlardan	Hatlardan Akan
Numarası	Genliği	Delta5(Derece)	Aktif	Reaktif	Akan Aktif	Reaktif Güçler

	V5 (PU)	Gerçek Değerler	Esas Ölçüler	Güçleri(PU)	Güçleri(PU)	GüçlerP5 (PU)	Q5 (PU)
1	-0.0001	63.3300	63.3300	1.3411	0.8224	0	0
2	-0.00005391	64.2210	64.2210	1.6300	0.3958	0	0
3	-0.000033215	64.7822	64.7822	0.8500	0.1637	0	0
4	0.0311	-116.6700	243.3300			0	0
5	-0.0252	63.4781	63.4781			0	0
6	-0.0131	64.7822	64.7822			0	0
7	0.0170	604.3669	244.3669			0	0
8	-0.0208	-295.7790	64.2210			0	0
9	-0.0820	62.5934	62.5934			3.4107e-004	0.0157

Yukarıdaki tablolarda verilen sonuçlar göz önüne alınarak sistemin harmonikli durumda ana harmonik ve 5. harmonik bileşenleri için elde edilen PV eğrileri şekil 3.4'de verilmiştir.

Şekil 3.4. 9 Numaralı Bara Ana Harmonik ve 5. Harmonik İçin PV Eğrileri (Main Harmonic and 9th. Harmonic PV Curves For 9th. Bus)

Şekil 3.4'deki PV eğrileri üzerinden ana harmonik ve 5. harmonik bileşen için elde edilen kritik değerler birlikte değerlendirildiğinde 9 numaralı barada harmonik bileşenlerin bulunması durumunda bu baraya ait kritik güç ve kritik gerilim değerlerinin her ikisinin de arttığı görülmektedir. Hesaplanan kritik değerler tablo 3.13'de verilmiştir.

Tablo 3.13. 9 Numaralı Bara Ana Harmonik ve 5. Harmonik İçin Kritik Değerler. (Main
Harmonic and 9th. Harmonic Critical Values For 9th. Bus)

	Ana Harmonik	5.Harmonik	Ana Harmonik+5.Harmonik Birlikte Etkisi
$\mathbf{P}_{\mathbf{kr}}$	519.8 MW	21.08 MW	$\sqrt{((519.8)^2 + (21.08)^2)} = 520.2272642 \text{ MW}$
$\mathbf{V}_{\mathbf{kr}}$	183.4 Kv	74.09 Kv	$\sqrt{((183.4)^2 + (74.09)^2)} = 197.8001216 \text{KV}$

4. SONUÇ VE TARTIŞMA (CONCULUSION AND DISCUSSION)

Sonuçlar incelendiğinde Harmonik bileşenlerin güç sisteminde gerilim kararlılığı kritik değerleri üzerinde olumsuz etkiye sebep olduğu görülmektedir. Harmonikli durumda sistemdeki kritik gerilim ve kritik güç değerlerinin her ikisi de artmaktadır. Artış oranı nonlineer yükün bağlandığı baraya bağlı olarak değişmekle birlikte sonuçta her iki değerde de artış gözlenmektedir. Kritik güçün artması olumlu olsa da kritik gerilimin artması kararlılık açısından

olumsuzdur. Günümüzde hızlı teknolojik gelişmeler neticesinde neredeyse her geçen gün insan hayatına yeni cihazlar girmektedir. Bu cihazlar yarı iletkenler (örneğin diyot, transistör, entegreler v.s.), bobinler gibi nonlineer elemanlar içerdiği için güç sistemlerinde oluşan harmonik bileşenler artmaktadır. Dolayısı ile güç sistemlerinde harmonik bileşenlerin mutlaka kontrol altında tutulması gereklidir. Bu iş için güç sisteminin harmonik analizinin yapılması gerekir.

5. KAYNAKLAR (REFERENCES)

[1] . BİLGE M. Güç Sistemlerinde Harmoniklerin Pasif Filtrelerle Eliminasyonu *Yüksek Lisans Tezi*, Kahraman Maraş Sütçü İmam Üniversitesi, (**2008**)

[2] . İLASLANER İ. Güç Kalitesinde Harmonikler Ve Filtrelenmesi, *Yüksek Lisans Tezi*, Gazi Üniversitesi, (**2006**).

[3] . KOCATEPE C., UZUNOĞLU M., YUMURTACI R., KARAKAŞ A., ARIKAN O., *Elektrik Tesislerinde Harmonikler*, 1.Baskı, Birsen Yayınevi (**2003**).

[4] . CANER F. Güç Sistemlerinde Harmonikler Ve Filtrelemelerin İncelenmesi, *Yüksek Lisans Tezi*, Kırıkkale Üniversitesi, (**2006**).

[5] . STEVEN C .C, CANALE R.P., Çevirenler (HEPERKAN H., KESGİN U.), *Mühendisler İçin Sayısal Yöntemler*, 4. Baskı, Literatür Yayıncılık (2008).

[6] . ARİFOĞLU U., *Güç Sistemlerinin Bilgisayar Destekli Analizi*, 1. Baskı, Alfa Basım Yayım Dağıtım Ltd. Şti., (**2002**).

[7] . AYDEMİR E. O., Elektrik Sistemlerinde Harmonik Güç Akışı, Yüksek Lisans Tezi, Sakarya Üniversitesi, (2009).

[8] . ÖZTÜRK A., Güç Sistemlerindeki Gerilim Kararlılığının Genetik Algoritma İle İncelenmesi, *Doktora Tezi*, Sakarya Üniversitesi, (**2007**).

[9] . ŞENYURT Ö., Elektrik Tesislerinde Harmonikler, Gazi Üniversitesi Yüksek Lisans Semineri, (2005).

[10] . ÖZSÜREKCİ O. Filtreli Dinamik Kompanzasyon, Yüksek Lisans Tezi, Gazi Üniv., (2008).

[11] . BAYSAL M., Harmonik İçeren Güç Sistemlerinin Gerilim Kararlılığının Yük Modellemeleri Ve Facts Elemanları Bakımından İncelenmesi, *Doktora Tezi*, Yıldız Teknik Üniversitesi, (**2008**).

[12] . BAŞARAN Ü. Türkiye'deki 380 Kv' Luk Enterkonnekte Güç Sisteminde Çeşitli Güç Akışı Ve Ekonomik Dağıtım Analizleri, *Yüksek Lisans Tezi*, Anadolu Üniv.,(**2004**).

[13] . ÇELİK Ç. Dağıtım Sistemlerinde Enerji Kalitesi, Yüksek Lisans Tezi, Gazi Üniv., (2008).

[14] . Efe S. B. Güç Sistemlerinde Harmonikler Ve Harmoniklerin Analizi, *Yüksek Lisans Tezi*, İnönü Üniversitesi, (**2006**).

[15] . ÖZTÜRK O., Dağıtım Sistemlerinde Harmonikli Güç akışı Algoritmalarının ve Yük Modellerinin Karşılaştırılması, *Yüksek Lisans Tezi*, Gebze Yük. Tek. Ens., (**2011**).

[16] . BAYRAK M. Elektrik Güç Sistemlerinde Enerji Kalitesi

[17] . ERTAY M., ALBOYACI B., DURU H.T., VE YEĞİN E.M. Endüstriyel Güç Sistemlerinde Oluşan Harmoniklerin Pasif Filtrelerle Yok Edilmesi, *IV Enerj Verimliliği Sempozyumu EVK(2011)*, (2011), 58-63.

[18] . TUNÇALP K., KAKİLLİ A., SUCU M. Bir Alçak Gerilim Elektrik Enerji Tesisinde Harmonik Ölçüm Sonuçlarının Matlab'de Simülasyonu Ve Pasif Filtre Uygulaması, *Türkiye 9. Enerji Kongresi*, (2003).

[19] . NİL MUSTAFA, DEMİR M., NİL METİN, ÇAKIR B. Eviricilerde Yumuşak Geçiş Tekniklerinin İncelenmesi MTBF Analizi Ve Harmoniklerin Azaltılmasında Kullanılan Yöntemler, *Tmmob Elektrik-Elektronik ve Bilgisayar Sempozyumu*, (2011), 30-35.

[20] . KAKİLLİ A. TUNÇALP K. VE SUCU M. Harmoniklerin Reaktif Güç Kompanzasyon Sistemlerine Etkilerinin İncelenmesi Ve Simülasyonu, *Fırat Üniv. Fen Ve Müh. Bil. Dergisi* 20 (1), (2008), 109-115.

[21] . DEMİRBAŞ Ş., BAYHAN S., Güç Sistemlerinde Harmoniklerin Gerçek Zamanlı Ölçüm Ve Analizi *Gazi Üniv. Müh. Mim. Fak. Dergisi*, Cilt 24, No 3, (**2009**), 461-468.

[22] . TUNÇALP K. ve SUCU M., Elektrik Enerji Sistemlerinde Oluşan Harmoniklerin Filtrelenmesinde Pasif Filtre Ve Filtreli Kompanzasyonun Kullanımı Ve Simülasyon Örnekleri, *Politeknik Dergisi*, Cilt: 9, Sayı: 4, (**2006**), 263-269.

[1] [25] . KOCATEPE C., KÖROĞLU S., ARIKAN O., Nonsinüsoidal Şartlar Altında Güç Faktörünün Ve Güç Tanımlarının İncelenmesi, *Sigma Müh. ve Fen Bil. Dergisi,* 2005(2) **(2005)** 117-126.