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Abstract 

Nowadays, with the help of developing technology, engineering problems which are difficult to solve have become 

easily solved in a short time by means of computer software. Certain mathematical algorithms are used in these 

analysis methods. The mathematical and numerical solution methods created provide a significant solution facility 

for engineering. In this paper, the buckling analysis of the Euler column model, with elastic boundaries and 

containing steel fibers, under pressure effect is performed. In the column model, three different sections, which 

have been produced from four different concrete series, including three different types of fiber reinforced 

specimens and one non-fibrous control sample(C) with 0.6% by volume, were analyzed by using a software. In the 

study, the analysis of the critical buckling values depends on length, elastic modulus and cross-sectional type of 

the column model has been performed. The results are shown in graphs and tables. With the results of the analysis, 

the effect of slenderness and steel fiber concrete on the critical load in pressure columns have been investigated. 

 

Keywords: Elastically restrained ends, Euler columns, steel fiber reinforcement, comparison of buckling load 

1. Introduction 

Nowadays, with the developing technology, the results obtained from the engineering point of 

view are closer to reality. Analysis that are difficult to calculate are solved in a much shorter 

time with the help of computers and thus, it becomes easier to obtain different solution methods. 

In the light of these developments, various approaches have been presented to investigate the 

buckling behavior of structural elements under axial load. Due to various modelling, design and 

analysis difficulties with the finite element method, which is a method used for analyzing 

buckling behavior of structural elements in civil engineering, it is needed to use computer 

programs. At the beginning of the modelling and analysis process, Euler said that the pressure 

columns have been not only crushed but they also have stability problems [1]. Euler pioneered 

the researchers in analytical analysis of elastic columns and since the first study has been carried 

out in this area in 1744, the analysis has been called Euler load [2]. After Euler's first step for 

stability analysis, many researchers have contributed to the modelling of structural elements 

closer to reality. A.N. Dinnik [3] has designed the variable cross-section type of the column and 
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beam elements, which is pinned from one end, clamped on the other end. And he examined the 

buckling behavior of them. 

J.B. Keller [4] has studied the mechanical behavior of the circular cross-section and equilateral 

triangular section column and obtained results for the nonlinear buckling problem. Mechanical 

behaviors for similar Euler columns have been examined by I. Tadjbakhsh & J.B. Keller, [5] 

and J.E. Taylor, [6], and exact results have been obtained for different boundary conditions. S. 

Timoshenko [7] has contributed to the realistic results by adding slip and rotational momentum 

factors in the beam to the Euler-Bernoulli theory Lee et al. [8-11] on the buckling loads, have 

made studies suitable for use in design. Q. Li, H. Cao, & G. Li, [12], L. Qiusheng, C. Hong & 

L. Guiqing [13] and Q. Li, H. Cao, & G. Li, [14], in their work, using Bessel functions and 

super geometric functions, gave the flexural formulation of elastic columns with variable cross-

section. He has stated that the axial load and bending stiffness distribution of the high structures 

are appropriately described. Kim and Kim [15] have presented a method of calculating the 

vibration frequency of beams in boundary conditions created by using the Fourier series, which 

is generally restrained and non-classical limiting methods of rotation and cycle springs. 

M.T. Atay & S.B. Coşkun [16], S.B. Coşkun & M.T. Atay [17] have formed a column model 

with variable section and an elastically constrained along the upper and lower end and 

performed stability analysis with the Variational Iteration Method (VIM). K.V. Singh & G. Li 

[18] in their study, they have created mathematical modelling of the Transcendental Eigenvalue 

Problem (TOE) using the previously proposed NEIM (numerical algorithm) numerical 

algorithm of axially graded and elastically constrained columns. He has performed a buckling 

analysis. The researchers has used many analytical and numerical methods to model column 

and beam elements and compared their results with experimental results or to each other [19-

33], similar to the approaches used in the column elements have been also studied in the beam 

elements [34-41]. 

Gül and Aydoğlu [42], in their study, beams on elastic foundation have examined in terms of 

the wave number vibrations with Euler-Bernoulli and Timoshenko beam theories using 

Hamilton’s Principle. In the study by Y. Zhang et al. [43], using the kp-Ritz method for 

numerical solutions in buckling analysis, have been investigated the graphene layers in which 

the elastic medium has been modelled by the Winkler method. M.Ö. Yaylı [44] modelled the 

Euler column, which is bounded along its length and had different boundary conditions at its 

end points. In this numerical modelling, Stokes' transformations and Furier series have been 

used to create the coefficients matrix. 

In this study, column model which is investigated by M.Ö. Yaylı [44] has been created by using 

Euler's column theory. Firstly, the equation of the well-known Euler-Bernoulli beam theory in 

the literature is given under axial loads. Fourier sine series of displacement function is chosen 

to obtain analytical general solutions by M.Ö. Yaylı [44]. Elasticity modules for Euler-

Bernoulli column type structural elements with an external load applied at the upper and lower 

ends of the column with different boundary conditions have been calculated experimentally. In 

three different column sections produced from four different concrete series as, F30, F35, F50 

fiber reinforced concrete and non-fibrous (C) sample, buckling analysis by using Mathematica 

program is made by taking the weight of the column element into account. 

2. Numerical Modelling of the Column to be Analyzed 

Fig. 1 shows the Euler column model which is elastically limited along the length of the column and 

has different boundary conditions. Government equation for buckling Timoshenko and Gere [45] and 

Wang et al. [46]: 
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𝑑2

dx2
[EI

𝑑2𝑦

dx2
] + 𝑃

𝑑2𝑦

dx2
+  𝑘𝑤𝑦 = 0                                          (1) 

In the equation, EI is the bending stiffness, P is the axial load applied from the column end 

points, 𝑘𝑤 is the elastic limitation coefficient known as Winklers' constant applied for each unit 

length along the column length. M.Ö. Yaylı [44] in his study, obtained a matrix of coefficients 

representing the column model with a study of Stokes' transformations for the development of 

stability equations which limited the lateral displacements of the Furier sinus series. With this 

approach, it was stated that the buckling analysis of the Euler columns would yield closer results 

to the truth under different boundary conditions. 

 
Fig. 1.  An elastically restrained Euler column model. 

 

Displacement function to apply Stokes' transformation: 

y (x) = {

δ0 x = 0
δL x = L

∑ Cnsin [
nπx

L
]

∞

n=1
0 < x > L

}                                      (2) 

The Stokes transform are obtained using the displacement function and the Fourier series by 

M.Ö. Yaylı [44]; 

y(𝑥) = ∑
2𝛼𝑛((−1)n(δ𝐿(P−EI𝛼𝑛

2)+EIδ𝐿
′′)+δ0(EI𝛼𝑛

2−P)−EIδ0
′′)

L(EI𝛼𝑛
4+𝑘𝑤−P𝛼𝑛

2)

∞

𝑛=1
sin (

n𝜋𝑥

L
)            (3) 

Four homogeneous equations are obtained by applying the boundary [44]: 

 Boundary conditions: 

𝐾0δ0 = −EI
d3𝑦(𝑥)

d𝑥3 ,    x = 0                                                     (4) 

𝐾𝐿δ𝐿 = −EI
d3𝑦(𝑥)

d𝑥3 , x = L                                                     (5) 

𝜃0
dy(𝑥)

dx
= EI

d2𝑦(𝑥)

d𝑥2
, x = 0                                                     (6) 

𝜃𝐿
dy(𝑥)

dx
= −EI

d2𝑦(𝑥)

d𝑥2 , x = L                                                   (7) 
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 Homogeneous equations: 

(−𝐾0

_

− ∑
2𝑛2𝜋2𝐾𝑤

_

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)

δ0

𝐿2+(∑
2𝑛2(−1)𝑛𝜋2𝐾𝑤

_

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)

δ𝐿

𝐿2 + 

(1 + ∑
2(𝐾𝑤

_
−𝑃

_

𝑏𝑛2𝜋2)

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)δ0

''
 + (1 + ∑

2(−1)𝑛(𝐾𝑤

_
−𝑃

_

𝑏𝑛2𝜋2)

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
 )δ𝐿

'' = 0           (8) 

(∑
2𝑛2(−1)𝑛𝜋2𝐾𝑤

_

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)

δ0

𝐿2 + (−𝐾𝐿

_

− ∑
2𝑛2𝜋2𝐾𝑤

_

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)

δ𝐿

𝐿2 

+ (1 + ∑
2(−1)𝑛(𝐾𝑤

_
−𝑃

_

𝑏𝑛2𝜋2)

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)δ0

''
 + (1 + ∑

2(𝐾𝑤

_
−𝑃

_

𝑏𝑛2𝜋2)

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)δ𝐿

'' = 0            (9) 

−(𝜃0

_

+ 2𝜃0

_

∑
𝐾𝑤

_

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)

δ0

𝐿2 + (𝜃0

_

+ 2𝜃0

_

∑
(−1)𝑛𝐾𝑤

_

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)

δ𝐿

𝐿2 

+ (−1 − 2𝜃0

_

∑
𝑛2𝜋2

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)δ0

''
 + (2𝜃0

_

∑
𝑛2𝜋2(−1)𝑛

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)δ𝐿

'' = 0     (10) 

−(𝜃𝐿

_

+ 2𝜃𝐿

_

∑
(−1)𝑛𝐾𝑤

_

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)

δ0

𝐿2 + (𝜃𝐿

_

+ 2𝜃𝐿

_

∑
𝐾𝑤

_

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)

δ𝐿

𝐿2 + 

(2𝜃𝐿

_

∑
𝑛2𝜋2(−1)𝑛

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)δ0

''
 + (−1 − 2𝜃𝐿

_

∑
𝑛2𝜋2

𝑛4𝜋4−𝑃
_

𝑏𝑛2𝜋2+𝐾𝑤

∞

𝑛=1
)δ𝐿

'' = 0      (11) 

 

Where 

𝜃𝐿

_

=
𝜃𝐿L 

EI
,  𝜃0

_

=
𝜃0L 

EI
,  𝐾0

_

= 
𝐾0𝐿3

EI
 ,  𝐾𝐿

_

=
𝐾𝐿𝐿3

EI
 , 𝐾𝑤

_

=
𝑘𝑤𝐿4

EI
,   𝑃

_

𝑏 =
P𝐿2

EI
                 (12) 

Equations are written in matrix form M.Ö. Yaylı [44]: 

[

𝜓11 𝜓12 𝜓13 𝜓14

𝜓21 𝜓22 𝜓23 𝜓24

𝜓31 𝜓32 𝜓33 𝜓34

𝜓41 𝜓42 𝜓43 𝜓44

]

[
 
 
 
 
 

𝛿0

𝐿2

𝛿𝐿

𝐿2

𝛿0
′′

𝛿𝐿
′′]
 
 
 
 
 

 = 0                                            (13) 

The eigenvalue system gives the critical buckling load M.Ö. Yaylı [44]. 

|𝜓𝑖𝑗| = 0,     (i,j = 1, 2, 3, 4)                                                    (14) 

Where 

 

𝜓11 = −𝐾0

_

− ∑
2𝑛2𝜋2𝐾𝑤

_

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
,              𝜓12 = ∑

2𝑛2(−1)𝑛𝜋2𝐾𝑤

_

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
            (15) 

𝜓12 = 1 + ∑
2(𝐾𝑤

_
−𝑃𝑏

_
𝑛2𝜋2)

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
,           𝜓14 = 1 + ∑

2(−1)𝑛(𝐾𝑤

_
−𝑃𝑏

_
𝑛2𝜋2)

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
            (16) 
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𝜓21 = ∑
2𝑛2(−1)𝑛𝐾𝑤

_
𝜋2

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
,            𝜓22 = −𝐾𝐿

_

− ∑
2𝑛2𝐾𝑤

_
𝜋2

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
            (17) 

𝜓23 = 1 + ∑
2(−1)𝑛(𝐾𝑤

_
−𝑃𝑏

_
𝑛2𝜋2)

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
,          𝜓24 = 1 + ∑

2(𝐾𝑤

_
−𝑃𝑏

_
𝑛2𝜋2)

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
            (18) 

𝜓31 = 𝜃0

_

+ 2𝜃0

_

∑
𝐾𝑤

_

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
,       𝜓32 = −𝜃0

_

+ 2𝜃0

_

∑
(−1)𝑛𝐾𝑤

_

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
        (19) 

𝜓33 = −1 − 2𝜃0

_

∑
𝑛2𝜋2

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
,       𝜓34 = 2𝜃0

_

∑
𝑛2𝜋2(−1)𝑛

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
        (20) 

𝜓41 = −𝜃𝐿

_

+ 2𝜃𝐿

_

∑
(−1)𝑛𝐾𝑤

_

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
,       𝜓42 = 𝜃𝐿

_

+ 2𝜃𝐿

_

∑
𝐾𝑤

_

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
        (21) 

𝜓43 = 2𝜃𝐿

_

∑
𝑛2𝜋2(−1)𝑛

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
,      𝜓44 = −1 − 2𝜃𝐿

_

∑
𝑛2𝜋2

𝑛4∗𝜋4−𝑃𝑏

_
∗𝑛2∗𝜋2+𝐾𝑤

_

∞

𝑛=1
        (22) 

3. Buckling Analysis of the Modelled Column 

In this section of the study, the figures given in Fig. 2. were selected for the sections of the column 

model to be analyzed. The cross-sectional features may vary according to the analysis. 

 

 
Fig. 2.  Rectangular area, Tee section, Angle section, respectively. 

 

The values of the elastic modulus calculated from the stress-strain graph obtained under 28 days 

pressure loading of each cylinder samples which has dimension of 10x20 cm are shown in Table 

1. 

 

 

Table 1. Elasticity modulus values depending on the type of steel fiber obtained as a result 

of the experiment. 

 C F30 F35 F50 

Elasticity Module (Gpa) 42.56 39.32 36.82 40.97 

 

3.1 The effect of the rotation coefficient on the critical load 

The cross-sectional dimensions of the above column are used for the column to be analyzed. In 

the analysis, the modulus of elasticity was chosen as E=42560 
𝑁

𝑚𝑚2 column length L= 3300 

mm. 200 terms were used in Stokes' transformations to provide the boundary condition of the 
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Furier series. The number of terms is valid only for this analysis. The following cross-sectional 

measurements were used in the analysis: Rectangular area; b=600 mm, h=300 mm; Tee section; 

𝑡𝑓=200 mm, 𝑡𝑤=200 mm , h=600 mm, b=600 mm; Angle section b=600 mm, t=200 mm , h=600 

mm. 

 

Table 2.  Critical load values due to non-rotating spring coefficient (𝐾𝑤=0.0).  (a) 

𝛉𝟎
̅̅ ̅= 𝛉𝐋

̅̅ ̅ 𝑷𝒄𝒓 N Rectangular section   𝑷𝒄𝒓 N Tee section   𝑷𝒄𝒓 N Angle section 

0.001 5.20935×107 1.49206×108 5.96824×108 

0.01 5.22832×107 1.49749×108 5.98998×108 

0.1 5.41618×107 1.55130×108 6.20520×108 

0.3 5.82171×107 1.66745×108 6.66981×108 

0.5 6.21136×107 1.77905×108 7.11622×108 

0.75 6.67711×107 1.91246×108 7.64982×108 

1.0 7.12036×107 2.03941×108 8.15765×108 

2.0 8.69193×107 2.48954×108 9.95816×108 

4.0 1.10729×108 3.17149×108 1.26860×109 

10.0 1.49022×108 4.26828×108 1.70731×109 

20.0 1.73554×108 4.97092×108 1.98837×109 

40.0 1.89774×108 5.43551×108 2.17421×109 

80.0 1.99054×108 5.70130×108 2.28052×109 

160.0 2.03995×108 5.84283×108 2.33713×109 

300.0 2.06370×108 5.91084×108 2.36434×109 

 

 

 

Table 3.  Critical load values due to non-rotating spring coefficient (𝐾𝑤=4.9). (b) 

𝛉𝟎
̅̅ ̅= 𝛉𝐋

̅̅ ̅ 𝑷𝒄𝒓  N Rectangular section 𝑷𝒄𝒓  N Tee section   𝑷𝒄𝒓 N Angle section 

5 1.22341×108 3.50410×108 1.40164×109 

10 1.51423×108 4.33706×108 1.73483×109 

15 1.66635×108 4.77276×108 1.90911×109 

20 1.75805×108 5.03540×108 2.01416×109 

25 1.81888×108 5.20964×108 2.08386×109 

30 1.86203×108 5.33323×108 2.13329×109 

35 1.89418×108 5.42529×108 2.17012×109 

40 1.91902×108 5.49644×108 2.19858×109 

45 1.93878×108 5.55305×108 2.22122×109 

50 1.95487×108 5.59913×108 2.23965×109 

55 1.96822×108 5.63737×108 2.25495×109 

60 1.97947×108 5.66960×108 2.26784×109 

65 1.98908×108 5.69713×108 2.27885×109 

70 1.99739×108 5.72092×108 2.28837×109 

75 2.00464×108 5.74168×108 2.29667×109 
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                                        a.                                                                       b. 

Fig. 3. Graph of change in critical load values due to non-rotating spring coefficient. 

When graphs and tables are examined, it is seen that the values of the spring (𝜃0
̅̅ ̅ and 𝜃L

̅̅ ̅) 

constant which prevent the rotation of the column ends owing to increase the stiffness of the 

column ends. This increase is a hyperbolically increasing curve from a clamped support to 

pinned support behavior. Because of the increase in the values taken by the spring constant after 

a certain point of rigidity, we can call this column clamped-clamped columns. It can be said 

that the critical load values are examined according to the spring constant that prevents rotation, 

i.e. according to the boundary condition of the column. As the spring (𝜃0
̅̅ ̅ and 𝜃L

̅̅ ̅) constant value 

increased the critical load value increased in the column, likewise as it decreases the critical 

load decreased. This non-linearly increased critical load reached a maximum critical load point 

after a certain 𝜃0
̅̅ ̅ and 𝜃L

̅̅ ̅value. At this point, it can be said that both ends of the column are 

clamped because, as theoretically, the ends are not allowed to rotate. 

3.2 Critical load change depending on L/d ratio 

For the column model, which is calculated according to the L/d ratio in table 1, the values of 

A=b.h, inertial radius d=√𝐼/𝐴, 𝐾L
̅̅ ̅ = 0.0, b = 600 mm, h = 400 mm were selected for the 

column model. Modulus of elasticity obtained from the experiment results is E=42560 
𝑁

𝑚𝑚2 . 

150 terms have been used in Stokes transformations to provide the boundary condition of Furier 

series. The number of terms is valid only for this analysis. The spring constant values 

(𝜃0
̅̅ ̅=0.00000001 , 𝜃L

̅̅ ̅=100000000) at the column ends are selected as very high or near zero 

values for the boundary conditions. Thus, the fixed and clamped support model which is 

required for the column is obtained. 

 

   
 

Fig. 4. Critical load graph due to L/d ratio in different boundary conditions. 
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Table 4.  The effect of column thickness on critical load.  

L/d 𝑷𝒄𝒓 Fixed-Fixed N 𝑷𝒄𝒓 Fixed-Clamped N 𝑷𝒄𝒓 Clamped-Clamped N 

25.9807621 1.49351×108 3.06361×108 5.97405×108 

25.1147367 1.59829×108 3.27853×108 6.39316×108 

24.2487113 1.71449×108 3.51690×108 6.85797×108 

23.3826859 1.84384×108 3.78223×108 7.37537×108 

22.5166605 1.98840×108 4.07877×108 7.95362×108 

21.6506351 2.15066×108 4.41159×108 8.60263×108 

20.7846097 2.33361×108 4.78689×108 9.33445×108 

19.9185843 2.54095×108 5.21219×108 1.01638×109 

19.0525589 2.77719×108 5.69679×108 1.11088×109 

18.1865335 3.04798×108 6.25226×108 1.21919×109 

17.3205081 3.36040×108 6.89312×108 1.34416×109 

16.4544827 3.72344×108 7.63780×108 1.48938×109 

15.5884573 4.14865×108 8.51002×108 1.65946×109 

14.7224319 4.65108×108 9.54064×108 1.86043×109 

13.8564065 5.25063×108 1.07705×109 2.10025×109 

12.9903811 5.97405×108 1.22544×109 2.38962×109 

 

 

When Table 1 and Fig. 4. are examined, it is seen that increase of L/d ratio causes decrease of 

critical load value and increase of L/d ratio causes parabolic increase of critical load. ease of 

critical load value and increase of L/d ratio causes parabolic increase of critical load. The 

increase in the L/d ratio is result from an increase in column length or a smaller diameter in the 

cross-sectional area. Increased column diameter or decreased in height reduces the slenderness 

and therefore   it can be said that there will be collapse caused by crushing instead of buckling 

in the column, because the column will be crushed before reaching the value of excessive 

critical buckling load. There are limitations in terms of slenderness in the relevant regulations. 

As can be seen from the limitation of the regulations, with the increase in the column length or 

the reduction of the column cross-section, the critical load value decreases and this result gives 

us information about the fact that there is a limit to making high columns with small sections 

relation with slenderness. 

3.3. Critical load change depending on the modulus of elasticity 

Table 5 shows the results of the analysis made according to the modulus of elasticity values obtained 

from the samples in the mixture ratios of different steel fiber previously made for the column model. 3 

different cross-sectional types were used in the analysis. These sections are from Fig. 2.; 

 

Rectangular : b=900 mm , h=600 mm; 

T section : 𝑡𝑓=200 mm , 𝑡𝑤=200 mm, h=600 mm, b=600 mm; 

L section (Angle) :  b=600 mm , t=200 mm , h=600 mm; 

spring coefficients: 

𝐾0
̅̅ ̅=100000000,  𝐾L

̅̅ ̅=100000000, 𝜃0
̅̅ ̅=1000000000, 𝜃L

̅̅ ̅=1000000000, 𝐾w
̅̅ ̅̅ = 50.0 
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Table 5.  Critical load values connected to the E value of different sections with clamped-clamped ends.  

I   𝒎𝒎𝟒 E   
𝑵

𝒎𝒎𝟐 𝑷𝒄𝒓 N 

1,62x1010 (Rectangular) 42560 1.53916×109 

 40970 1.42202×109 

 39320 1.33163×109 

 36820 1.48167×109 

   

3.86667×109 (T section) 42560 3.67456×108 

 40970 3.39485×108 

 39320 3.17901×108 

 36820 3.53730×108 

   

1.54667×1010 (L section) 42560 1.46951×109 

 40970 1.35767×109 

 39320 1.27137×109 

 36820 1.41462×109
 

 

spring coefficients: 

𝐾0
̅̅ ̅=100000000,   𝐾L

̅̅ ̅=100000000,  𝜃0
̅̅ ̅=1000000000,  𝜃L

̅̅ ̅1000000000,  𝐾w
̅̅ ̅̅ = 0.0; 

 
Table 6. Critical load values connected to the E value of different sections with pinned-pinned ends. 

I   𝒎𝒎𝟒 E   
𝑵

𝒎𝒎𝟐 𝑷𝒄𝒓  N 

1,62x1010  (Rectangular) 42560 2.74811×109 

 40970 2.64545×109 

 39320 2.53891×109 

 36820 2.37748×109 

   

3.86667×109 (T section) 42560 6.55928×108 

 40970 6.31424×108 

 39320 6.05994×108
 

 36820 5.67464×108 

   

1.54667×1010 (L section) 42560 2.62371×109
 

 40970 2.52569×109 

 39320 2.42398×109 

 36820 2.26986×109 

 

       

       Clamped-clamped ends (𝐾𝑤 = 50).                          Pinned-pinned ends (𝐾𝑤  = 0). 

Fig. 5. Critical load graphs connected to the Elasticity module in different section types of columns. 
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When Fig. 5. Table 5. and Table 6. are examined, it is seen that the increase of the modulus of 

elasticity increases the critical load value linearly. 

3.4. Critical load value depending on the column length 

Table 5 shows the critical load values of 3 different section types in column-length analysis. Spring 

coefficients for the column model: 

𝜃0
̅̅ ̅=0.000000001, 𝜃L

̅̅ ̅=0.0000000001, 𝐾0
̅̅ ̅=10000000,  𝐾L

̅̅ ̅= 10000000  𝐾w
̅̅ ̅̅ = 50.0. 

Modulus of elasticity obtained from the experiment results is E=42000 
𝑵

𝒎𝒎𝟐 . 150 terms were 

used in the analysis. 

Measurements of the sections to be used in the analysis: 

Rectangular : b=600 mm , h=400 mm; 

Tee section : 𝑡𝑓=200 mm , 𝑡𝑤=200 mm, h=600 mm, b=600 mm; 

L section (Angle) :  b=400 mm , t=200 mm , h=400 mm 

 
Table 7. Table of critical load change due to column length of different sections with clamped-clamped 

ends. 

Column Length  mm 

𝑷𝒄𝒓 N 

Rectangular Area 

𝑷𝒄𝒓 N 

T section 

𝑷𝒄𝒓 N 

Angle section 

3000 6.56833×108 7.93673×108 9.85249×108 

3300 5.42837×108 6.55928×108 8.14256×108 

3600 4.56134×108 5.51162×108 6.84201×108 

3900 3.88659×108 4.69629×108 5.82988×108 

4200 3.35119×108 4.04935×108 5.02678×108 

4500 2.91926×108 3.52744×108 4.37889×108 

4800 2.56575×108 3.10029×108 3.84863×108 

5100 2.27278×108 2.74627×108 3.40917×108 

5400 2.02726×108 2.44961×108 3.04089×108 

5700 1.81948×108 2.19854×108 2.72922×108 

6000 1.64208×108 1.98418×108 2.46312×108 

 

 
 

Fig. 6. Critical load variation due to column length of different sections with clamped-clamped ends. 

 

Table 7. and Fig 6. shows that the effect of column length on critical load is not linear. 

Increasing the column length causes a hyperbolic reduction of the load capacity as it makes the 

column delicate.  
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3.5. Critical load disribution due to modulus of elasticity  

Three different cross-sectional types were used in the analyzes. 𝐾𝑤

_

= 0.0 is selected spring 

coefficient for elastic restrained and 𝐿 = 3300 is selected for column length. Table 8 shows 

critical buckling values depending on the values given. Similarly, Table 9. shows the results of 

the critical buckling load to be obtained when the L=3300, 𝐾𝑤
̅̅ ̅̅ =50.0, 𝑃𝑏

̅̅ ̅=(𝑃𝑐𝑟 𝐿2)/(E I), 

𝐾0
̅̅ ̅=10000000, 𝐾𝐿

̅̅ ̅=10000000,  𝜃0
̅̅ ̅=10000000, 𝜃𝐿

̅̅ ̅=100000000 values are used for the column 

model to be analyzed. In the same way, table 8. shows the moment of inertia that is based on 

section dimensions, elasticity modules and section dimensions. The graph of the critical 

buckling values found in figure 7 is shown. 

 
Table 8. Critical load distribution table of the different sections connected to the modulus of 

elasticity with fixed-fixed ends. 

I   𝒎𝒎𝟒 

sectional 

dimensions 

(bxh) mm 

𝑷𝒄𝒓   N 

(E = 36820 

N/𝒎𝒎𝟐) 

𝑷𝒄𝒓   N 

(E = 39320 

N/𝒎𝒎𝟐) 

𝑷𝒄𝒓   N 

(E = 40970 

N/𝒎𝒎𝟐) 

𝑷𝒄𝒓   N 

(E = 42560 

N/𝒎𝒎𝟐) 

1,350x109 (600*300) 4.50494×107 4.81082×107 5.0127×107 5.20724×107 

3,200x109 (600*400) 1.06784×108 1.14034×108 1.1882×108 1.23431×108 

6,250x109 (600*500) 2.08562×108 2.22723×108 2.32069×108 2.41076×108 

1,080x1010 (600*600) 3.60396×108 3.84866×108 4.01016×108 4.16579×108 

1,715x1010 (600*700) 5.72295×108 6.11152×108 6.36798×108 6.61512×108 

2,560x1010 (600*800) 8.54271×108 9.12274×108 9.50556×108 9.87446×108 

 
Table 9. Critical load distribution table of the different sections connected to the modulus of 

elasticity with clamped-clamped ends. 

I   𝒎𝒎𝟒 

sectional 

dimensions 

(bxh) mm 

𝑷𝒄𝒓   N 

(E = 36820 

N/𝒎𝒎𝟐) 

𝑷𝒄𝒓   N 

(E = 39320 

N/𝒎𝒎𝟐) 

𝑷𝒄𝒓   N 

(E = 40970 

N/𝒎𝒎𝟐) 

𝑷𝒄𝒓   N 

(E = 42560 

N/𝒎𝒎𝟐) 

1,350x109 (600*300) 1.98116×108 2.11568×108 2.20446×108 2.29001×108 

3,200x109 (600*400) 4.69609×108 5.01495×108 5.22539×108 5.42818×108 

6,250x109 (600*500) 9.17206×108 9.79482×108 1.02058×109 1.06019×109 

1,080x1010 (600*600) 1.58493×109 1.69254×109 1.76357×109 1.83201×109 

1,715x1010 (600*700) 2.51681×109 2.68770×109 2.80048×109 2.90917×109 

2,560x1010 (600*800) 3.75687×109 4.01196×109 4.18031×109 4.34255×109 

 

 
          (a) Fixed-fixed                                                 (b)  Clamped-clamped 

Fig. 7. Critical load distribution table of the different sections connected to the modulus of elasticity. 
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Table 9. and Fig 7. shows that the increase in the section width leads to an increase in the critical load 

value. Similarly, the increase in the modulus of elasticity of the material also increased the value of the 

critical load. 

4. Conclusion 

In the study, the buckling analysis of the Euler column model with different boundary 

conditions, which was elastically limited a column model, with the help of Stokes' 

transformations and Fourier sine series which had been previously proposed by the researchers, 

was done. In the analysis, elasticity modulus values of the steel fiber reinforced and non-fibrous 

concrete specimens with different mixing ratios obtained from the experimental results were 

used. The status of three different sections was examined. The result show that: 

 

 Because of increased column diameter or decrease in the length of the column, the 

critical buckling load values in the column increased hyperbolically. For this reason, 

very large critical buckling load values are obtained. This indicates that the crush will 

occur due to pressure load before a buckling occurs after a certain critical load value in 

the column. Regarding this, restrictions have been made in terms of delicacy in the 

regulations. In other words, with the increase in column length or narrowing of the 

diameter, the critical load value decreases and this result gives us information about the 

fact that there is a limit to making high columns with small sections. 

 

 Since the value of the modulus of elasticity obtained from the non-fibrous concrete (C) 

mixture is the highest value, the highest value of the critical load is seen in this sample. 

Then the greatest critical load values were seen in F50, F30, and F35, respectively. 
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